Batch and Sequential Policy Optimization with
Doubly Robust Objectives

Alex Lewandowski Dale Schuurmans
Department of Computing Science Department of Computing Science
University of Alberta University of Alberta
Edmonton, Alberta Edmonton, Alberta
alex3@ualberta.ca daes@ualberta.ca
Abstract

In this paper, we investigate a policy’s ability to exploit batches of experience when
trained on different objectives. We introduce objectives based on doubly robust
estimation that are orders of magnitude better in their ability to exploit batches
of experience. In addition, we compare these objectives in the both batch and
sequential settings, with one and multiple steps of policy iteration respectively. We
find that batch policy iteration introduces difficulties distinct from the on-policy
setting where a policy only updates with a single trajectory before generating a
new trajectory. Despite exploration receiving considerable attention, exploitation
in the context of optimization can also be quite challenging for current objectives.

1 Introduction

A reinforcement learning agent must simultaneously choose its actions to generate data and use
that data to optimize an objective towards actions that provide high return. This coupling between
optimization and action selection is alluring, but even the simpler problem of action selection, via
exploration and exploitation, is not well understood. The focus of this paper is exploitation, which
we investigate by looking at different objectives in batch reinforcement learning.

Suppose that, in a contextual bandit problem, we are given complete feedback as if it were a
supervised learning problem. In this case, we would observe the rewards for actions not taken. Using
this information, we could form a target for our policy using all action-values — not just for the action
taken by the behavior policy. This would then bypass the need for a REINFORCE estimator [1] since
we would be able to optimize through the expectation. The key problem is that we do not have an
oracle to provide us with information on actions not taken. In reinforcement learning, a separate
function approximator is often used to estimate the action-values [2]. However, alternating between
updates of two separate function approximators is a saddle-point problem that can cause instabilities.
While some work has investigated novel objectives in the contextual bandit setting [3l 4], we consider
new objectives for reinforcement learning.

In this paper, we study how doubly robust estimation with different choices of objective function
affect an agent’s ability to learn. A key aspect of this approach is the unification of actor and critic
in function approximation. While actor-critic models have separate networks for the policy and
for the action-value function, we use only a single shared network. In doing so, we leverage both
generalization and auxiliary tasks by having one network predict both action-value functions and
the policy distribution. To benchmark our objectives we look at off-policy problems in the cartpole
environment [5,16]. In particular, we investigate learning from batches of experience, with and without
sequential policy improvement, as well as learning from pretrained policies.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

2 Off-policy policy optimization

Due to the policy gradient theorem [[7], expected return is often the quantity that policy gradient
methods optimize. However, recent work suggests that the optimization landscape induced by the
expected return is not well suited to gradient based optimization [8, 4]. This stands in contrast to
supervised learning, which can afford to use cross-entropy as a surrogate for misclassification cost to
allow for robust convergence of neural networks.

We first motivate new objectives from the perspective of batch reinforcement learning, where policy
improvement (and hence the policy gradient theorem) is not strictly needed. Current work in deep
reinforcement learning constitutes a blend of batch and online reinforcement learning. While agents
act online, their experience is stored in an experience replay buffer to be used at a later time for
updating. As a result, there is a lack of clear separation between success in the batch off-policy setting
and the online on-policy setting.

To begin, we consider the softmax policy over preferences for each discrete action,
er (st,a)
Za eQe (S t »0«)

Where @y scores the relative preference of certain actions and is not necessarily equal to the action-
value function Q. (s¢, a).

mo(A =alsy) =

While we are optimizing a soft-max policy, the experience (or data) that we are using comes from
another behavior policy 3(a|s). Using experience from another policy is referred to as off-policy
learning, and policy-gradient methods leverage importance sampling for an unbiased estimate of
some quantity X,

7 (alst)
Bla|st)
Implicitly, importance sampling ignores potential generalization across actions not taken. In what
follows, we address this problem by using doubly robust estimates of the return.

Er[X¢] = Eg| Xi).

2.1 Estimating the return

To properly measure the difference between the policy’s distribution and the estimates of the return,
we must maintain estimates of the action-value. The first issue in batch reinforcement learning is that
the rewards (and hence returns) are unobserved for actions not taken. At time ¢, we have an estimate
of Q(s¢, a;) by the Monte Carlo return G; = Zith r;. For other actions a # a;, we must estimate
Q(s¢,a) and we do so using the preferences of our policy. In particular, we use an idea similar to the
doubly robust estimator from statistics and policy evaluation [9} [10].

pl:(t—l)Gt — Qo(s4,0a)
ﬁ(at\st)
t—1 w(au|sy)

where p1.—1) = [Blanlsr) is the importance correction. That is, we use the preferences that

output from our policy as estimates of the action-value for all actions not taken. However, we reweigh
the action-value for actions taken proportional to the proposal probability under the behavior policy
B(at|at). Furthermore, we can write a distribution over @ using the softmax function,

QDR(sta a) - QS(SM (1) +]-a:at

eQDR(st,0)

(A = = —
pQ(alst) Za cOpn(s,a)

2.2 Imputed policy objectives

Now that we have estimates of the return using doubly robust imputation, we can use this information
in our objectives. Whenever we would normally compare the policy with the action-value of the
action take, we will now compare the entire distribution. By requiring the function approximator to
satisfy the imputation and requirement, we are requiring the function approximator to generalize.
Then, what objective function should we use? We first look to the reinforcement learning literature.
First, we observe that the recursive definition of doubly robust imputation [10]],

Vhr = Va(se) + pi(re + VAR — Qolse, ar)).

where Vy(s;) = >, mo(a|s:)Qo(s¢,a). We can unroll this objective to obtain the Monte-Carlo
objective,

T T
= ZZ P1:t Tt""/@ St) Q@(Stvat))'
t=1t/=t

Next, we look at the supervised learning literature. One common method is KL Minimization
K L(P|| Q) which minimizes the distance between two distributions P and Q). If we are learning a
policy 7, then the corresponding ‘label” distribution is the softmax over estimated returns Po (a]st) =

softmax(@ pr)- In supervised learning, the labels are provided and fixed. This is not the case for
doubly robust imputation, since the function approximator is used to estimate the return for actions
not taken. If the labels were indeed fixed, we would similarly prefer the forward KL divergence in
supervised learning since it would simplify to the cross entropy 3, p(a) log m(a). Note that this is
a hybrid between the REINFORCE estimator [11]] and all-action policy gradient [12].

As aresult, we instead use the backward KL divergence K L(|| py). In the actor-critic literature,

where Q is estimated using a critic with separate weights, this is sometimes referred to as entropy
regularized expected return. To see why, we momentarily ignore the outer summation over time and
the conditional on state s;,

K L(ml|pg) = Z[ﬂ'g(a) log mg(a) — mo(a) log py (a)].

a

Where H =) mg(a)logmg(a) is the entropy of the distribution mg. When this term is added to an
objective, it biases the policy towards a uniform distribution.

To use these objectives for reinforcement learning, we can consider the sum of KL divergences at each
time step over the horizon T. This is justified by the fact that the policy is conditionally independent
given the state, and we have that

KL [mo(7)l|pg(r))] = ZKL[W(alst)l|pg(alss)|

Simplifying this further, we fix and omit s, for brevity. The doubly robust backward KL divergence
can be decomposed to find that,

pl:(t—l)Gt —qo(ay)
Blaz)
Hence, the doubly robust backward KL objective decomposes to expected return with state-action

baseline with an additional entropy term, normalizing constant and value term. Interestingly, the
normalizing term is dependent on # and will contribute to the gradient of the objective.

+ " [me(a) log mo(a)+e225(®) —rg(a)go (a))-

a

KL |70(a))| pg(@)] = —mo(ar)

It is unclear whether the entropy regularization component is important since Q pr depends on the
policy parameters. We now define a new objective without this term,

Zm a) logpg (@) = —mg(ay) + D [e27R(@ — 1y(a)go(a)]

a

P1;(t71)Gt —qo(at)
ﬂ(at)

which is just the cross entropy between the policy and the doubly robust imputation of return.

3 Experiments

We compare our imputed objectives (Expected Return - Doubly Robust, Backward KL, Backward
KL no entropy) against classical objectives such as Expected return with and without importance
correction on the cartpole environment [5} 6]]. The start state is randomized and the maximum possible
return is 200, where the episode terminates. While a simple domain, the series of off-policy and batch
settings that we propose remains a challenging problem in the literature [13].

For all of our experiments, we average over 30 different seeds and, for each seed, the policy is
evaluated multiple times on the environment. The shaded region corresponds to one standard error

mean_return for target policy over 30 runs and 10 evaluations per run

120

100

mean_return
@
o

o
=)

N
=)

N
=]

0 1000 2000 3000 4000 5000 6000 7000
Number of policy gradient updates

Figure 1: Batch policy optimization with 200 trajectories sampled from a uniformly random behavior
policy. KL-based objectives perform orders of magnitude better than conventional algorithms. Doubly
robust return also performs better than conventional importance sampling

around the mean over the 30 different runs. The function approximator for the softmax policy is
a neural network with a single hidden layer of 32 neurons and relu activation functions. We use
the Adam optimizer [14] and all learning rates are individually tuned for each algorithm, between
a=10""fori € [1,2,3,4,5,6]. Lastly, action selection is stochastically sampled from the soft-max
distribution.

3.1 Batch and sequential reinforcement learning

For the batch reinforcement learning problem, the agent is provided 200 trajectories from a uniformly
random policy (mean episode length of 22). Each objective is then optimized by taking a minibatch
of 4 trajectories. For each seed, the agent is evaluated on the environment 10 for every 15 epochs (for
a total of 150 epochs of training). Referring to Figure 1, we see that both KL objectives are able to
produce excellent policies without ever directly interacting with the environment. Unsurprisingly,
uncorrected expected return is unable to learn anything from the batch of trajectories. However, even
importance sampling is unable to match the performance of the doubly robust objectives.

As hypothesized in Section 2.2, we see very little difference between the backward KL divergence
with and without entropy. This seems to suggest that the entropy term is not the main contributor to
the success of the doubly robust backward KL objective.

3.2 Batch policy iteration and on-policy learning

In batch policy iteration, agents are initially trained on 50 trajectories sampled from a uniformly
random policy. Afterwards, an optimized policy is extracted and used to generate a new batch of 50
trajectories. Referring to Figure 2, we find that this degrades performance of the KL-based agents
relative to doubly robust expected return. Still, the imputed objectives are still significantly better
than the classical expected return objectives.

Contrasting this with the on-policy performance in Figure 3 (left), we see that all agents perform
roughly equally by the end of the last episode. Early on, doubly robust backward KL performs
significantly better however this performance gap degrades. More interestingly however, the imputed
objectives are unable to take advantage of more epochs for a single trajectory as seen in Figure 3
(right).

3.3 Batch learning with pretrained behavior policy

The difference between the on-policy and batch policy iteration setting is striking, but confounded by
factors involving the sudden change in data distribution and its effect on the optimizer’s learning rate.

mean_return for target policy over 30 runs and 20 evaluations per run
o

©
=)

mean_return

o
=}

40

20

0 500 1000 1500 2000 2500
Number of policy gradient updates

Figure 2: Batch off-policy optimization with one step of policy iteration. Initially, 50 trajectories
are sampled from a uniformly random behavior policy. After 100 epochs, 50 new trajectories are
sampled from the optimized policy.

rn for target policy over 30 runs and 20 evaluations per run turn for target policy over 30 runs and 20 evaluations per run

8 100 6 260 860 1000

60 660
Number of policy gradient updates

40 60
Number of policy gradient updates

Figure 3: Policy optimization with a single trajectory per update. Doubly robust Backward KL
performs statistically significantly better early on, but eventually all objectives yield similar policies.
Left: 1 epoch. Left: 10 epochs.

To control for this, we pretrain a policy with an on-policy expected return objective to two levels of
performance (50 episodes: mean return of 70, 100 episodes: mean return of 140). All objectives are
provided this policy and a batch of 50 trajectories to optimize it further.

In Figure 4 (top), the policy and its trajectories are initially from an expected return objective trained
to achieve a mean return of 70. The initial performance is already quite good, however the imputed
objectives are able to optimize it further. As expected, on-policy expected return struggles to improve
performance past the initial value. The same is true in Figure 4 (bottom), except that the degree of
improvement is less. Interestingly, backward KL is able to improve the policy more than imputed
expected return.

4 Related Work

Besides pioneering work on doubly robust policy evaluation [10} [15]], there has been some work
using doubly robust policy optimization to contextual bandits [9,4]. Since we consider the sequential
setting of reinforcement learning, the problem is much harder.

The objective function for the policy network in soft actor critic [[16] is similar to the backward
KL divergence objective that we investigate in this paper. However, we use a single network to
parameterize the action-value function and the policy. Hence, the learning dynamics are quite different
in that targets are constantly moving. Moreover, our objective function is not quite an actor critic
even if we used separate networks for each function.

mean_return for target policy over 30 runs and 20 evaluations

mean_return

0 1000 2000 3000 4000 5000
Number of policy gradient updates

mean_return for target policy over 30 runs and 20 evaluations per run

’_‘4
Iy
IS

mean_return

-
&
S

=
B
S

138

[1000 2000 3000 4000 5000
Number of policy gradient updates

Figure 4: Batch off-policy optimization with a pretrained policy. Top: Two steps of policy iteration
with an initial policy that achieves a mean return of 70. Bottom: One step of policy iteration with an
initial policy that achieves a mean return of 140.

Lastly, our treatment of the return as distribution is distinct from distributional RL [[17]]. While their
work considers the distribution of return of the state-action pair Z (.S, A), while we consider the
conditional distribution Z(A|s). Put another way, distributional RL considers returns random even
for a fixed action while this works considers randomness in returns only through the randomness in
the policy.

5 Discussion

In this paper we explored KL minimization objectives for reinforcement learning using doubly robust
imputation. We showed that a single network can learn to act and predict return from uniformly
random behavior on the cartpole environment. What is surprising, is that these off-policy methods are
equally effective in the on-policy setting. This novel formulation does not aim to decrease variance.
Instead, this objective leverages generalization in the optimization process by forcing the policy to
learn how to impute action-values.

Three issues remain and are outside the scope of this paper. First, how can we estimate action-values
for actions not taken when actions are continuous? Second, what inductive bias does the imputation
scheme produce? And last, what is the interaction between objective function and imputation scheme?
Indeed, doubly robust imputation will not work with continuous actions because the event that we
observe a particular action has measure zero. We will then have to change the imputation in such a
way that still produces the same inductive bias. But it is unclear if the same objective functions will
be the best performers.

This new perspective on learning objectives sheds some light on issues in optimization for RL.
Namely, the problem of behaving optimal on multiple streams of data can conflict with learning on
newer streams of data. As a result, our work suggests a trade-off between how much you can learn
through temporal interactions and through a supervised learning approach.

References

[1] Ronald J Williams and Jing Peng. Function optimization using connectionist reinforcement
learning algorithms. Connection Science, 3(3):241-268, 1991.

[2] Richard S. Sutton and Andrew G. Barto. Reinforcement learning - an introduction. Adaptive
computation and machine learning. MIT Press, 2018.

[3] Thorsten Joachims, Adith Swaminathan, and Maarten de Rijke. Deep learning with logged
bandit feedback. 2018.

[4] Minmin Chen, Ramki Gummadi, Chris Harris, and Dale Schuurmans. Surrogate losses for
batch policy optimization in one-step decision making, 2019.

[5] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. Openai gym, 2016.

[6] Andrew G Barto, Richard S Sutton, and Charles W Anderson. Neuronlike adaptive elements
that can solve difficult learning control problems. IEEE transactions on systems, man, and
cybernetics, (5):834-846, 1983.

[7] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057-1063, 2000.

[8] Zafarali Ahmed, Nicolas Le Roux, Mohammad Norouzi, and Dale Schuurmans. Understanding
the impact of entropy on policy optimization. CoRR, 2018.

[9] Miroslav Dudik, John Langford, and Lihong Li. Doubly robust policy evaluation and learning.
CoRR, 2011.

[10] Nan Jiang and Lihong Li. Doubly robust off-policy value evaluation for reinforcement learning.
CoRR, 2015.

[11] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229-256, 1992.

[12] Kamil Ciosek and Shimon Whiteson. Expected policy gradients. CoRR, 2017.

[13] Yao Liu, Adith Swaminathan, Alekh Agarwal, and Emma Brunskill. Off-policy policy gradient
with state distribution correction. CoRR, 2019.

[14] Diederik P Kingma and Jimmy Ba. Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] Miroslav Dudik, Dumitru Erhan, John Langford, and Lihong Li. Doubly robust policy evaluation
and optimization. CoRR, 2015.

[16] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. CoRR, 2018.

[17] Marc G. Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. CoRR, 2017.

	Introduction
	Off-policy policy optimization
	Estimating the return
	Imputed policy objectives

	Experiments
	Batch and sequential reinforcement learning
	Batch policy iteration and on-policy learning
	Batch learning with pretrained behavior policy

	Related Work
	Discussion

