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Abstract

We consider large-scale Markov decision processes (MDPs) with an unknown cost
function and employ stochastic convex optimization tools to address the problem
of imitation learning, which consists of learning a policy from a finite set of expert
demonstrations. We adopt the apprenticeship learning formalism, which carries the
assumption that the true cost function can be represented as a linear combination
of some known features. Existing inverse reinforcement learning algorithms come
with strong theoretical guarantees, but are computationally expensive because they
use reinforcement learning or planning algorithms as a subroutine. On the other
hand state-of-the-art policy gradient based algorithms (like IM-REINFORCE, IM-
TRPO and GAIL), achieve significant empirical success in challenging benchmark
tasks, but are less well understood in terms of theory. With an emphasis on non-
asymptotic guarantees of performance, we propose a method that directly learns a
policy from expert demonstrations, bypassing the intermediate step of learning the
cost function, by formulating the problem as a single convex optimization problem
over occupancy measures. We develop a computationally efficient algorithm
and derive high confidence excess-loss bounds on the quality of the extracted
policy, utilizing results from uncertain convex optimization and recent works in
approximate linear programming for solving forward MDPs.

1 Introduction

The goal of apprenticeship learning (AL) in a Markov decision process (MDP) environment without
cost function is to learn a policy that achieves or even surpasses the performance of a policy demon-
strated by an expert. A usual assumption is that the unknown true cost function can be represented as
a weighted combination of some known basis functions, where the true unknown weights specify
how different desiderata should be traded off. An argument for this assumption is that in practice the
unknown cost function depends on just a few key properties, but the desirable weighting is unknown.

A lot of methods have been proposed to solve the apprenticeship learning problem. The most naive
approach is behavior cloning, which casts the problem as a supervised learning problem, in which
the goal is to learn a map from states to optimal actions. Although behavior cloning is simple and
easy to implement, the crucial i.i.d. assumption made in supervised learning is violated. As a result,
the approach suffers from the problem of cascading errors which is related to covariate shift [13].
Later works like DAgger[19] eliminate distribution mismatch by formulating the problem as a no
regret algorithm in an online learning setting. However, these kind of algorithms require interaction
with the expert, which is a different learning scenario from the one considered in this paper. Most
importantly their sample and computational complexity scales polynomially with the horizon of the
problem, which in our case is infinite.

Inverse Reinforcement learning (IRL) [4] is a prevalent approach to AL. In this paradigm, the
learner first infers the unknown cost function that the expert tries to optimize and then uses it to
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reproduce the optimal behavior. IRL algorithms do not suffer from the problem of cascading errors
because the training takes place over entire expert trajectories, rather than individual actions. In
addition, since the recovered cost function “explains” the expert behavior, they can easily generalize
to unseen states or even new MDP environments. Note however, that most existing IRL algorithms
[4, 22, 17, 3, 25, 18, 16, 14, 15] are computationally expensive because they use reinforcement
learning as a subroutine.

On the other hand, one can frame the problem as a single convex program [23], bypassing the
intermediate step of learning the cost function. Although the associated program can be solved
exactly for small-sized MDPs, the approach suffers from the curse of dimensionality, making it
intractable for large-scale problems, arising in, e.g., autonomous driving with increasing number
of sensors and decision aspects. Provably efficient convex approximation schemes for the convex
formulation of AL [23] in the context of large-scale MDPs remain unexplored. However, it is worth
noting, that the formulations and reasoning in [23] formed the ground and inspired later state-of-the-
art algorithms [13, 12]. In particular, the authors in [13] developed a gradient-based optimization
formulation over parameterized policies for apprenticeship learning, and then presented algorithms
which are parallel to the policy gradient RL counterparts [24, 20]. The sequel paper [12], draws a
connection between the policy optimization formulation and generative adversarial networks [7],
from which an analogous imitation learning algorithm is derived. These approaches are model-free
and scale to large and continuous environments. However, in general the policy optimization problem
is highly non-convex and as a result remains hampered by limited theoretical understanding. In
particular, these methods provide no guarantees into the quality of the points to which they converge.

With an emphasis on non-asymptotic guarantees of stability and performance, in this work we propose
an approximation scheme for the convex formulation of AL [23]. In particular, the objective is to
minimize the `1-distance between the feature expectation vector of the expert and the learner, subject
to linear constraints ensuring that the optimization variable is an occupation measure induced by a
policy. Our AL algorithm and its theoretical analysis builds upon recent innovations in approximate
LP for large-scale discounted MDPs [1, 2] and can be seen like the AL analogue of their algorithhms.
Similarly to [1], we control the complexity by limiting our search to the linear subspace defined
by a small number of features. We then convert the initial program to an unconstrained convex
optimization problem. To this end, we use a surrogate loss function by adding a multiple of the total
constraint violations to the initial objective. We then construct unbiased subgradient estimators and
apply the stochastic subgradient descent algorithm. In this way, by combining bounds in the stochastic
convex optimization literature and concentration inequalities, we are able to give high confidence
regret bounds showing that the performance of our algorithm approaches the best achievable by any
policy in the comparison class. A salient feature of the algorithm is that the iteration and sample
complexity do not depend on the size of the state space but instead on the number of approximation
features.

Moreover, it is worth mentioning that since our methodology is based on the LP formulation of
MDPs [9, 10, 11, 5], is naturally extensible to unconventional problems involving additional safety
constraints or secondary costs, where traditional dynamic programming techniques are not applicable
[8, 6, 21].

To the best of our knowledge this is the first time that a performance bound is derived for a policy-
optimization-based algorithm for AL. We hope that the techniques proposed in this work provide a
starting point for developing provably efficient AL algorithms

Notation and conventions. We denote by Ai,: and A:,j the i-th row and j-th column of a matrix
A, respectively. For p ∈ [1,∞], we denote by ‖ · ‖p the p-norm in Rn. The corresponding induced
matrix norm is defined by ‖A ‖p = sup‖ x ‖p≤1 ‖Ax ‖p. For vectors x and y, we denote by 〈x, y〉 the
usual inner product. Moreover, x ≤ y denotes elementwise inequality. We define [x]+ = max{0, x}
and [x]− = −min{0, x}. The set of probability measures on a set X is denoted by P(X).

2 Preliminaries

Consider a finite MDP described by a tupleMc ,
(
X ,A, P, γ, ν0, c

)
, where X = {x1, . . . , x|X |} is

the state space, A = {a1, . . . , a|A|} is the action space, P : X × A → P(X ) is the transition law,
γ ∈ (0, 1) is the discount factor, ν0 ∈ P(X ) is the initial probability distribution of the system state,
and c : X ×A → R is the one-stage cost function.
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The model Mc represents an infinite horizon controlled discrete-time stochastic system whose
evolution is described as follows. At time step t, if the system is in state xt = x ∈ X , and the action
at = a ∈ A is taken, then (i) the cost c(x, a) is incurred, and (ii) the system moves to the next state
xt+1, which is an X -valued random variable with probability distribution P (·|x, a). Once transition
into the new state has occurred, a new action is chosen and the process is repeated.

A stationary Markov policy is a map π : X 7→ P(A), and π(a|x) denotes the probability of choosing
action a, while being in state x. We denote the space of stationary Markov policies by Π0.

Given a policy π ∈ Π0, we denote by Pπ
ν0 the induced probability measure on the canonical sample

space Ω , (X ×A)∞, i.e., Pπ
ν0 [·] = Prob[· | π, x0 ∼ ν0]. The expectation operator with respect to

Pπ
ν0 is denoted by Eπ

ν0 .

The optimal control problem is given by minπ∈Π0
ηc(π), where ηc(π) , Eπ

ν0

[∑∞
t=0 γ

tc(xt, at)
]
,

is the total expected discounted cost of a policy π.

For every policy π ∈ Π0, we define the γ-discounted occupancy measure µπ : X × A → R+,
by µπ(x, a) ,

∑∞
t=0 γ

t Pπ
ν0 [xt = x, at = a] . The occupancy measure can be interpreted as the

(unormalized) discounted visitation frequency of state-action pairs when acting according to policy π.
Moreover, it holds that ηc(π) =

∑
x,a µ

π(x, a)c(s, a) = Eµπ [c(x, a)].

3 Apprenticeship Learning Framework

3.1 Problem statement

Consider now the Markov decision model without a cost function, M ,
(
X ,A, P, γ, ν0

)
.

Assume that instead, we have access to a finite number m of i.i.d sample trajectories
{(xk0 , ak0 , xk1 , ak1 , . . . , xkt , akt , . . .)}mk=1 coming from an expert policy πE . Note that the expert policy
could also be history dependent. We impose the following assumptions:

Assumption 1 (Apprenticeship learning).

(A1) πE is a nearly optimal policy for the discounted MDP corresponding to the modelMctrue =(
X ,A, P, γ, ν0, ctrue

)
;

(A2) ctrue ∈ Clin = {
∑nc
i=1 wiψi | ‖w‖∞ ≤ 1}, where {ψi}nci=1 ⊂ R|X ||A| are fixed basis

vectors, such that ‖ψi‖∞ ≤ 1 for all i = 1, . . . , nc.

The goal of apprenticeship learning is to find a policy π, such that 〈µπ, ctrue〉 ≤ 〈µπE , ctrue〉. Since the
cost function ctrue is unknown, AL algorithms search for a policy π that satisfies 〈µπ, c〉 ≤ 〈µπE , c〉,
for all c ∈ Clin.

Therefore, an AL algorithm seeks a policy that performs better than the expert across Clin, by
optimizing the objective

min
π∈Π

sup
c∈Clin

(〈µπ, c〉 − 〈µπE , c〉) . (1)

We highlight that one can consider other linearly parameterized cost classes, e.g., Clin,2 =
{
∑nc
i=1 wiψi | ‖w‖2 ≤ 1} [4], or Cconvex = {

∑nc
i=1 wiψi | wi ≥ 0,

∑nc
i=1 wi = 1} [22, 23].

The resoning and the analysis are similar.

3.2 The convex optimization view

In the remainder of the paper we will use the following vector notation borrowed from [1]. The
transition law is a matrix P ∈ R

|X ||A|×|X|
+ so that

∑
x′∈X P(x,a),x′ = 1, the initial probability

distribution is a vector ν0 ∈ R
|X |
+ so that ‖ν0‖1 = 1, and the cost function is a vector c ∈ R|X ||A|.

Finally, for a stationary Markov policy π ∈ Π0 we define the matrix Mπ ∈ R
|X |×|X||A|
+ that encodes

π as Mπ
xi,(xj ,ak) = π(ak | xi), if i = j, and Mπ

xi,(xj ,ak) = 0 otherwise.

Next, we will characterize the set of occupancy measures in terms of linear constraint satisfaction.
To this aim let F ,

{
µ ∈ R|X ||A| | (B − γP )Tµ = ν0, µ ≥ 0

}
, where B ∈ {0, 1}|X ||A|×|X| is a
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binary matrix defined by B(xi,ak),xj = 1, if i = j, and B(xi,ak),xj = 0 otherwise. The constraints
that define the set F are also known as Bellman flow constraints.
Proposition 1 ([23, Theorem 2]). It holds that, F = {µπ | π ∈ Π0} . Indeed, for every π ∈ Π0, we
have that µπ ∈ F . Moreover, for every feasible solution µ ∈ F , we can obtain a stationary Markov
policy πµ ∈ Π0 by πµ(a|x) , µ(x,a)∑

a′∈A µ(x,a′) . Then, the corresponding induced occupancy measure
µπµ satisfies µπµ = µ.

Let Ψ , [ψ1| . . . |ψnc ] ∈ R|X ||A|×nc be the cost basis matrix. For a policy π ∈ Π, we define its
feature expectation vector as

〈µπ,Ψ〉 , ΨTµπ ∈ Rnc .

In other words, for every i = 1, . . . , nc,

〈µπ,Ψ〉i = 〈µπ, ψi〉 = ηψi(π).

Lemma 1. For every π, the following holds

sup
c∈Clin

(〈µπ, c〉 − 〈µπE , c〉) = ‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1.

By Lemma 1, we get that (1) is equivalent to

min
π∈Π
‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1. (2)

Note that although the objective function in (2) is convex in µπ, the whole program is nonconvex
in π. However, combining Proposition 1 with the fact that 〈µπ, c〉 = ηc(π) for every policy π, and
every cost c, we conclude that the apprenticeship learning objective (2) can be stated equivalently as
a convex optimization program:

min
µ∈F
‖〈µ,Ψ〉 − 〈µπE ,Ψ〉‖1. (3)

Note that the |X ||A| linear constraints given by µ ≥ 0 ensure that µ is a nonnegative measure,
while the |X | linear constraints given by (B − γP )Tµ = ν0 ensure that µ is an occupancy measure
generated by a stationary Markov policy.

4 Algorithm and main result

We have to take into account that in practice we do not have access to the whole policy πE ,
but instead can observe i.i.d. trajectory samples distributed according to PπE

ν0 . For a multi-
sample {(xk0 , ak0 , xk1 , ak1 , . . . , xkt , akt , . . .)}mk=1 ∼ (PπE

ν0 )m consider the Monte Carlo approximation
̂〈µπE ,Ψ〉 ∈ Rnc of the expert feature expectation vector, i.e. for each i = 1, . . . , nc,

̂〈µπE ,Ψ〉i = ̂〈µπE , ψi〉 ,
1

m

∞∑
t=0

m∑
j=1

γtψi(x
j
t , a

j
t ).

Moreover, under Assumption (A2), the following is a pointwise bound on Ωm:

‖ ̂〈µπE ,Ψ〉‖∞ ≤ 1/(1− γ). (4)

We are interested in optimizing the empirical convex objective (5) for large-scale MDPs.

min
µ∈F
‖〈µ,Ψ〉 − ̂〈µπE ,Ψ〉‖1, (5)

which is a random convex program on (Ωm, (PπE
ν0 )m).

Our main aim is (i) to provide a computationally efficient algorithm whose complexity does not grow
with the size of the state and action spaces, and (ii) to obtain explicit probabilistic performance bounds
on the quality of the extracted solution. To this end, we will design and analyze the apprenticeship
learning analogue of the algorithm proposed in [1] for the forward average-cost MDP problem. Most
of the tools from the forward MDP setting [1, 2] can be used for the AL formulation with the
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appropriate modifications. We will present the main reasoning and results in this section with proofs
presented in the appendix.

As the first step, instead of optimizing over the whole space R|X ||A|, we optimize over the linear hull
of a small number of selected feature vectors {φi}di=1 ⊂ R|X ||A|. In this way, we reduce significantly
the number of optimization variables. Let Φ , [φ1| . . . |φd] ∈ R|X ||A|×d be the feature matrix. The
corresponding reduced program is

min
θ∈Rd:Φθ∈F

‖ΨTΦθ − ̂〈µπE ,Ψ〉‖1. (6)

Note however that for an arbitrary vector u ∈ R|X ||A| which is not necessarily in F , we can still
define a policy πu ∈ R|X ||A| by πu(a|x) = [u(x,a)]+∑

a′∈A[u(x,a′)]+
. If u(x, a) ≤ 0, for all a ∈ A, we let

πu(· | x) be the uniform distribution [? ].

Then, one has that µπu = u if and only if u ∈ F . In the general case, the following lemma, which is
the discounted cost analogue of [1, Lem. 2], quantifies how close the generated occupancy measure
µπu is to u according to the degree of constraint violation.

Lemma 2. For any u ∈ R|X ||A|, it holds that ‖µπu − u‖1 ≤ 2‖[u]−‖1+‖(B−γP )Tu−ν0‖1
1−γ .

For any θ ∈ Rd, we define πθ , πΦθ and µθ , µπΦθ . As already discussed, µθ = Φθ if and only if
θ is feasible for (6). In the general case, one can bound the distance between the occupancy measure
µθ and the vector Φθ by applying Lemma 2.

Let (ρ, λ) > 0 be positive constants, Θ , {θ ∈ Rd | ‖θ‖2 ≤ ρ}, and ΠΘ : Rd 7→ Θ the Euclidean
projection onto Θ. Consider the following surrogate loss function which is obtained by adding a
positive multiple of the constraint violations to the initial objective function:

L(θ) , ‖ΨTΦθ − ̂〈µπE ,Ψ〉‖1 + λ ‖[Φθ]−‖1︸ ︷︷ ︸
:=V1(θ)

+λ ‖(B − γP )T (Φθ)− ν0‖1︸ ︷︷ ︸
:=V2(θ)

=

nc∑
i=1

|ΨT
:,iΦθ − ̂〈µπE , ψi〉|+ λ

∑
(x,a)∈X×A

[Φ(x,a),:θ]− + λ
∑
x∈X
|(B − γP )T:,xΦθ − ν0(x)|.

We are interested in the reduced unconstrained convex optimization program of the form
minθ∈Θ L(θ).

A subgradient of L at θ is given by

∇θL(θ) =

nc∑
i=1

(ΦTΨ:,i) sign
(
ΨT

:,iΦθ − ̂〈µπE , ψi〉
)

+ λ
∑
x∈X

(ΦT (B − γP ):,x) sign
(
(B − γP )T:,xΦθ − ν0(x)

)
− λ

∑
(x,a)∈X×A

(ΦT
(x,a),:)1{Φ(x,a),:θ<0}.

Suppose that q1 ∈ P(X ×A) and q2 ∈ P(X ) assign to each element a strictly positive probability.
We propose a method for apprenticeship learning shown in Algorithm 1. It uses an unbiased estimate
of∇θL(θ) for fixed expert trajectory samples, i.e.
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Algorithm 1 Stochastic subgradient descent for apprenticeship learning (SGD-AL).
1: given cost matrix Ψ, feature matrix Φ, number of expert samples m, number of iterations T ,

learning rate η > 0, radius ρ > 0, regularization parameter λ > 0
2: Set θ0 = 0
3: Sample {(xk0 , ak0 , xk1 , ak1 , . . . , xkt , akt , . . .)}mk=1 ∼ (PπE

ν0 )m

4: for t = 1, . . . , T do
5: Sample (x(t), a(t)) ∼ q1 and y(t) ∼ q2

6: Compute gt(θt) via (7)
7: Update θt+1 = ΠΘ

(
θt − ηgt(θt)

)
8: θ̂T = 1

T

∑T
t=1 θt

9: Return πθ̂T

gt(θ) =

nc∑
i=1

(ΦTΨ:,i) sign
(
ΨT

:,iΦθ − ̂〈µπE , ψi〉
)

+ λ
ΦT (B − γP ):,y(t)

q2(y(t))
sign

(
(B − γP )T:,y(t)Φθ − ν0(y(t))

)
− λ

ΦT
(x(t),a(t)),:

q1(x(t), a(t))
1{Φ

(x(t),a(t)),:
θ<0},

(7)

where (x(t), a(t)) ∼ q1 and y(t) ∼ q2.

Regret bounds for Algorithm 1 can be obtained by using results from the stochastic convex optimiza-
tion literature and statistical learning theory.
Assumption 2. All entries of the feature matrix Φ are positive, i.e. every feature vector φi is a
measure which assigns a non-zero measure to each pair (x, a). Moreover, ‖Φ ‖1 = 1

1−γ .

We define the following constants:

C1 , max
(x,a)∈X×A

‖ΦT
(x,a),:‖2

q1(x, a)
,

C2 , max
x∈X

‖ΦT (B − γP ):,x‖2
q2(x)

.

These constants appear in our performance bounds. We would like to choose appropriate distributions
so that C1 and C2 are small, since they appear in the error bound. We refer the reader to [1] for a
thorough discussion on the choice of the distributions.

Observe from (7) that for all θ ∈ Θ we have the following bound:

‖gt(θ)‖2 ≤ ‖Φ‖2
nc∑
i=1

‖ψi‖2 + λ(C1 + C2) =: K. (8)

Theorem 1. Let ε ∈ (0, 1), δ ∈ (0, 1), ρ > 0, λ = 1/ε, m ≥ 32n2
c log( 4nc

δ )

(1−γ)ε2 , T ≥
4ρ2

ε2

(
2‖Ψ‖∞
λ(1−γ) + 1

)2

∆2 with ∆ , K +
√

10 log 2
δ +

√
5d log(1 + ρ2T

d ), and η = ρ/(K
√
T ). Then,

with probability at least 1− δ, Algorithm 1 generates πθ̂T so that for all θ ∈ Θ,

‖ΨTµθ̂T − 〈µ
πE ,Ψ〉‖1 ≤ ‖ΨTµθ − 〈µπE ,Ψ〉‖1 +

(
4‖Ψ‖∞
1− γ

+
1

ε

)
(V1(θ) + V2(θ))

+

(
2‖Ψ‖∞
1− γ

)(
‖Ψ‖∞‖Φ‖1ρ

√
d+

nc
1− γ

)
ε+ ε.
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A Proofs

Proof of Lemma 1. Fix a π ∈ Π. Then, for every c =
∑nc
i=1 wiψi with ‖w‖∞ ≤ 1, it holds that

〈µπ, c〉 − 〈µπE , c〉 =

nc∑
i=1

wi (〈µπ, ψi〉 − 〈µπE , ψi〉)

≤ ‖w‖∞‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1
≤ ‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1,

and thus,
sup
c∈Clin

(〈µπ, c〉 − 〈µπE , c〉) ≤ ‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1.

Next, let w̃ ∈ Rnc be defined by

w̃i = sign (〈µπ, ψi〉 − 〈µπE , ψi〉) .

Then for c̃ ,
∑nc
i=1 w̃iψi, we have c̃ ∈ Clin and

〈µπ, c̃〉 − 〈µπE , c̃〉 = ‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1,
which proves that

sup
c∈Clin

(〈µπ, c〉 − 〈µπE , c〉) ≥ ‖〈µπ,Ψ〉 − 〈µπE ,Ψ〉‖1.

This concludes the proof.

In case of a stationary Markov policy, the induced discounted occupancy measure has the following
form.
Lemma 3. Let π ∈ Π0 be a stationary Markov policy. Then for all x ∈ X , a ∈ A and
t ∈ N0, it holds that Pπ

ν0 [xt = x, at = a] =
[
νT0 M

π(PMπ)t
]
(x,a)

. In particular, (µπ)T =∑∞
t=0 γ

tνT0 M
π(PMπ)t.

Proof. For t = 0 we have

Pπ
ν0 [x0 = x, a0 = a] = ν0(x)π(a|x) = [ν>0 M

π](x,a).

Next, assume that the result holds for t− 1. Then,

Pπ
ν0 [xt = x, at = a] = Pπ

ν0 [at = a | xt = x] Pπ
ν0 [xt = x]

= π(a|x)
∑
x′∈X

∑
a′∈A

P(x′,a′),x Pπ
ν0 [xt−1 = x′, at−1 = a′].

By the induction assumption, we conclude that

Pπ
ν0 [xt = x, at = a] = π(a|x)

∑
x′∈X

∑
a′∈A

[
ν>0 M

π(PMπ)t−1
]
(x′,a′)

P(x′,a′),x

= π(a|x)
[
ν>0 M

π(PMπ)t−1P
]
x

=
[
ν>0 M

π(PMπ)t
]
(x,a)

.

Proof of Lemma 2. We provide a refined proof and bound similar to [2, Lemma 13]. We have

‖(B − γP )T [u]+ − ν0︸ ︷︷ ︸
=:−w

‖1 ≤ ‖(B − γP )T [u]−‖1 + ‖(B − γP )Tu− ν0‖1

≤ (1 + γ)‖[u]−‖1 + ‖(B − γP )Tu− ν0‖1,
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where we have used the fact that ‖BT ‖1 = ‖B‖∞ = 1 and ‖PT ‖1 = ‖P‖∞ = 1. By virtue of
Lemma 3, we have

(µπu)T =

∞∑
t=0

γtνT0 M
πu(PMπu)t

=

∞∑
t=0

γt(w + (B − γP )T [u]+)TMπu(PMπu)t

=

∞∑
t=0

γtwTMπu(PMπu)t +

∞∑
t=0

γt[u]T+(PMπu)t −
∞∑
t=0

γt+1[u]T+(PMπu)t+1

=

∞∑
t=0

γtwTMπu(PMπu)t + [u]T+,

where in the third equality we used [u]T+BM
πu = [u]T+. Therefore,

‖µπu − [u]+‖1 = ‖
∞∑
t=0

γt((Mπu)TPT )t(Mπu)Tw‖1

≤
∞∑
t=0

γt‖Mπu‖t∞‖P‖t∞‖Mπu‖∞‖w‖1

≤ 1

1− γ
(
(1 + γ)‖[u]−‖1 + ‖(B − γP )Tu− ν0‖1

)
,

where in the last inequality we used ‖Mπu‖∞ = ‖B‖∞ = ‖P‖∞ = 1. Finally, the triangle
inequality gives

‖µπu − u‖1 ≤ ‖µπu − [u]+‖1 + ‖[u]−‖1 ≤
2‖[u]−‖1 + ‖(B − γP )Tu− ν0‖1

1− γ
.

Proof of Theorem 1. The proof combines techniques presented in the proofs of [1, Theorem 2] and [2,
Lemma 14] and the Hoeffding’s bound.

We first fix an expert trajectory multi-sample {(xk0 , ak0 , xk1 , ak1 , . . . , xkt , akt , . . .)}mk=1 ∼ (PπE
ν0 )m.

Then, by virtue of [1, Thm. 3] and by the uniform bound of the unbiased subgradient estimates
(8), we get that if the learning rate is η = ρ/(K

√
T ), then with probability at least 1 − δ/2 (the

corresponding probability space is ((X ×A)T ×X T ), qT1 ⊗ qT2 ),

L(θ̂T )−min
θ∈Θ
L(θ) ≤ ρK√

T
+

√
1 + 4ρ2T

T 2

(
2 log

2

δ
+ d log

(
1 +

ρ2T

d

))
. (9)

Integrating over the whole probability space (Ωm, (PπE
ν0 )m), we conclude that (9) holds with probabil-

ity at least 1−δ/2, where the corresponding probability space is (Ωm×(X ×A)T ×X T ), (PπE
ν0 )m⊗

qT1 ⊗ qT2 ).

Substituting L(θ̂T ) and L(θ) by their definitions, and using the inequality
√
a+ b ≤

√
a+
√
b, we

obtain that with probability at least 1− δ/2, for all θ ∈ Θ,

‖ΨTΦθ̂T− ̂〈µπE ,Ψ〉‖1+λV1(θ̂T )+λV2(θ̂T ) ≤ ‖ΨTΦθ− ̂〈µπE ,Ψ〉‖1+λV1(θ)+λV2(θ)+
ρ√
T

∆.

(10)
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For all multisamples that (10) holds, and for all θ ∈ Θ,

‖ΨTµθ̂T −
̂〈µπE ,Ψ〉‖1 ≤ ‖ΨTµθ̂T −ΨTΦθ̂T ‖1 + ‖ΨTΦθ̂T − ̂〈µπE ,Ψ〉‖1

≤ ‖Ψ‖∞
2V1(θ̂T ) + V2(θ̂T )

1− γ
+ ‖ΨTΦθ − ̂〈µπE ,Ψ〉‖1

+ λV1(θ) + λV2(θ) +
ρ√
T

∆, (11)

where we used the triangle inequality in the first step, and Lemma 2 together with the bound (10) in
the second one. Moreover by (10),

V1(θ̂T ) + V2(θ̂T ) ≤ 1

λ

(
‖Ψ‖∞‖Φ‖1ρ

√
d+

nc
1− γ

)
+ V1(θ) + V2(θ) +

ρ

λ
√
T

∆, (12)

where we used that ‖ θ ‖1 ≤ ρ
√
d, and the pointwise bound ‖ ̂〈µπE ,Ψ〉‖1 ≤ nc ‖ ̂〈µπE ,Ψ〉‖∞ ≤

nc/(1− γ).

Once more, by the triangle inequality and Lemma 2, we get

‖ΨTΦθ − ̂〈µπE ,Ψ〉‖1 ≤ ‖ΨTΦθ −ΨTµθ‖1 + ‖ΨTµθ − ̂〈µπE ,Ψ〉‖1

≤ ‖Ψ‖∞
2V1(θ) + V2(θ)

1− γ
+ ‖ΨTµθ − ̂〈µπE ,Ψ〉‖1. (13)

Therefore, by combining (11),(12) and (13), we get that we probability at least 1 − δ/2, , for all
θ ∈ Θ,

‖ΨTµθ̂T −
̂〈µπE ,Ψ〉‖1 ≤ ‖ΨTµθ − ̂〈µπE ,Ψ〉‖1 +

2‖Ψ‖∞
λ(1− γ)

(
‖Ψ‖∞‖Φ‖1ρ

√
d+

nc
1− γ

)
+

(
4‖Ψ‖∞
1− γ

+ λ

)
(V1(θ) + V2(θ)) +

(
2‖Ψ‖∞
λ(1− γ)

+ 1

)
ρ√
T

∆.

For T ≥ 4ρ2

ε2

(
2‖Ψ‖∞
λ(1−γ) + 1

)2

∆2 and λ = 1/ε, it follows that with probability at least 1− δ/2, for
all θ ∈ Θ,

‖ΨTµθ̂T −
̂〈µπE ,Ψ〉‖1 ≤ ‖ΨTµθ − ̂〈µπE ,Ψ〉‖1 +

(
4‖Ψ‖∞
1− γ

+
1

ε

)
(V1(θ) + V2(θ))

+

(
2‖Ψ‖∞
1− γ

)(
‖Ψ‖∞‖Φ‖1ρ

√
d+

nc
1− γ

)
ε+ ε/2.

We conclude the proof by using Hoeffding’s inequality with confidence δ/(2nc) and approximation
accuracy ε/(4nc). In particular, we have that for m ≥ 32nc log(4nc/δ)

2(1−γ)ε2 and for all i = 1, . . . , nc,∣∣∣〈µπE , ψi〉 − ̂〈µπE , ψi〉
∣∣∣ ≤ ε/(4nc),

with probability (PπE
ν0 )m at least (1 − δ/(2nc)). Note that under Assumption (A2), it holds that∑∞

t=0 γ
tψi(xt, at) ≤ 1/(1− γ) for all (xt, at) ∈ X ×A and for all i = 1, . . . , nc.

A union bound gives that for m ≥ 32nc log( 4nc
δ )

2(1−γ)ε2 ,

‖〈µπE ,Ψ〉 − ̂〈µπE ,Ψ〉‖1 ≤ ε/4,
with probability (PπE

ν0 )m at least (1 − δ/2). Integrating over the whole space(
(X ×A)T ×X T , qT1 ⊗ qT2

)
we have the same statement with probability (PπE

ν0 )m ⊗ qT1 ⊗ qT2
at least (1− δ/2).

Finally, a simple union bound concludes the proof.
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