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Abstract

We cast inverse problems in reinforcement learning as nonlinear equality-
constrained programs and propose a new game-theoretic solution method. Our
approach is based on the saddle-point problem arising in the Lagrangian formula-
tion and applies more broadly to other problems involving equilibrium constraints.
As opposed to implicit differentiation, our Lagrangian method need not solve a
fixed-point problem at every step. We demonstrate our approach in the context of
imitation learning and in a new problem which we call the Optimal Model Design
Problem: that of finding a Markov Decision Process model leading to policies
which also perform well once evaluated under the true MDP. We show experiments
in both discrete MDPs and under the continuous LQR setting.

1 Introduction

In its prototypical form, inverse reinforcement learning (Russell, 1998) is the problem of estimating
a reward function for a Markov Decision Process (Puterman, 1994) consistent with the observed
behavior of a rational decision maker. In econometrics, this problem has been studied by Rust (1988)
under the umbrella of structural estimation of Markov Decision Processes. In this framework, the
estimation problem goes beyond that of the reward function only and applies to other structural
parameters such as the discount factor or the transition function. In this paper, we study the general
optimization problem arising from the inverse reinforcement learning problem or its structural
estimation counterpart with a nonlinear program of the form:

(ECP) maximize J(x,θ)

subject to x = f(x,θ) . (1)

where in Rust (1988) for example, J is the log-likelihood function for the MDP parameters θ and x
is the fixed-point solution to a smooth variant of the Bellman optimality equations. Hence, we want
to find a model of an MDP such that when solving for the corresponding optimal value function, the
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resulting optimal policy behaves similarly – in terms of log-likelihood – to a given set of demonstrated
trajectories. A close relative to inverse reinforcement learning (IRL) is also obtained by replacing
the log-likelihood objective with the expected return. This problem, termed optimal reward design
problem by Sorg et al. (2010), then consists in finding parameters for a synthetic reward function
such that the policies derived from it also perform well under the true objective. In the same way that
the structural estimation problem is a generalization of the typical inverse RL setting, we can also
extend the scope of optimal reward design to what we call the optimal model design (OMD) problem
in which we seek a full MDP model within a designated parametric family.

While conceptually different at first glance, both IRL and OMD share the same problem structure:
the maximization of a scalar objective of the model parameters subject to a fixed-point constraint.
Fundamentally, both problems are inverse control problems in which the model parameters are hidden
but differ in how their empirical validity (Rust, 1988) is established: with the log-likelihood in
the structural estimation setting and via the expected true return for OMD. Just as with the IRL
assumption that an agent’s internal reward function is subjective, the OMD problem also posits that
an agent ought to form models in accordance with its own belief about how the environment behaves.
This principle is reminiscent of early ideas on predictive representation of states (Littman et al., 2001)
or subjective localization and mapping (Bowling et al., 2005). However, due to its clear formulation
as an nonlinear program, there is no ambiguity regarding how to address discovery (Sutton & Barto,
2018) – how to entice an agent to find the right predictions for itself – as it happens implicitly by
virtue of solving the optimization problem itself.

The implicit differentiation (Griewank & Walther, 2008) approach underlying many IRL formulations
(Rust, 1988; Neu & Szepesvári, 2007; Amos et al., 2018) involves solving a fixed-point problem
at every step in what amounts to a projection onto the feasible set. In this paper, we propose an
alternative which decouples the problem of maximizing J with that of satisfying the fixed-point
constraint. We achieve this goal by finding a saddle-point solution to the Lagrangian problem by
adapting the game-theoretic approach of Schäfer & Anandkumar (2019). Compared to implicit
differentiation, our competitive differentiation approach does not require the fixed-point constraint to
be satisfied at every step to make progress towards the overall solution. Furthermore, it retains the
desirable memory characteristic of implicit differentiation while avoiding its computational overhead.
Due to its ties to constrained optimization, competitive differentiation applies naturally to other
forms of control methods such as LQR (Anderson & Moore, 1990) and can accommodate additional
constraints (eg. safety, robustness, energy, etc.) seamlessly.

2 Problem Formulation

Per Rust (1988), the structural estimation problem for Markov Decision Processes consists in finding
model parameters for the reward function, transition probability function and discount factor such
that a policy derived from the resulting MDP maximizes the likelihood of a given set of trajectories.
In order to make this problem continuously differentiable, Rust (1988) uses a smooth variant 1 of the
Bellman optimality equations (Bellman, 1957) in which the optimal smooth value function satisfies:

ṽ? := lse
π∈MD

rπ + γPπṽπ,

where “lse” stands for log-sum-exp, Pπ ∈ R|S|×|S|, [Pπ]ij := P (j|i, π(i)) and rπ ∈ R|S|, [r]i :=
r(i, π(i)). As usual (Puterman, 1994), the soft maximization is performed component-wise rather than
over the space of stationary Markov deterministic policies “MD”. It follows that the smooth greedy
policy is a stochastic policy, which we denote in the context of our problem as πx,θ : S → P(A) to

highlight its dependence on θ via a composition of the form: θ
φ7−→ x

ψ7−→ πx,θ . Here, φ is an implicit
function of the model parameters θ to the optimal smooth “action-value” function x and ψ is the
soft-argmax function. Our structural estimation problem can then be written as:

(SEP) maximize E

[
logP0(S0) +

T−1∑
t=0

log πx,θ(At|St)P (St+1|St, At)

]
subject to x = f(x,θ) ,

1The smooth Bellman operator of Rust (1988) is the same one appearing in maximum entropy reinforcement
learning (Ziebart, 2010; Fox et al., 2016; Haarnoja et al., 2017).
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where f is the smooth Bellman mapping. The expression inside the expectation – taken over the dis-
tribution of trajectories under the true MDP – is the log-likelihood for Zt(ω) := (s0, a0, . . . , st) with
probability mass function Px,θ(Zt = s0, a0, . . . , sT ) := P0(s0)

∏T−1
t=0 πx,θ(at|st)P (st+1|st, at).

Hence, the expected log-likelihood objective can be conceptualized as a return-maximization
problem (subject to constraints) where the “reward” function is defined as: y(st, at, st+1) :=
log π(st|at)P (st+1|st, at). Viewing the expected log-likelihood objective in this form is helpful to
appreciate the similarity with the optimal model design problem formulated as:

(OMD) maximize Ex,θ

[
T∑
t=0

γtr(St, At)

]
subject to x = f(x,θ) ,

and where the infinite horizon setting obtained by taking t → ∞. As opposed to (SEP), the
expectation in OMD is taken with respect to the dynamics induced by the policy πx,θ under the
true MDP: the decision variables (x,θ) appear outside the expectation and not inside. Because of
this difference, a gradient estimator (L’Ecuyer, 1991) such as REINFORCE (Williams, 1992) is
required in the OMD setting while a sample analogue of the expected log-likelihood is enough for
the structural estimation problem.

2.1 A Lagrangian Perspective

We take the Lagrangian function corresponding to general equality-constrained problem (ECP) as the
starting point of our discussion:

L(x,θ,λ) := J(x,θ)− λ> (x− f(x,θ)) .

Hence, if (x?,θ?) is a local maximum for (ECP) then there must also be a unique λ? ∈ Rm such
that ∇L(x?,θ?,λ?) = 0. By solving for this λ?, we find that when (x?,θ?) is a local maximum of
(ECP) then:

∂J(x?,θ?)

∂θ
+
∂J(x?,θ?)

∂x

(
I − ∂f(x?,θ?)

∂x

)−1
∂f(x?,θ?)

∂θ
= 0 . (2)

given that ρ(∂f(x
?,θ?)
∂x ) < 1, which is satisfied if f is a contraction mapping. Equation 2 can then be

read as the first-order optimality condition for an unconstrained problem. This unconstrained form
follows from the implicit relationship between the parameters and the fixed-point x? which depends
on θ via f only in the limit of the corresponding fixed-point iteration procedure. If we assume that
there exists an unique fixed-point x? for every θ and that the Jacobian of F(x,θ) := f(x,θ) − x
exists and is invertible for every pair (x?,θ), then the implicit function theorem (Bertsekas, 1999,
A.25) tells us that there exists a continuous function φ : Rn → Rm with the property that φ(θ) = x?

such that (ECP) can now be written as:

maximize J(φ(θ),θ), θ ∈ Rn .

Furthermore, the total derivative of φ is

dφ(θ)

dθ
=

(
I − ∂f(φ(θ),θ)

∂x

)−1
∂f(φ(θ),θ)

∂θ
, (3)

which also appears in equation 2. Hence, implicit differentiation (Griewank & Walther, 2008) can
be seen as a transformation of the nonlinear constrained problem (ECP) into an unconstrained one.
The idea of eliminating the constraints also underlies what we may call process-oriented methods 2:
methods which differentiate through the dynamics of the underlying iterative process (Sutton, 1992;
Andrychowicz et al., 2016; Duan et al., 2016; Tamar et al., 2016; Finn et al., 2017; Ravi & Larochelle,
2017; Xu et al., 2018). The process-oriented approximation to (ECP) is:

maximize J(xT ,θ)

subject to xt+1 = f(xt,θ), t = 0, . . . , T − 1

given x0 and T ∈ Z+, T <∞ .

2We can also show (see appendix) that process-oriented methods are a subcase of discrete-time optimal
control (Bertsekas, 1999). The recursive equation 4 is related to the so-called adjoint equation in control theory.
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The unconstrained counterpart is defined using the set of functions (Gilbert, 1992, equation 6)
{φt : φt(θ) = f t(x0,θ)}Tt=0 for the problem:

maximize J(φT (θ),θ), θ ∈ Rn .

When applying the chain rule for the total derivative of φT , we get the recursion:

dφT (θ)

dθ
=
∂f(xT−1,θ)

∂x

dφT−1(θ)

dθ
+
∂f(xT−1,θ)

∂θ
. (4)

Under some assumptions, it can be shown (Gilbert, 1992, proposition 1) that as t → ∞ and
φt(θ)→ φ(θ) = x?, it also follows that∇φt(θ)→ ∇φ(θ). That is, the convergence of the inner
fixed-point procedure also implies that of the adjoint fixed-point recursion (Christianson, 1994).
Correspondingly, the solution to the process-oriented program only coincides with the original
problem (ECP) in the limit of t→∞.

2.2 A “Competitive Differentiation” Approach

The Lagrangian perspective allowed us to elucidate the origins of implicit differentiation and its
process-oriented approximation. Rather than going through a transformation of our original con-
strained problem into an unconstrained one, we propose to tackle (ECP) directly using Lagrangian
methods (Bertsekas, 1999). Algorithms of this kind can be obtained for example by seeking for
a solution to the stationary conditions ∇L(x?,θ?,λ?) = 0 using a root-finding algorithm such
as Newton’s method 3. More simply, we could also use fixed-point iterations with the mapping
F(x,θ,λ) := ∇L(x,θ,λ) and leading to the following primal-dual updates:

∆(x,θ) := ∇x,θL(x,θ,λ), and ∆λ := −∇λL(x,θ,λ) .

This algorithm can be shown (Bertsekas, 1982, p. 232) to converge given an initial estimate in the
neighborhood of the optimal values (x?,θ?,λ?). In our experience, the local nature of this algorithm
makes it difficult to use in practice due its tendency to diverge. This instability is closely related
to the oscillatory behavior of alternating gradient descent in the training of Generative Adversarial
Networks (Goodfellow et al., 2014). In this paper, we leverage the synergy between saddle-point
optimization and the Lagrangian formulation to develop a stable method based on the following
problem:

max
x,θ

min
λ
J(x,θ)− λ>(x− f(x,θ)) . (5)

If a candidate solution for the decision variables (x,θ) does not satisfy the fixed-point equality
constraint, the inner “min opponent” can choose λ → ∞ to defeat the “max player” over the
performance measure J ; if the constraint is satisfied, the “max player” is free to maximize J . Hence,
this formulation preserves the structure of the original problem: that of maximizing the performance
measure without violating the constraints. Equipped with this game-theoretic perspective on (ECP),
we apply the competitive gradient ascent (CGA) method of Schäfer & Anandkumar (2019) to find an
equilibrium solution to our two-player game. The application of competitive gradient ascent4 to the
Lagrangian game in equation 5 leads to the following updates:

(
∆(θ,x)

∆λ

)
:=

(
I −ηA

ηA> I

)−1(∇J(x,θ) + λ>(I −∇f(x,θ))
f(x,θ)− x

)
(6)

whereA ∈ R(m+n)×(m+n),A := I −∇f(x,θ) and η ∈ R is a step size parameter. By using Schur
complementation, the resulting update can be decoupled as

∆(θ,x) := η
(
I + η2AA>

)−1
(∇J(x,θ) + λ>(I −∇f(x,θ)) + ηA(f(x,θ)− x)) (7)

∆λ := η
(
I + η2A>A

)−1
(f(x,θ)− x+ ηA>(∇J(x,θ) + λ>(I −∇f(x,θ)))). (8)

In practice, the primal-dual updates can be obtained efficiently by solving the corresponding linear
system with a matrix-free solver: using basic linear iterations (Varga, 1962) or via conjugate gradient
methods (Hestenes & Stiefel, 1952) for example.

3This idea leads to the so-called Sequential Quadratic Programming (SQP) methods (Bertsekas, 1999).
4See equation 3 of Schäfer & Anandkumar (2019) for the general form of CGA
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(a) True MDP
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(1, -0.668, 0.000724)
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(b) OMD: temperature 1e−1
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(0, -0.059, 1)

(1, -0.852, 1)

(0, 0.633, 0.00884)

(1, -2.996, 1)
(0, 0.633, 0.991)

(c) OMD: temperature 1e−2

01

(0, -0.017, 1)

(1, -0.627, 1)

(1, -3.182, 1)

(0, 0.463, 1)

(d) OMD: temperature 1e−3

Figure 1: Optimal Design Problem: the transition and reward functions are estimated indirectly
through the performance of the policy derived from them. By varying the temperature of the logits,
we obtain optimal solutions with different levels of sparsity. Edges are labeled by (action, reward,
probability) and those with transition probability less than 1e− 5 are omitted
.

3 Demonstration

We apply our Lagrangian approach to the MDP of Dadashi et al. (2019, figure 2d) under the optimal
model design problem. The reward and transition probability functions are specified in figure 1a
where the edge labels are triples of the form: action, reward, transition probability. We provide the
true discount factor (0.9) but attempt to recover a reward model and transition model consistent with
the desired objective under the OMD formulation.

We use a tabular representation for the reward model and for the logits of the transition model which
we pass through the soft-argmax function to obtain a proper conditional probability distribution.
Furthermore, we scale the logits by a temperature parameter to control the desired level of sparsity
in the transition model. All model parameters are initialized to zero. In the OMD experiment, we
compute the optimal expected return under a uniform initial distribution (≈ 1.0272725) and optimize
our solution until it reaches this level of performance within six digits of accuracy. For qualitative
purposes, we compute the performance measures exactly rather than by sampling, thereby eliminating
randomness as a confounder in our results. Being an inverse problem, there may be multiple OMD
solutions consistent with our desire to obtain optimal policies under the true MDP. This is what we
observe in practice with the reward and transition models found under the OMD setting being different
from the true MDP (figure 1a) but still preserving optimality under the original MDP. By decreasing
the temperature for the logits of the transition model, we can also control the level of sparsity of the
final solution as shown in figures 1b, 1c and 1d. This suggests that the OMD formulation may also
provide a basis for state aggregation or model compression.

3.1 LQR Experiment

We apply our competitive differentiation approach in the context of imitation learning under the linear
quadratic assumption (Anderson & Moore, 1990). Rather than using a log-likelihood objective as
in Rust (1988), we aim to minimize the Euclidean distance between the actions of an optimal LQR
controller derived from the discrete time algebraic Riccati equation and the demonstrated actions.
Our constrained optimization problem is:

minimize E [‖ai − πX(si)‖2]

subject to A>XA−
(
A>XB

) (
R+B>XB

)−1
(BXA) +Q = 0

where πX(si) := −(R + B>XB)−1(BXA)si and the expectation is taken with respect to a
distribution over demonstrations. We estimate this expectation by querying an optimal LQR policy
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Figure 2: Imitation learning experiment in the cartpole domain
.

at 1000 random states sampled around the equilibrium. Figure 2a shows the joint evolution of the
player behind the imitation loss (J in our previous notation from section 2.2) and its opponent trying
to satisfy the constraint. We attribute the initial plateauing of the “imitation loss player” to the need
of first roughly satisfying the constraint before the loss can be systematically improved. Once the
feasible set has been approached, the loss drops quickly as the direction of improvement becomes
easier to identify. Figure 2b measures the generalization loss over an independent dataset of 500
states sampled at random around the equilibrium. We report the test performance across 40 random
seeds and compute 99% confidence intervals. By viewing the generalization plot on a log scale, we
see that our competitive differentiation converges linearly to a solution once it overcomes the initial
plateau.

4 Conclusion

We propose a new Lagrange method for solving inverse problems in reinforcement in which an outer
objective depends on the solution to a fixed-point constraint. While our paper focuses on inverse
problems in reinforcement learning, our competitive differentiation approach applies more broadly to
problems involving equilibrium constraints such as meta-learning (Bellman, 1967; Sutton, 1992; Do
et al., 2007; Domke, 2010; Rajeswaran et al., 2019), or hierarchical reinforcement learning (Parr &
Russell, 1998; Sutton et al., 1999; Dietterich, 2000) for example. We demonstrate our algorithm in an
inverse problem that we call the Optimal Model Design Problem which extends the Optimal Reward
Design problem of Sorg et al. (2010) by estimating both the rewards and dynamics.

A constrained optimization approach to structural estimation of Markov Decision Processes can be
found in the field of econometrics with Su & Judd (2012). The authors propose an interior-point
method (Waltz et al., 2006) to solve a problem of the same form as (ECP). Su & Judd (2012) also
highlights the similarities between (ECP) and Mathematical Program with Equilibrium Constraints
(Harker & Pang, 1988; Luo et al., 1996) which often use Lagrangian methods (section 2.2) such
as Sequential Quadratic Programming (Luo et al., 1996, 6.4). The idea of representing the fixed
point x as an implicit function of θ is well-known in the literature on MPECs (Luo et al., 1996,
sections 1.3.4, 5.4, 6.3.1) and bilevel programming (Kolstad & Lasdon, 1990; Savard & Gauvin, 1994;
Colson et al., 2007). The idea of “relaxing” the automatic differentiation problem via a Lagrangian
formulation is also at the core of Taylor et al. (2016) who use the Alternating Direction Method of
Multipliers (Powell, 1978; Bertsekas, 1982) as an alternative to back-propagation in neural networks.
The connection between reverse-mode automatic differentiation and the Lagrangian formulation finds
its roots in the control literature (Kelley, 1960; Bryson, 1961; Pontryagin et al., 1962; Dreyfus, 1990)
; its introduction into the AI literature is often credited to Lecun (1988); Dreyfus (1990). The form of
the optimization problem studied in this paper can also be found in control theory (Lefkowitz, 1966;
Bauman, 1968; Donoghue & Lefkowitz, 1972; A. Benveniste & Cohen, 1976; Forestier & Varaiya,
1978; Wilson, 1979; White & Schlussel, 1981; Wheeler & Narendra, 1986; Haurie, 1995), process
engineering (Brosilow & Nunez, 1968; Hendry et al., 1973; Uronen, 1980; Newell, 1980; Nishida
et al., 1981) and more broadly in hierarchical optimization (Lasdon, 1968; Mesarović et al., 1970;
Anandalingam, 1988; Anandalingam & Friesz, 1992).
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5 Appendix

5.1 Time-Varying Process-Oriented Formulation

We can generalize the basic process-oriented formulation to one which allows for nonstationary
iterative methods (Ortega & Rheinboldt, 1970), ubiquitous in deep learning (Goodfellow et al., 2016),
using stage-dependent parameters {θt}Tt=0 and operators {f}T−1t=0 . The resulting problem can then be
formulated as the following nonlinear program with equality constraints:

maximize J(xT )

subject to xt+1 = ft(xt,θt), t = 0, . . . , T − 1

given x0 and T ∈ Z+, T <∞ .

Once again, we can convert (Bertsekas, 1999, p. 212, sect. 2.6) the equality constrained problem
into an unconstrained one by expressing the iterates {xt}Tt=0 via a function φt of all the parameters
{θt}Tt=0 applied during the inner optimization procedure:

φt(θ0, . . . ,θT ) := ft−1(. . . f0(x0,θ0),θt−1) = xt .

The resulting time-varying, unconstrained, and process-oriented formulation counterpart to (ECP) is:

maximize J(φT (θ0:T )) given x0 and T ∈ Z+, T <∞ .

With a change of variables through φt, we can apply the chain rule and obtain:

∂J

∂θt
=

∂J

∂xT

∂φT
∂θt

=
∂J

∂xT

∂ft−1
∂xt

. . .
∂ft
∂θt

.

By accumulating the terms from right to left (future to past), we can also write this expression
recursively as:

∂J

∂θt
= λ>t+1

∂ft
∂θt

, where λ>t = λ>t+1

∂ft
∂xt

and λ>T =
∂J

∂xT
. (9)

In control theory, the row vector λ>t is called the costate or adjoint vector and is recursively updated
using the adjoint equation (Bertsekas, 1999, 2.174). The adjoint equation coincides exactly with the
computation taking place during reverse mode automatic differentiation (Griewank & Walther, 2008).

While we have assumed so far that {ft}Tt=0 and {ft}Tt=0 describe the dynamics of the inner iterative
process, we could also consider a formulation which involves a process model (an optimizer model).
This approach would amount to a model-based (Sutton & Barto, 2018) approach, which may be
beneficial for certain class of models, such as the LQR formulation (Bertsekas, 1999). In this case, it
would be interesting to quantify the effect of using an approximate inner optimization model on the
overall performance of the optimization procedure.

5.2 Process-Oriented Formulation as a Discrete-Time Control Problem

A full generalization of the time-varying formulation to a discrete-time control problem can also be
developed. In this case, we see ft as a time-varying transition function, xt ∈ Rm as a state vector
and θt ∈ Rn as a control vector. We also define J as a sum of immediate performance measures
(which play the role of immediate rewards) of the form gt : Rm × Rn → R, (x,θ) 7→ gt(x,θ), t =
0, . . . , T − 1 and final immediate performance gT : Rm → R,xT 7→ gT (xT ). The generalization of
the time-varying formulation to the discrete-time optimal control setting can be described as:

(OCP) maximize J(x0, ...,xT ,θ0, . . . ,θT ) = gT (xT ) +

T−1∑
t=0

g(xt,θt)

subject to xt+1 = ft(xt,θt)

given x0 and T ∈ Z+, T <∞ . (10)

Note that if the non-terminal immediate performance measures gt, t = 0, . . . , T −1 were to be absent
from (OCP), then the resulting problem would be equivalent to the time-varying formulation derived
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in the previous section. Bertsekas (1999, p. 213) shows that a reduction of the full (OCP) problem to
the terminal case can accomplished by viewing the sum of immediate performance measures so far
(the return so far) as a state variable. The return so far also obeys a deterministic recursive update of
the form:

zt+1 = gt(xt,θt) + zt, z0 = 0 ,

It follows that the total return objective in (OCP) can be written as:

maximize J(x0, . . . ,xT ,θ0, . . . ,θT ) = gT (xT ) + zT
subject to xt+1 = f(xt,θt) and zt+1 = gt(xt,θt) + zt
given x0 and z0 = 0 .

We can then augment the state vector with zt and define the transition functions and immediate
performance measures as functions of both components:

x̃t+1 = f̃t(x̃t,θ) := [ft(xt,θt) gt(xt,θt) + zt]
>

g̃T (x̃T ) := gT (xt) + zt .

Using equation 9, the adjoint equation over the augmented state vectors is:

λ̃>t = λ̃>t+1

∂ f̃t
∂x̃t

, λ̃>T =
∂g̃T
∂xT

.

The output of f̃t comprising of both xt+1 and zt+1, we now have a 2 × 2 block Jacobian and the
augmented adjoint equation is:

λ̃>t = λ̃>t+1

[
∂ft
xt

0
∂gt
∂xt

1

]
, λ̃>T =

[
∂gT
∂xT

1
]
.

Note that the total return with respect to the augmented state is also a block vector with two
components: the first one quantifying the variation of the total return for a change in xT whereas the
second one pertains to the effect of a perturbation of the return so far on the total return – a linear
relationship with slope 1. It follows that the generalization of the adjoint equation equation 9 to
(OCP) with non-terminal immediate performance measures is:

∂J

∂θt
=
∂gt
∂θt

+ λ>t+1

∂ft
∂θt

, where λ>t =
∂gt
∂xt

+ λ>t+1

∂ft
∂xt

and λ>T =
∂gT
∂xT

. (11)

The high-level structure of this adjoint equation is similar to the one in Christianson’s two-phase
algorithm Christianson (1994). Due to the general formulation of (OCP), this equation however
involves a non-stationary intercept term ∂gt/∂xt and time-varying ∂ft/∂xt. The adjoint equation
derived in this section is also closely related to the Pontryagin’s Maximum Principle (Pontryagin
et al., 1962) in discrete-time. This connection becomes clearer (Bertsekas, 1999, proposition 2.6.1)
when expressing the first-order stationary conditions for (OCP) in terms of the Hamiltonian function
Ht, central in Pontryagin’s formulation:

Ht(xt,θt,λt+1) := gt(xt,θt) + λ>t+1ft(xt,θt) .

Taking the gradient of the Hamiltonian with respect to each control vector, we recover equation 11
and have that for optimal parameters {θ?t }k0 and t = 0, . . . , T :

∂Ht(xt,θ
?
t ,λt+1)

∂θt
=
∂J(θ?t )

∂θt
= 0 .
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