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Abstract

We present a distributional approach to theoretical analyses of reinforce-
ment learning algorithms for constant step-sizes. We show that value-based
methods such as TD(λ) and Q-Learning have update rules which are con-
tractive in the space of distributions of functions, thus establishing their ex-
ponentially fast convergence to a stationary distribution. The proof method
can be used for many algorithms and simplifies existing arguments for
convergence in distribution. For update rules whose expected target is a
Bellman update, we further demonstrate that the stationary distribution
obtained has a mean which is equal to the true value function in the policy
evaluation setting and which is biased in the control setting. Lastly, we
establish that the stationary distributions concentrate around their means
as the step-size shrinks.

1 Introduction

Basic results in the theory of Markov decision processes (MDPs) and dynamic program-
ming (DP) rely on the two fundamental properties of the Bellman operator: contraction and
monotonicity. For instance, proofs of convergence for value iteration and policy iteration
follow immediately from the contractive properties of the Bellman operators and the Banach
fixed point theorem. However, proving the convergence of sample-based algorithms such as
TD-learning (Sutton, 1988) and Q-learning (Watkins and Dayan, 1992) requires substantially
more effort. The typical stochastic approximation approach relies on hitting-time or martin-
gale arguments to bound the sequence of value function iterates with progressively smaller
regions (see, e.g., Bertsekas and Tsitsiklis, 1996, Section 4.3).
In thisworkwe present a distributional framework for analyzing sample-based reinforcement
learning algorithms. Rather than consider the evolution of the random point estimate
produced by the learning process, we study the dynamics of the distribution of these point
estimates. As a concrete example, we view the TD(0) algorithm as defining a sequence of
random iterates (Vn)n∈N satisfying the distributional equation

Vn+1(s)
D
= (1− α)Vn(s) + α (R(s,A) + γVn(S′)) , (1)

where s is the initial state and (A,R, S′) is the random action-reward-next-state transition
sampled from the underlying MDP.
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We study the constant step-size case. Our main contribution is to show that, for a variety of
algorithms, the random iterates converge in distribution to a fixed point of the corresponding
distributional equation, even though the random point estimate may not converge. We
further characterize this fixed point, showing that it depends on the step-size, the MDP, and
the specific update rule under consideration. Following a proof technique of (Dieuleveut,
Durmus, and Bach, 2017), we lift these stochastic algorithms to the distributional setting
and view the learning process as defining a time-homogeneous Markov process over the
space of value functions.
We find that many sampling-based algorithms (e.g. TD(λ), Q-learning, and double Q-
learning) induce corresponding distributional operators which are contraction mappings in
the Wasserstein metric. In other words, the contraction property of the Bellman operators
can be regained by lifting to the space of distributions. The contraction coefficient depends
on the discount factor, as usual, but also on the step-size: updates with smaller step-sizes
converge more slowly to their distributional fixed point. TD(0), for example, is a contraction
mapping with coefficient 1− α+ αγ.
By recovering the contraction property that underlies many dynamic programming algo-
rithms, our distributional analysis significantly simplifies existing proofs of convergence for
stochastic RL algorithms, at least for constant step-sizes. Our approach easily allows us to
quantify the limiting behaviour of these algorithms; the same tool even provides us with
confidence bounds over the true value function. We believe this type of analysis should
prove useful going forward, including for the study of reinforcement learning with function
approximation.

2 Background

We write P(X ) for the set of probability distributions on a space X . We consider an agent
interacting with an environment modelled as a finiteMarkov decision process (S,A,R,P, γ).
As usual, S is a finite state space, A is a finite set of actions, R : S × A → P([0,Rmax])
is a bounded reward distribution function, P : S × A → P(S) is a transition distri-
bution function, and γ ∈ [0, 1) is a discount factor. The strategy of the agent is cap-
tured by a policy π : S → P(A). The value function vπ : S → R of a policy π is
the expected discounted sum of rewards observed when starting at state s and follow-
ing policy π. The value function is the fixed point of the Bellman operator T π defined
by T πv(s) := E [r(s, a) + γv(s′) | a ∼ π, s′ ∼ P(·|s, a)]. The Bellman optimality operator is
defined by T ?v(s) := maxa {E [r(s, a) + γv(s′)|s′ ∼ P(·|s, a)]}. A closely-related object is
the action-value function qπ: the expected discounted return of first taking action a and
thereafter following policy π. The action-value function satisfies the Bellman equations
qπ(s, a) = T πqπ(s, a) and q?(s, a) = T ?q?(s, a), where T πq(s, a) and T ?q(s, a) are de-
fined analogously to the value function case (we refer the reader to Sutton and Barto,
1998 for more information). The Bellman operators for value functions (resp. action-
value functions) are contractions on R|S| (resp. R|S|×|A|) with respect to the infinity norm
‖v‖ := ‖v‖∞ = maxi |vi| (Puterman, 1994).

Couplings and the Wasserstein Metric To establish convergence in distribution, we will
use the Wasserstein metricW between distributions (Villani, 2008). As a cost function, we
use the infinity norm. For two distributions µ, ν ∈P(Rn), a pair of random variables (X,Y )
is a coupling of (µ, ν) if X ∼ µ and Y ∼ ν. We write Ξ(µ, ν) for the set of such couplings.
The Wasserstein metric on P(Rn) with the infinity norm as a cost function is defined as:

W(µ, ν) = inf
(X,Y )∈Ξ(µ,ν)

E [‖X − Y ‖∞] . (2)

The metric is defined over the setM(Rn) =
{
µ ∈P(Rn) :

∫
‖x‖∞ µ(dx) < +∞

}
of mea-

sures with finite first moment.

3 Markov Processes on the Space of Functions

With many value-based RL algorithms, the stochasticity of the algorithm depends only on
the sampled transition and the random current estimate. For example, recalling the update
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rule for TD(0) (Equation (1)), the value of Vn+1(s) for a particular state is fully determined
by knowledge of Vn and the action, reward, and successor state which was sampled from s:

P {Vn+1 | Vn, Vn−1, ..., V1, V0} = P {Vn+1 | Vn} .
We therefore view these methods as inducing Markov processes on the space of value
functions. We take their state space to be R|S| when modelling value functions or R|S|×|A|
when modelling action-value functions. When results hold for both cases, we will write the
discussion in terms of Rn, n ∈ N. Whenever needed, we may also restrict ourselves to the
subset of realizable functions [0, Rmax

1−γ ]n ⊂ Rn.

The transition function for an induced Markov process is as follows. Given fk ∈ Rn, let
fk+1 be the random function obtained by a sample-based update rule. For a Borel set
B ∈ Borel(Rn), we define the Markov kernelK as:

K(fk,B) = P {fk+1 ∈ B|fk} .
This Markov kernel describes the probability of transitioning from fk to some function in the
set B under the update rule. For a given probability measure µ ∈P(Rn), the distribution of
functions after one transition of the Markov process is given by

µK(B) =

∫
Rn
K(θ,B)µ(dθ).

A probability measure ψ is a stationary distribution for a Markov process with kernel K if
ψ = ψK. An algorithm updates synchronously when all states or state-actions pairs are
updated at every iteration. In the regime of constant step-sizes and synchronous updates
the Markov kernels are time-homogeneous (or time-independent).

Stochastic operators We provide a general formalism for the analysis of stochastic update
rules. We call stochastic operator any mapping T̂ : Rn × Ω→ Rn between functions which
depends on a randomly sampled event ω in some probability space Ω. We will write a
number of stochastic, value-based algorithms as

fn+1 = (1− α)fn + αT̂ (fn, ω), (3)

where fn, fn+1 ∈ Rn are functions, α is a step-size, and T̂ is some algorithm-dependent
stochastic operator. We say that T̂ is an empirical Bellman operator if it behaves like a Bellman
operator in expectation over the samples: Eω[T̂ (f, ω)] = T πf . Similarly, T̂ is an empirical
Bellman optimality operator if Eω[T̂ (f, ω)] = T ?f .

4 Convergence to a Stationary Distribution

In this section we demonstrate that common value-based algorithms converge to a stationary
distribution when updated synchronously and with constant step-sizes. To illustrate our
approach, we provide a proof of convergence for TD(0). With the same proofmethod, we also
establish convergence and give convergence rates for Monte Carlo evaluation, Q-Learning,
TD(λ), SARSA, Expected SARSA, and Double Q-Learning (Hasselt, 2010). The proofs for
these other algorithms are given in Appendix A.
Recall the update rule of the synchronous TD(0) algorithm given by Equation (1). We
initialize with any V0 drawn from an arbitrary distribution of finite first moment.
Theorem 4.1. For any constant step size 0 < α ≤ 1 and initialization V0 ∼ µ0 ∈ M(R|S|), the
sequence of random variables (Vn)n≥0 defined by the recursion (1) converges to a unique stationary
distribution ψα ∈M(R|S|).
Proof. Let µ(1), µ(2) ∈M(R|S|) be two initial distributions of function estimates, andKα the
Markov kernel induced by (1) for step-size α. Let V (1)

0 ∼ µ(1), V
(2)
0 ∼ µ(2) be the coupling

which minimizes the Wasserstein metricW(µ(1), µ(2)), i.e. such that

W(µ(1), µ(2)) = inf
(X,Y )

E[‖X − Y ‖] = E
[
‖V (1)

0 − V (2)
0 ‖

]
.
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Such a coupling always exists (Villani, 2008, Theorem 4.1). To show that the map µ 7→ µKα

is a contraction with respect toW , we couple the updates (V
(1)
1 , V

(2)
1 ) to sample the same

transitions for each s:

V
(1)
1 (s) = (1− α)V

(1)
0 (s) + α

(
r + γV

(1)
0 (s′)

)
V

(2)
1 (s) = (1− α)V

(2)
0 (s) + α

(
r + γV

(2)
0 (s′)

)
 for the same

a ∼ π(·|s),
r ∼ R(·|s, a),
s′ ∼ P(·|s, a).

(4)

Since the marginal distributions of V (1)
1 and V (2)

1 correspond to the distributions µ(1)Kα

and µ(2)Kα, respectively, this is a valid coupling. We upper boundW(µ(1)Kα, µ
(2)Kα) with

the coupling above. We write T̂ π(V, (as, rs, s
′
s))(s) := rs + γV (s′s) for the empirical Bellman

update, where the subscript emphasizes the dependence on s. Then:

W(µ(1)Kα, µ
(2)Kα) ≤ E

[
‖V (1)

1 − V (2)
1 ‖

]
≤ (1− α)E

[
‖V (1)

0 − V (2)
0 ‖

]
+ αE

[
‖T̂ π(V

(1)
0 )− T̂ π(V

(2)
0 )‖

]
. (5)

We note that the expectation is over the pair (V
(1)
0 , V

(2)
0 ) as well as the random samples

as, rs, s
′
s for each s. By our coupling construction,

E
[
‖T̂ π(V

(1)
0 )− T̂ π(V

(2)
0 )‖

]
= E

[
max
s
|(rs − rs) + γ

(
V

(1)
0 (s′s)− V

(2)
0 (s′s)

)
|
]

= γE
[
max
s
|V (1)

0 (s′s)− V
(2)
0 (s′s)|

]
≤ γE

[
max
s
|V (1)

0 (s)− V (2)
0 (s)|

]
=W(µ(1), µ(2)) (6)

Using Equation (6) in Equation (5) gives:

W(µ(1)Kα, µ
(2)Kα) ≤ E

[
(1− α)‖V (1)

0 − V (2)
0 ‖+ αγ‖V (1)

0 − V (2)
0 ‖

]
= (1− α+ αγ)W(µ(1), µ(2)).

Since 1 − α + αγ < 1, the kernel Kα is a contraction mapping. Lastly,M(R|S|) metrized
withW is a complete metric space (Villani, 2008, Theorem 6.16), and therefore it follows
from Banach’s fixed point theorem that (µKn

α)n≥0 converges to a unique fixed point ψTD(0)
α

for any initial distribution µ ∈M(R|S|). The distribution ψTD(0)
α is a stationary distribution

by the fixed point property:

ψTD(0)
α Kα = ψTD(0)

α .

As evidenced by the above, lifting the analysis to distributions over value functions greatly
simplifies the proof. The key is in the choice of a proper coupling. The same technique
extends to a broad class of algorithms, with relatively few modifications. This avoids, for
example, the additional hurdles caused by the greedy probability kernel in Q-learning (Tsit-
siklis, 1994). We further note some expected connections with distributional reinforcement
learning (Bellemare, Dabney, and Munos, 2017). For α = 1, the fixed point of TD(0) is in
fact Bellemare, Dabney, and Munos’s return distribution. The same coupling, which forces
two processes to sample the same transitions, has also been implicitly used to study the
behaviour of distributional algorithms (Lyle, Castro, and Bellemare, 2019).
To demonstrate the power of the approach, we summarize in Table 1 a series of results
regarding common sampling-based RL algorithms. Under similar conditions to Theorem
4.1, each algorithm listed in Table 1 converges to a stationary distribution (which is in general
different for different algorithms, as we show in the next section). Each proof only requires
small adjustments to the basic proof template, for example an extended state space (Double
Q-Learning). Full details, along with the proof template, are given in Appendix A.

4



MC Evaluation TD(λ) (Expected) SARSA QL Double QL
Contraction 1− α 1− α+ αγ 1−λ

1−λγ
1− α+ αγ 1− α+ αγ 1

2
(2− α+ αγ)

Table 1: Different update rules which are contractive in W over distributions of value
functions. We provide the corresponding contraction factor. All algorithms converge for
any α ∈ (0, 1]. Acronyms: Monte Carlo (MC), Q-Learning (QL).

5 Characterizing the Stationary Distributions

In this section, we characterize the stationary distributions which are attained by any algo-
rithm whose target is, in expectation, a Bellman operator or Bellman optimality operator. As
before, we write the discussion in terms of Rn since results will hold for both value functions
and action-value functions.
What do these distributions look like? We first consider the case of policy evaluation
algorithms, which have as expected operator T π. In that case, their mean corresponds to
the fixed point of T π , i.e. the functions vπ or qπ . Second, they concentrate around this mean
in inverse proportion to the step-size α. Hence, small step sizes lead to a more accurate
distribution at the cost of a larger contraction factor. The full distributions are not symmetric
or easily described, however; as a simple example, take α = 1 in TD(0), corresponding to
the return distribution (Bellemare, Dabney, and Munos, 2017). Proofs for this section are
provided in Appendix B.

Sample-based Evaluation Algorithms The following characterization will hold for any
algorithm which converges and performs Bellman updates in expectation.

Theorem 5.1. Suppose T̂ π is such that the updates (3) with step-size α converge to a stationary
distribution ψα. Assume that T̂ π is an empirical Bellman operator for some policy π, and let fπ is
the fixed point of T π . Then

Efα∼ψα [fα] = fπ.

The effects of the specific update rules will be reflected in the higher moments of the station-
ary distribution. Thus, we next derive a closed-form expression for the covariance matrix of
the stationary distribution.

Theorem 5.2. Let T̂ π be an empirical Bellman operator for some policy π. Suppose T̂ π is such that the
updates (3)with step-sizeα converge to a stationary distributionψα. Define ξω(f) = T̂ π(f, ω)−T πf
to be the zero-mean noise term for a given function f and C(f) := Eω[ξω(f)ξω(f)T] to be its
covariance. The covariance of fα ∼ ψα is given by

(1− (1− α))2E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df).

The integral in the final line corresponds to the expected covariance of the empirical Bellman
operator when sampling from the MDP under the sampling distribution. As a corollary,
we show that the distribution concentrates around its mean when α is close to 0. We write
‖A‖op = sup {‖Av‖ : ‖v‖ ≤ 1, v ∈ Rn} for the operator norm of a matrix A.

Corollary 5.2.1. Assume that the state space of the Markov process is bounded. Let C := ( 2Rmax
1−γ )2.

Then, we have that
∥∥E [(fα − fπ)(fα − fπ)T

]∥∥
op is monotonically decreasing with respect to α. In

particular, limα→0

∥∥E[(fα − fπ)(fα − fπ)T]
∥∥
op = 0, and we have that:

P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
≤ C

nε2

α2

1− (1− α+ αγ)2

α→0−→ 0.
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We remark that the boundedness of the state space (e.g. by [0, Rmax
1−γ ]n ⊂ Rn) is easily satisfied

in the presence of a bounded reward function in the MDP.

Sample-Based Control Algorithms Above we saw that the mean of the stationary distri-
bution of a sample-based method using a fixed policy is the value function for that policy.
This no longer holds in the presence of optimality operators, for example in what is called
the control setting (Sutton, 1988).
Theorem 5.3. Suppose T̂ ? is such that the updates (3) with step-size α converge to a stationary
distribution ψ?α. Assume that T̂ ? is an empirical Bellman optimality operator and let f? be the fixed
point of T ?. Then

Efα∼ψ?α [fα] ≥ f?,
and equality holds if and only if the expectation and the maximum commute, i.e. ET̂ ?f = T̂ ?Ef .

The theorem shows that in general, sample-based control methods such as Q-learning
produces a biased (in an expected sense) estimate of the optimal Q-value, bringing fresh
evidence about the algorithm’s well-known overestimation problem.

6 Related Work

In the constant step-size case, convergence in distribution results are typically derived using
tools common to stochastic approximation theory such as the mean ODE method, Liapunov
functions, and the martingale method (see, e.g., Kushner and Yin (2003, Chapter 8) and
Borkar (2009, Chapter 9)). In RL, examples of constant step-size analyses which feature these
methods include Beck and Srikant (2012), Yu (2016), Lakshminarayanan and Szepesvári
(2017), and Chen et al. (2019). However, our results and methods are different. With the
exception of Yu’s work, the above references do not cast the algorithms under consideration
as Markov processes or discuss convergence to a stationary distribution. Furthermore, as far
as we are aware, the result that RL algorithms are contractions on the space of distributions of
functions is novel. The resulting proofs of convergence in distribution using said contraction
properties are therefore simpler than the existing literature.
Some of our methods are similar to the work of Dieuleveut, Durmus, and Bach (2017),
which develops the theory of constant step-size stochastic gradient descent (in the context
of supervised learning). In particular, our proofs in Section 4 are inspired from the proof of
their Proposition 2, and those of Section 5 follow the methods of their Proposition 3.

7 Conclusion and Future Work

We studied the convergence properties of sample-based reinforcement learning algorithms
by considering how they induce distributions over value functions. Many of these algorithms
are in fact contractive not in the space of functions but in the lifted space of distributions of
functions. The proof methods relies on coupling the events sampled by two executions of the
algorithm, and can be re-used for many algorithms. One of the key results is to make explicit
that constant step-size reinforcement learning algorithms do converge, albeit in the weaker
distributional sense. As an upside of using a constant step size, we obtain exponentially fast
convergence. By controlling the step-sizes, the stationary distributions thus obtained can be
tailored to yield values close to the true value function with high confidence.
Our work opens a number of interesting avenues for future research. First, it would be
valuable to further characterize the stationary distributions obtained by control algorithms.
Second, we did not analyze the case of decaying step-sizes or online updates, which would
correspond to time-inhomogenenous Markov processes. More broadly, the coupling method
has historically been invaluable for many applications in probability theory. It would be
interesting to see if our approach can be applied to policy-based methods, for example policy
gradient or actor- critic type algorithms. Finally, the simplicity of our analysis suggests that
it may be carried to the function approximation setting, perhaps eventually shedding light
on the behaviour of reinforcement learning with nonlinear approximation methods such as
deep networks.
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Appendices
Appendix A Laundry list of other algorithms

We outline the general proof recipe, which will be re-using for the following examples.

Proof strategy

(P1) Let µ(1), µ(2) be initial distributions and (f
(1)
0 , f

(2)
0 ) be the optimal coupling which

minimizesW(µ(1), µ(2));

(P2) Define an appropriate coupling f (1)
1 ∼ µ(1)K, f

(2)
1 ∼ µ(2)K – e.g. by defining them

to follow the same trajectories if the updates sample from the same distributions;

(P3) Use the upper bound W(µ(1)K,µ(2)K) ≤ E
[
‖f (1)

1 − f (2)
2 ‖

]
and bound

E
[
‖f (1)

1 − f (2)
1 ‖

]
≤ ρE

[
‖f (1)

0 − f (2)
0 ‖

]
for some ρ < 1 (usually follows from the

recursive nature of the updates) to show that µ 7→ µK is a contraction.

A.1 Convergence of synchronous Monte Carlo Evaluation with constant step-sizes

We prove that Monte Carlo Evaluation with synchronous updates & constant step-size
converges to a stationary distribution. The algorithm aims to evaluate the value function of
a given policy π using Monte Carlo returns. The update rule is given by:

∀ s ∈ S : Vn+1(s) = (1− α)Vn(s) + αGπn(s) (MCE)
whereGπn(s) =

∑
n≥0 γ

nrn(sn, an) is the return of a random trajectory (sn, an, rn)n≥0 starting
from s, following an ∼ π(·|sn), rn ∼ R(·|sn, an), and sn+1 ∼ P(·|sn, an).
Theorem A.1. For any constant step size 0 < α ≤ 1 and initialization V0 ∼ µ0 ∈ M(R|S|), the
sequence of random variables (Vn)n≥0 defined by the recursion (MCE) converges in distribution to a
unique stationary distribution ϕα ∈M(R|S|).

Proof. Following the proof strategy outlined above, we skip to step (P2) of the proof. We
define the coupling of the updates (V

(1)
1 , V

(2)
1 ) to sample the same trajectories:

V
(1)
1 (s) = (1− α)V

(1)
0 (s) + αGπk (s)

V
(2)
1 (s) = (1− α)V

(2)
0 (s) + αGπk (s).

}
for the same Gπk (s) (7)

Note that this is a valid coupling of (µ(1)Kα, µ
(2)Kα), since V (1)

1 (s) and V (2)
1 (s) have access

to the same sampling distributions. We upper boundW(µ(1)Kα, µ
(2)Kα) by the coupling

defined in Equation (7). This gives:

W(µ(1)Kα, µ
(2)Kα) ≤ E

[∥∥∥V (1)
1 − V (2)

1

∥∥∥]
= E

[∥∥∥(1− α)V
(1)
0 + αGπ1 −

(
(1− α)V

(2)
0 + αGπ1

)∥∥∥]
= E

[∥∥∥(1− α)(V
(1)
0 − V (2)

0 )
∥∥∥]

= (1− α)E
[∥∥∥V (1)

0 − V (2)
0

∥∥∥] = (1− α)W(µ(1), µ(2))

Since 1− α < 1,Kα is a contraction mapping and we are done.

A.2 Convergence of synchronous Q-Learning with constant step-sizes

We prove that Q-Learning with synchronous updates & constant step-sizes converges to a
stationary distribution. The algorithm aims to learn the optimal action-value function Q?.
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The updates are given by:

∀ (s, a) ∈ S ×A : Qn+1(s, a) = (1− α)Qn(s, a) + α
(
r + γmax

a′
Qn(s′, a′)

)
, (QL)

where r ∼ R(·|s, a), s′ ∼ P(·|s, a), and α > 0.
Theorem A.2. For any constant step size 0 < α ≤ 1 and initialization Q0 ∼ µ0 ∈M(R|S|×|A|),
the sequence of random variables (Qn)n≥0 defined by the recursion (QL) converges in distribution to
a unique stationary distribution ξα ∈M(R|S|).

Proof. We use the proof outline given above, and jump straight to step (P2). We witness the
same-sampling coupling again:

Q
(1)
1 (s, a) = (1− α)Q

(1)
0 (s, a) + α

(
r + γmax

a′
Q

(1)
0 (s′, a′)

)
Q

(2)
1 (s.a) = (1− α)Q

(2)
0 (s, a) + α

(
r + γmax

a′
Q

(2)
0 (s′, a′)

)
 for the same r ∼ R(s, a),

s′ ∼ P(·|s, a)

The bound follows similarly, but with one additional step. Again we write T̂ (Q)(s, a) =
r + γmaxa′ Q(s′(s,a), a

′) for the empirical Bellman (optimality) operator.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = E
[
max
s,a

∣∣∣r − r + γ
(

max
a′

Q(1)(s′(s,a), a
′)−max

a′
Q(2)(s′(s,a), a

′)
)∣∣∣]

= γE
[
max
s,a

∣∣∣max
a′

Q(1)(s′(s,a), a
′)−max

a′
Q(2)(s′(s,a), a

′)
∣∣∣]

≤ γE
[
max
s,a

max
a′

∣∣∣Q(1)(s′(s,a), a
′)−Q(2)(s′(s,a), a

′)
∣∣∣]

≤ γE
[
max
s,a

∣∣∣Q(1)(s, a)−Q(2)(s, a)
∣∣∣] = γE

[∥∥∥Q(1) −Q(2)
∥∥∥]

The first inequality follows from |maxa′ Q1(s, a′) − maxa′ Q2(s, a′)| ≤ maxa′ |Q1(s, a′) −
Q2(s, a′)|, and the second inequality follows since Q(1) and Q(2) sampled the same s′. Con-
cluding the proof as before we see that the kernel is contractive with Lipschitz constant
1 + α− αγ < 1, and we are done.

A.3 TD(λ)

Weprove that TD(λ)with synchronous updates & constant step-size converges to a stationary
distribution. The algorithm aims to evaluate the value function of a given policy π using a
convex combination of n-step returns. The update rule is given by:

∀s : Vn+1(s) = (1− α)Vn(s, a) + α(1− λ)

∞∑
k=1

λk−1

(
k∑
i=0

γir(si, ai) + γkVn(sk)

)
(TD(λ))

where each n-step trajectory is sampled starting from s and following policy π.
Theorem A.3. For any constant step size 0 < α ≤ 1 and initialization V0 ∼ µ0 ∈ M(R|S|), the
sequence of random variables (Vn)n≥0 defined by the recursion (TD(λ)) converges in distribution to
a unique stationary distribution ζα ∈M(R|S|).

Proof. Again, we jump straight to step (P2) of the template given above. We couple every
n-step trajectory to sample the same n rewards, actions, and successors states.

V
(1)
k+1(s) = (1− α)V

(1)
k (s) + α(1− λ)

∞∑
n=1

λn−1

(
n−1∑
i=0

γiri(si, ai) + γnV
(1)
k (sn)

)

V
(2)
k+1(s) = (1− α)V

(2)
k (s) + α(1− λ)

∞∑
n=1

λn−1

(
n−1∑
i=0

γiri(si, ai) + γnV
(2)
k (sn)

)


same
(si, ai, ri)

n
i=0

∀n
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By the coupling, the reward terms will cancel in every n-step trajectory. We
write R

(i)
n =

∑n−1
i=0 γ

iri(si, ai) + γnV
(i)
k (sn) for the n-step return and T̂ (V )(s) =∑∞

k=1 λ
k−1

(∑k
i=0 γ

ir(si, ai) + γkVn(sk)
)
for the empirical Bellman operator of TD(λ).

E
[∥∥∥T̂ (V (1))− T̂ (V (2))

∥∥∥] = E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1R(1)
n −

∞∑
n=1

λn−1R(2)
n

∣∣∣∣∣
]

= E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1
(
R(1)
n −R(2)

n

)∣∣∣∣∣
]

= E

[
max
s

∣∣∣∣∣
∞∑
n=1

λn−1γn
(
V (1)(sn)− V (2)(sn)

)∣∣∣∣∣
]

(reward terms cancel)

≤ E

[ ∞∑
n=1

λn−1γn max
s

∣∣∣(V (1)(sn)− V (2)(sn)
)∣∣∣]
(triangle inequality)

≤
∞∑
n=1

λn−1γnE
[
max
s

∣∣∣V (1)(s)− V (2)(s)
∣∣∣] (by the coupling)

=

∞∑
n=1

λn−1γnE
[∥∥∥V (1) − V (2)

∥∥∥] = γ
1

1− λγ
E
[∥∥∥V (1) − V (2)

∥∥∥]

Concluding the proof as before, we haveW(µ(1)K,µ(2)K) ≤ (1−α+αγ 1−λ
1−λγ )W(µ(1), µ(2)).

Since 1− α+ αγ 1−λ
1−λγ < 1 we are done.

A.4 SARSA with ε-greedy policies

In this example we will example the use of ε-greedy policies for control. In particular, we
examine SARSA updates with ε-greedy policies. Let π(·|s) be some base policy. The updates
are as follow:

Qk+1(s, a) =

{
(1− α)Qk(s, a) + α (r(s, a) + γQk(s′, a′)) w.p. ε
(1− α)Qk(s, a) + α (r(s, a) + γmaxa′ Qk(s′, a′)) w.p. 1− ε (SARSA)

where r ∼ R(·|s, a) and s′ ∼ P(·|s, a) in both cases and a′ ∼ π(·|s′) in the first case.

Theorem A.4. For any constant step size 0 < α ≤ 1 and initialization Q0 ∼ µ0 ∈M(R|S|×|A|),
the sequence of random variables (Qn)n≥0 defined by the recursion (SARSA) converges in distribution
to a unique stationary distribution θα ∈M(R|S|×|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling
coupling, whereQ(1)

1 takes the greedy action if and only ifQ(2)
1 does. In the non-greedy case,

they sample the same a′ ∼ π(·|s′). In all cases, both functions sample the same r(s, a) and s′.

We write T̂ (Q)(s, a) =

{
r + γQ(s′, a′) w.p. ε
r + γmaxa′ Q(s′, a′) w.p. 1− ε

The bound follows similarly to the examples ofQ-learning and TD(0). We omit the subscripts
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on the Q-functions.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = P {greedy action chosen}E
[
max
s,a

γ|(max
a′

Q(1)(s′, a′)−max
a′

Q(2)(s′, a′)|
]

+ P {non-greedy action chosen}E
[
max
s,a
|γ(Q(1)(s′, a′)−Q(2)(s′, a′))|

]
≤ εγE

[∥∥∥Q(1) −Q(2)
∥∥∥]+ (1− ε)γE

[∥∥∥Q(1) −Q(2)
∥∥∥]

= γE
[
‖Q(1) −Q(2)‖

]
The bound E

[
maxs,a γ|(maxa′ Q

(1)(s′, a′)−maxa′ Q
(2)(s′, a′)|

]
≤ γE

[∥∥Q(1) −Q(2)
∥∥]

follows from |maxa′ Q1(s, a′) − maxa′ Q2(s, a′)| ≤ maxa′ |Q1(s, a′) − Q2(s, a′)|, and
since Q(1) and Q(2) sampled the same s′ in the greedy case. The bound
E
[
maxs,a|γ(Q(1)(s′, a′)−Q(2)(s′, a′))|

]
≤ E

[∥∥Q(1) −Q(2)
∥∥] follows sinceQ(1) andQ(2) sam-

pled the same state-action pair in the non-greedy case. Concluding the proof as before,
we have that E

[
‖Q(1)

1 −Q
(2)
1 ‖
]
≤ (1 − α + αγ)E

[
‖Q(1)

0 −Q
(2)
0 ‖
]
, and thus the kernel is a

contraction.

A.5 Expected SARSA with ε-greedy policies

In this example we examine the Expected SARSA updates with ε-greedy policies. Let π(·|s)
be some base policy. Define πε(·|s) as the ε-greedy policy which takes the greedy action
with probability 1-ε and π otherwise. The updates are as follow:

Qk+1(s, a) = (1− α)Qk(s, a) + α

(
r(s, a) + γ

∑
a′

πε(a
′|s)Qk(s′, a′)

)
(Expected-SARSA)

where r ∼ R(·|s, a) and s′ ∼ P(·|s, a) in both cases and a′ ∼ π(·|s′) in the first case.

Theorem A.5. For any constant step size 0 < α ≤ 1 and initialization Q0 ∼ µ0 ∈M(R|S|×|A|),
the sequence of random variables (Qn)n≥0 defined by the recursion (Expected-SARSA) converges in
distribution to a unique stationary distribution βα ∈M(R|S|×|A|).

Proof. We jump straight to step (P2) of the proof template. We use the same-sampling
coupling.

Wewrite T̂ (Q)(s, a) = r+γ
∑
a′ π(a′|s)Q(s′, a′). The bound follows similarly to the examples

of Q-learning and TD(0). We omit the subscripts on the Q-functions.

E
[∥∥∥T̂ (Q(1))− T̂ (Q(2))

∥∥∥] = E

[
max
s,a

γ|
∑
a′

πε(a
′)Q(1)(s′, a′)−

∑
a′

πε(a
′)Q(2)(s′, a′)|

]

≤ E

[
max
s,a

γ
∑
a′

πε(a
′)|Q(1)(s′, a′)−Q(2)(s′, a′)|

]

≤ E

[
max
s,a

γ
∑
a′

πε(a
′)
∥∥∥Q(1)(s′, a′)−Q(2)(s′, a′)

∥∥∥]
≤ γE

[
‖Q(1) −Q(2)‖

]
Concluding the proof as before, we have that E

[
‖Q(1)

1 −Q
(2)
1 ‖
]
≤ (1 − α +

αγ)E
[
‖Q(1)

0 −Q
(2)
0 ‖
]
, and thus the kernel is a contraction.
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A.6 Double Q-Learning

In this example we will have to modify our state-space and introduce a new metric on
pairs of Q-functions. The Double Q-Learning algorithm (Hasselt, 2010)2 maintains two
random estimates (QA, QB) and updates QA with probability p and QB with probability
1− p. Should QA be chosen to be updated, the update is:

QAn+1(s, a) = (1− α)QAn (s, a) + α
(
r(s, a) + γQBn (s, argmaxa′ Q

A
n (s′, a′))

)
.

Analogously, the update for QB is:

QBn+1(s, a) = (1− α)QBn (s, a) + α
(
r(s, a) + γQAn (s, argmaxa′ Q

B
n (s′, a′))

)
.

In both cases, we have s′ ∼ P(·|s, a). For this algorithm, the updates are Markovian on pairs
of action-value functions. Thus we set the state space to be R|S|×|A| × R|S|×|A|. We choose
the product metric defined by d1((QA, QB), (RA, RB)) =

∥∥QA −RA∥∥+
∥∥QB −RB∥∥.

Theorem A.6. For any constant step size 0 < α ≤ 1 and initialization (QA0 , Q
B
0 ) ∼ µ0 ∈

M(R|S|×|A| × R|S|×|A|), the sequence of random variables (QAn , Q
B
n )n≥0 defined by the Double Q-

Learning recursion converges in distribution to a unique stationary distribution χα ∈M(R|S|×|A|×
R|S|×|A|).

Proof. As before, let µ(1), µ(2)M(R|S|×|A|×R|S|×|A|) be arbitrary initializations and (QA0 , Q
B
0 )

and (RA0 , R
B
0 ) be the optimal coupling ofW(µ(1), µ(2)). We couple (QA1 , Q

B
1 ) and (RA1 , R

B
1 )

to sample the same function to be updated and the same s′. Assume for a moment that QA
and RA are chosen to be updated. Proceeding as in the proof of Q-Learning (cf. Theorem
A.2), we find that

E
[∥∥QA1 −RA1 ∥∥] ≤ (1− α)E

[∥∥QA0 −RA0 ∥∥]+ αγE
[∥∥QB0 −RB0 ∥∥] .

Analogously, if QB and RB are chosen to updated, we have:

E
[∥∥QB1 −RB1 ∥∥] ≤ (1− α)E

[∥∥QB0 −RB0 ∥∥]+ αγE
[∥∥QA0 −RA0 ∥∥] .

Putting everything together, the full expectation is:

E
[
d((QA1 , Q

B
1 ), (RA1 , R

B
1 ))
]

= E
[∥∥QA1 −RA1 ∥∥+

∥∥QB1 −RB1 ∥∥]
= P {A is updated}E

[∥∥QA1 −RA1 ∥∥+
∥∥QB1 −RB1 ∥∥]

+ P {B is updated}E
[∥∥QA1 −RA1 ∥∥+

∥∥QB1 −RB1 ∥∥]
= pE

[∥∥QA1 −RA1 ∥∥+
∥∥QB0 −RB0 ∥∥]

+ (1− p)E
[∥∥QA0 −RA0 ∥∥+

∥∥QB1 −RB1 ∥∥]
≤ p

(
(1− α)E

[∥∥QA0 −RA0 ∥∥]+ (1 + αγ)E
[∥∥QB0 −RB0 ∥∥])

+ (1− p)
(
(1 + αγ)E

[∥∥QA0 −RA0 ∥∥]+ (1− α)E
[∥∥QB0 −RB0 ∥∥])

≤ 1

2
(2 + αγ − α)

(
E
[∥∥QA0 −RA0 ∥∥]+ E

[∥∥QB0 −RB0 ∥∥]) (p = 1
2 )

=
1

2
(2 + αγ − α)E

[
d((QA0 , Q

B
0 ), (RA0 , R

B
0 ))
]

Since 0 ≤ 1/2(2 + αγ − α) < 1, so we are done. We note that the first equality only follows
since, under the coupling, either A or B is updated for both functions.

Appendix B Proofs of Section 5

Theorem B.1. Suppose T̂ π is such that the updates (3) with step-size α converge to a stationary
distribution ψα. If T̂ π is an empirical Bellman operator for some policy π, then E[fα] = fπ where
fα ∼ ψα and fπ is the fixed point of T π .

2This is the original algorithm, not the deep reinforcement learning version given in (van2016deep).

12



Proof. Let f0 be distributed according to ψα. By stationarity,

f1 = (1− α)f0 + αT̂ π(f0, ω) (8)

is also distributed according to ψα. We write fα := E [f0]. Taking expectations on both sides,
and using stationarity and that Eω[T̂ π(f, ω))] = T π(f) for any f :

fα = (1− α)fα + αEω,f0 [T̂ π(f0, ω)]

fα = (1− α)fα + αEf0 [T π(f0)].

Since T π(·) = Rπ + γPπ(·) is an affine operator it commutes with expectation, thus:

fα = T πfα

And therefore fα = fπ since it is the unique fixed point of T π .

Theorem B.2. Suppose T̂ π is such that the updates (3) with step-size α converge to a stationary
distribution ψα, and that T̂ π is an empirical Bellman operator for some policy π. Define

C(f) := Eω[(T̂ π(f, ω)− T πf)(T̂ π(f, ω)− T πf)T]

to be the covariance of the zero-mean noise term T̂ π(f, ω)− T πf for a given function f . Then, the
covariance of fα ∼ ψα is given by

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df)

Furthermore, we have that
∥∥E [(fα − fπ)(fα − fπ)T

]∥∥
op is monotonically decreasing

with respect to α, where ‖·‖op denotes the operator norm of a matrix. In particular,
limα→0

∥∥E[(fα − fπ)(fα − fπ)T]
∥∥
op = 0, and we have that:

P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
α→0−→ 0 ∀ ε > 0

We preface the proof with some useful identities. We will write the covariance in terms of
the tensor product for ease of manipulations

Lemma B.1. Write ξ(f) := (T̂ π(f, ω)− T πf). In the same setup as Theorem 5.2:

E
[
(fα − fπ)(T πfα − fπ + ξ(f0))T

]
= E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

and

E
[
((T πfα − fπ) + ξ(fα)) ((T πfα − fπ) + ξ(fα))

T
]

= (γPπ)E
[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+

∫
C(v)ψα(dv)

Proof. Let f0 ∼ ψα, by (3)we have f1 = (1−α)f0+α(T πf0+ξ(f0)) and f1 ∼ ψα. Furthermore,
the distribution of f0 is independent of the distribution of ω. By independence,

E
[
(f0 − fπ)ξ(f0)T

]
= Ef0Eω

[
(f0 − fπ)ξ(f0)T

]
(by independence of f0 and ξ(·))

= Ef0
[
(f0 − fπ)(Eωξ(f0))T

]
= 0 (Eω[ξ(f)] = 0 for every f )
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For the first identity, note that

E
[
(f0 − fπ)(T πf0 − fπ))T

]
= E

[
(f0 − fπ)(Rπ + γPπ(f0)−Rπ − γPπ(fπ))T

]
= E

[
(f0 − fπ)(γPπ(f0 − fπ))T

]
= E

[
(f0 − fπ)(f0 − fπ)T(γPπ)T

]
= E

[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

The first identity then follows by using E
[
(f0 − fπ)ξ(f0)T

]
= 0 and linearity of expectations.

For the second identity, expanding the outer product gives:

E
[
((T πf0 − fπ) + ξ(f0)) ((T πf0 − fπ) + ξ(f0))

T
]

= E
[
(T πf0 − fπ)(T πf0 − fπ)T

]
+ E

[
(ξ(f0))(ξ(f0)))T

]
+
(((((((((((
E
[
(T πf0 − fπ)(ξ(f0))T

]
+
(((((((((((
E
[
ξ(f0)(T πf0 − fπ)T

]
= E

[
(γPπ(f0 − fπ))(γPπ(f0 − fπ))T

]
+

∫
C(v)ψα(dv)

= (γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

+

∫
C(v)ψα(dv)

where we used E
[
(T πf0 − fπ)(ξ(f0))T

]
= 0.

Proof (of Theorem 5.2). Again let f0 be distributed according to ψα. Subtracting fπ from
equation (8),

f1 − fπ = (1− α)(f0 − fπ) + α (T πf0 − fπ + ξ(f0)) .

and taking outer products:

(f1 − fπ) (f1 − fπ)T =(1− α)2 (f0 − fπ) (f0 − fπ)T

+ α2 (T πf0 − fπ + ξ(f0)) (T πf0 − fπ + ξ(f0))
T

+ α(1− α)(f0 − fπ)(T πf0 − fπ + ξ(f0))T

+ α(1− α)(T πf0 − fπ + ξ(f0))(f0 − fπ)T.

Taking expectations on both sides, and using Lemma B.1:

E
[
(f1 − fπ)(f1 − fπ)T

]
=(1− α)2E

[
(f0 − fπ)(f0 − fπ)T

]
+ α2(γPπ)E[(f0 − fπ)](γPπ)T

+ α2

∫
C(v)ψa(dv)

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(f0 − fπ)(f0 − fπ)T

]
(γPπ)T

Since E
[
(f1 − fπ)(f1 − fπ)T

]
= E

[
(f0 − fπ)(f0 − fπ)T

]
by stationarity, re-arranging to the

LHS and factoring gives:

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α(1− α)(γPπ)E
[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)E

[
(fα − fπ)(fα − fπ)T

]
(γPπ)T

+ α2

∫
C(f)ψα(df)
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For the remainder of the proof we re-write the above expression in terms of tensor products.
The tensor product of two vectors x, y is the matrix defined by x⊗y = xyT. By extension, the
tensor product of two matrices A,B is the operator defined by (A⊗B)X = AXBT. Then,
the above expression can be re-written as:

(1− (1− α)2)E
[
(fα − fπ)(fα − fπ)T

]
= α2(γPπ)⊗2E

[
(fα − fπ)(fα − fπ)T

]
+ α(1− α)(γPπ ⊗ I)E

[
(f0 − fπ)(f0 − fπ)T

]
+ α(1− α)(I⊗γPπ)E

[
(fα − fπ)(fα − fπ)T

]
+ α2

∫
C(f)ψα(df).

Factoring the tensor products further gives:[
I − ((1− α)I + αγPπ)

⊗2
]
E
[
(fα − fπ)⊗2

]
= α2

∫
C(f)ψα(df)

We show that the matrix on the LHS is invertible. By (Puterman, 2014, Corollary C.4) it will
follow from showing that ρ

(
((1− α)I + αγPπ)

⊗2
)
< 1, where ρ(A) is the spectral radius

of matrix A. Writing ‖A‖op = maxi
∑
j |A(i, j)| for the operator norm of a matrix A, and

using that ρ(A) ≤ ‖A‖op, ‖A⊗B‖op = ‖A‖op ‖B‖op, and ‖Pπ‖op = ‖I‖op = 1:∥∥∥((1− α)I + αγPπ)
⊗2
∥∥∥
op

= ‖(1− α)I + αγPπ‖2op ≤ ((1− α) + αγ)
2
< 1, (9)

where the last inequality followed since γ < 1. Finally, for the limit α → 0, we use the
following identity: if A is such that ‖I −A‖ ≤ 1 then

∥∥A−1
∥∥ ≤ 1

1−‖I−A‖ . We let A =

I − ((1− α)I + αγPπ)⊗2, by the calculation in (9) we have ‖I −A‖ < 1. So we calculate the
operator norm of the covariance matrix:∥∥E [(f0 − fπ)(f0 − fπ)T

]∥∥ = α2

∥∥∥∥[I − ((1− α)I + αγPπ)
⊗2
]−1

∫
C(v)ψα(dv)

∥∥∥∥
≤ α2

∥∥∥∥[I − ((1− α)I + αγPπ)
⊗2
]−1
∥∥∥∥∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
≤ α2 1

1−
∥∥∥I − I + ((1− α)I + αγPπ)

⊗2
∥∥∥
∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
= α2 1

1−
∥∥∥((1− α)I + αγPπ)

⊗2
∥∥∥
∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
= α2 1

1− ‖((1− α)I + αγPπ)‖2

∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
≤ α2 1

1− (1− α+ αγ)2

∥∥∥∥∫ C(v)ψα(dv)

∥∥∥∥
Finally, since C(f) is bounded for all f ∈ Rn, we have that

∥∥∫ C(v)ψα(dv)
∥∥ ≤M and thus∥∥E [(f0 − fπ)(f0 − fπ)T

]∥∥ ≤M α2

1− (1− α+ αγ)2

α→0−→ 0

For the concentration inequality, we will use a multivariate Chebyshev inequality (Marshall
and Olkin, 1960, Theorem 3.1), whos statement is as follows:
Theorem B.3. LetX = (X1, ..., Xn) be a random vector withEX = 0 andE[XTX] = Σ. Let T =
T+∪{x : −x ∈ T+}, where T+ ⊆ Rn is a closed, convex set. IfA = {a ∈ Rn : 〈a, x〉 ≥ 1 ∀x ∈ T+},
then

P {X ∈ T} ≤ inf
a∈A

aTΣa
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Let ε > 0. We first bound aTΣawith the operator norm of Σ. Note that

aTΣa =
∑
i

ai(Σa)i

≤
∑
i

ai ‖Σa‖ ≤ n ‖Σ‖op ‖a‖
2

We define T+ to be the intersection of half-planes the {x|xi ≥ ε}, so that T+ = {x|xi ≥ ε ∀i}.
Since the half-planes are closed and convex, T+ is also closed and convex since it is an intersec-
tion of closed and convex sets.Then, T = T+ ∪ {x : −x ∈ T+} = {x|xi ≥ ε ∀i or xi ≤ −ε ∀i}.
Note that x ∈ T ⇐⇒ mini|xi| ≥ ε. We define X = fα − fπ which has zero-mean. Finally,
Theorem B.3 states that

P {X ∈ T} = P {fα − fπ ∈ T} ≤ inf
a∈A

aTΣa ≤ n ‖Σ‖op inf
a∈A
‖a‖2 .

Note that infa ‖a‖2 is bounded since a = ( 1
nε ,

1
nε , ....,

1
nε ) is in A and ‖a‖2 = 1

(nε)2 . So
n infa∈A ‖a‖2 ≤ C for some constant C. From the previous result, we can take the limit of
α→ 0 of ‖Σ‖op =

∥∥E [(fα − fπ)(fα − fπ)T
]∥∥

op and obtain:

P {fα − fπ ∈ T} = P
{

min
i
|fα(i)− fπ(i)| ≥ ε

}
≤ C ·

∥∥E [(fα − fπ)(fα − fπ)T
]∥∥

op → 0

Theorem B.4. Suppose T̂ ? is such that the updates (3) with step-size α converge to a stationary
distribution ψ?α. If T̂ ? is an empirical Bellman optimality operator then

E[fα] ≥ f?,

where fα ∼ ψ?α and f? is the fixed point of T ?. Equality holds if and only if the expectation and the
maximum commute, i.e. ET̂ f = T̂ Ef

Proof. As before, let f0 be distributed according to ψ?α. Taking expectations on both sides of
f1 = (1− α)f0 + αT̂ ?(f0, ω) and writing fα := E [fα] gives:

fα = (1− α)fα + αEω,f0 [T̂ ?(f0, ω)]

fα = Ef0 [max
π
T πf0]

fα ≥ max
π

Ef0 [T πf0]

fα ≥ max
π
T πfα = T ?fα

By the linear programming formulation of MDPs (Puterman, 1994, Section 6.9.1), we con-
clude that f̄α ≥ f? = minf{f ≥ T ?f}.
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