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Abstract
We compare the model-free reinforcement learning with the model-based ap-
proaches through the lens of the expressive power of neural networks for poli-
cies, Q-functions, and dynamics. We show, theoretically and empirically, that
even for one-dimensional continuous state space, there are many MDPs whose
optimal Q-functions and policies are much more complex than the dynamics.
We hypothesize many real-world MDPs also have a similar property. For these
MDPs, model-based planning is a favorable algorithm, because the resulting poli-
cies can approximate the optimal policy significantly better than a neural network
parameterization can, and model-free or model-based policy optimization rely on
policy parameterization. Motivated by the theory, we apply a simple multi-step
model-based bootstrapping planner (BOOTS) to bootstrap a weakQ-function into
a stronger policy. Empirical results show that applying BOOTS on top of model-
based or model-free policy optimization algorithms at the test time improves the
performance on MuJoCo benchmark tasks.

1 Introduction
Model-based deep reinforcement learning (RL) algorithms offer a lot of potentials in achieving sig-
nificantly better sample efficiency than the model-free algorithms for continuous control tasks. We
can largely categorize the model-based deep RL algorithms into two types: 1. model-based policy
optimization algorithms which learn policies or Q-functions, parameterized by neural networks, on
the estimated dynamics, using off-the-shelf model-free algorithms or their variants (Luo et al., 2019;
Janner et al., 2019; Kaiser et al., 2019; Kurutach et al., 2018; Feinberg et al., 2018; Buckman et al.,
2018), and 2. model-based planning algorithms, which plan with the estimated dynamics Nagabandi
et al. (2018); Chua et al. (2018); Wang & Ba (2019).

In this paper, we theoretically compare model-based RL and model-free RL in the continuous state
space through the lens of approximability by neural networks, and then use the insight to design
practical algorithms. What is the representation power of neural networks for expressing the Q-
function, the policy, and the dynamics? How do the model-based and model-free algorithms utilize
the expressivity of neural networks?

Our main finding is that even for the case of one-dimensional continuous state space, there can be a
massive gap between the approximability of Q-function and the policy and that of the dynamics:

The optimal Q-function and policy can be significantly more complex than the dynamics.
We construct environments where the dynamics are simply piecewise linear functions with constant
pieces, but the optimal Q-functions and the optimal policy require an exponential (in the horizon)
number of linear pieces, or exponentially wide neural networks, to approximate.1 The approximabil-

* indicates equal contribution
1 In turn, the dynamics can also be much more complex than the Q-function. Consider the following

situation: a subset of the coordinates of the state space can be arbitrarily difficult to express by neural networks,
but the reward function can only depend on the rest of the coordinates and remain simple.
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ity gap can also be observed empirically on (semi-) randomly generated piecewise linear dynamics
with a decent chance. (See Figure 7 for two examples.)

When the approximability gap occurs, any deep RL algorithms with policies parameterized by neural
networks will suffer from a sub-optimal performance. We empirically apply these algorithms to the
constructed or the randomly generated MDPs. Indeed, they fail to converge to the optimal rewards
even with sufficient samples. However, in such cases, model-based planning algorithms should not
suffer from the lack of expressivity, because they only use the learned, parameterized dynamics
which are easy to express. In fact, even a partial planner can help improve the expressivity of the
policy.

We hypothesize that the real-world continuous control tasks also have a more complex optimal Q-
function and a policy than the dynamics. The theoretical analysis of the synthetic dynamics suggests
that a model-based few-steps planner on top of a parameterizedQ-function will outperform the orig-
inal Q-function because of the addtional expressivity introduced by the planning. We empirically
verify the intuition on MuJoCo benchmark tasks. We show that applying a model-based planner on
top of Q-functions in the test time leads to significant gains over the original Q-function or policy.

The paper is organized as follows. We summarize related works and preliminaries in Section 2 and
Section 3. In Section 6 we present the construction. And section 5 shows the empirical results on
MuJoCo tasks.

2 Additional Related Work

Comparisons with Prior Theoretical Work. The extensive study in tabular MDP setting leaves
little gap in their sample complexity of model-based and model-free algorithms Azar et al. (2017);
Zanette & Brunskill (2019); Jin et al. (2018), whereas the space complexity seems to be the main
difference. (Strehl et al., 2006). For Linear Quadratic Regulator, Dean et al. (2018) and Dean et al.
(2017) provided sample complexity bound for model-based LQR. Recently, Tu & Recht (2018) an-
alyzed sample efficiency of the model-based and model-free algorithms, and proved a gap in sample
complexity. Sun et al. (2019) prove an exponential information-theoretical gap between mode-based
and model-free algorithms in the Contextual Decision Process. Their definition of model-free algo-
rithms requires an exact parameterization: the value-function hypothesis class should be exactly the
family of optimal value-functions induced by the MDP family.

Related Empirical Work. A large family of model-based RL algorithms uses existing model-free
algorithms of its variant on the learned dynamics. MBPO (Janner et al., 2019), STEVE (Buckman
et al., 2018), and MVE (Feinberg et al., 2018) are model-based Q-learning-based policy optimiza-
tion algorithms , which improves over the early model-based Q-learning framework, Dyna (Sutton,
1990). SLBO (Luo et al., 2019) is a model-based policy optimization algorithm using TRPO as the
algorithm in the learned environment. Another way to exploit the dynamics is to use it to perform
model-based planning, including Racanière et al. (2017); Du & Narasimhan (2019); Chua et al.
(2018); Wang & Ba (2019); Piché et al. (2018); Oh et al. (2017); Silver et al. (2017).

3 Preliminaries

Markov Decision Process. A Markov Decision Process (MDP) is a tuple 〈S,A, f, r, γ〉, where S
is the state space, A the action space, f : S × A → ∆(S) the transition dynamics that maps a state
action pair to a probability distribution of the next state, γ the discount factor, and r ∈ RS×A the
reward function. Throughout this paper, we will consider deterministic dynamics, which, with slight
abuse of notation, will be denoted by f : S ×A → S.

A deterministic policy π : S → A maps a state to an action. The value function for the policy
is defined as is defined V π(s)

def
=
∑∞
h=1 γ

h−1r(sh, ah). where ah = π(sh), s1 = s and sh+1 =
f(sh, ah). An RL agent aims to find a policy π that maximizes the expected total reward defined as
η(π)

def
= Es1∼µ [V π(s1)] , where µ is the distribution of the initial state.

Bellman Equation. Let π? be the optimal policy, and V ? the optimal value function. Qπ and Q?
define the state-action value function for policy π and optimal state-action value function. The value
function V π for policy π and optimal value function V ? satisfy the Bellman equation and Bellman
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optimality equation, respectively:{
V π(s) = Qπ(s, π(s)),

Qπ(s, a) = r(s, a) + γV π(f(s, a)),
and

{
V ?(s) = maxa∈AQ

?(s, a),

Q?(s, a) = r(s, a) + γV ?(f(s, a)).
(1)

Denote the Bellman operator for dynamics f by Bf :

(Bf [Q]) (s, a) = r(s, a) + max
a′

γQ(f(s, a), a′).

Neural Networks. We focus on fully-connected neural nets with ReLU function as activations. A
one-dimensional input and one-dimensional output ReLU neural net represents a piecewise linear
function. An H-layer neural net with d hidden neurons in each layer represents a piecewise linear
function with at most (d+ 1)H pieces (Pascanu et al., 2013).

Problem Setting and Notations. In this paper, we focus on continuous state space, discrete action
space MDPs with S ⊂ R. We assume the reward is known to the agent. Let bxc denote the floor
function of x, that is, the greatest integer less than or equal to x. We use I[·] to denote the indicator
function.

4 Approximability of Q-functions and Dynamics
We show that there exist MDPs in one-dimensional continuous state space that have simple dynam-
ics but complex Q-functions and policies. Moreover, any polynomial-size neural network function
approximator of the Q-function or policy will result in a sub-optimal expected total reward. (Sec-
tion 4.2). Section 4.3 illustrates the phenomena that Q-function is more complex than the dynamics
occurring frequently and naturally even with random MDP, beyond the theoretical construction.

4.1 A Provable Construction of MDPs with Complex Q

Recall that we consider the infinite horizon case and 0 < γ < 1 is the discount factor. Let H =
(1 − γ)−1 be the “effective horizon” . For simplicity, we assume that H > 3 and it is an integer.
Throughout this section, we assume that the state space S = [0, 1) and the action spaceA = {0, 1}.
Definition 4.1. Given the effective horizon H = (1− γ)−1, we define an MDP MH as follows. Let
κ = 2−H . The dynamics f by the following piecewise linear functions with at most three pieces.

f(s, 0) =

{
2s if s < 1/2

2s− 1 if s ≥ 1/2
f(s, 1) =

{
2s+ κ if s < (1− κ)/2

2s+ κ− 1 if (1− κ)/2 ≤ s ≤ (2− κ)/2
2s+ κ− 2 otherwise.

The reward function is defined as

r(s, 0) = I[1/2 ≤ s < 1], r(s, 1) = I[1/2 ≤ s < 1]− 2(γH−1 − γH)

The initial state distribution µ is a uniform distribution over the state space [0, 1).

Note that by the definition, the transition function for a fixed action a is a piecewise linear function
with at most 3 pieces. Attentive readers may also realize that the dynamics can be also be written
succinctly as f(s, 0) = 2s mod 1 and f(s, 1) = 2s+κ mod 12, which are key properties that we
use in the proof of Theorem 4.2 below.

Optimal Q-function Q? and the optimal policy π?. Even though the dynamics of the MDP
constructed in Definition 4.1 has only a constant number of pieces, the Q-function and policy are
very complex: (1) the policy is a piecewise linear function with exponentially number of pieces,
(2) the optimal Q-function Q? and the optimal value function V ? are actually fractals that are not
continuous. These are formalized in the theorem below.
Theorem 4.2. For s ∈ [0, 1), let s(k) denotes the k-th bit of s in the binary representation.3 The
optimal policy π? for the MDP defined in Definition 4.1 has 2H+1 number of pieces. In particular,

π?(s) = I[s(H+1) = 0]. (2)

2For positive real k, we define x mod k , x− kbx/kc.
3Or more precisely, we define s(h) , b2hsc mod 2.
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And the optimal value function is a fractal with the expression:

V ?(s) =

H∑
h=1

γh−1s(h) +

∞∑
h=H+1

γh−1
(

1 + 2(s(h+1) − s(h))
)

+ γH−1
(

2s(H+1) − 2
)
. (3)

The close-form expression of Q? can be computed by Q?(s, a) = r(s, a) + V ?(f(s, a)), which is
also a fractal.

We approximate the optimal Q-function by truncating the infinite sum to 2H terms, and visualize
it in Figure 6c. We discuss the main intuitions behind the construction in the proof sketch of the
theorem, which can be found in Appendix C.1. A rigorous proof of Theorem 4.2 is deferred to
Appendix C.2.

4.2 The Approximability of Q-function

We show in this section that there is no neural network approximation ofQ? or π? with a polynomial
width. We prove this by showing any piecewise linear function with a sub-exponential number of
pieces cannot approximate either Q? or π? with a near-optimal total reward.

Theorem 4.3. Let MH be the MDP constructed in Definition 4.1. Suppose a piecewise linear
policy π has a near optimal reward in the sense that η(π) ≥ 0.99 · η(π?), then it has to have at
least Ω (exp(cH)/H) pieces for some universal constant c > 0. As a corollary, no constant depth
neural networks with polynomial width (inH) can approximate the optimal policy with near optimal
rewards.

Consider a policy π induced by a value functionQ, that is, π(s) = arg maxa∈AQ(s, a).When there
are two actions, the number of pieces of the policy is bounded by twice the number of pieces of Q.
Therefore, an exponentially large neural net is needed to approximate a near-optimal Q-function (in
a sense that it induces a near-optimal policy).

Detailed proof of Theorem 4.3 is deferred to Appendix C.3. Beyond the expressivity lower bound,
we also provide an exponential sample complexity lower bound for Q-learning algorithms parame-
terized with neural networks (see Appendix C.5).

4.3 The Approximability of Q-functions of Randomly Generated MDPs

In this section, we show the phenomena that the Q-function occurs more robustly with a decent
chance for (semi-) randomly generated MDPs. We generate random piecewise linear and Lipschitz
dynamics, compute their Q-functions for the finite horizon, and then visualize the Q-functions or
count the number of pieces in the Q-functions.

The horizon is set as H = 10 for simplicity and computational feasibility. The state and action
space are [0, 1) and {0, 1} respectively. We design two methods to generate random or semi-random
piecewise dynamics with at most four pieces, where the semi-random method introduces a bit more
structure in the generation process, towards increasing the chance to see the phenomenon. More
details about the generation process is deferred to Appendix E.

The optimal policy and Q can have a large number of pieces. Figure 7 in Appendix visualize
the Q-functions of two MDPs generated from RAND and SEMI-RAND method. We found that
with decent change, the generated MDP has policy with substantially many more pieces than the
dynamics. (See Appendfix E.2 for a detailed result.) These results suggest that the phenomenon
that Q-function is more complex than dynamics is not a degenerate phenomenon and can occur with
non-zero measure.

Model-based policy optimization methods also suffer from a lack of expressivity. As an im-
plication of our theory in the previous section, when the Q-function or the policy are too complex
to be approximated by a reasonable size neural network, both model-free algorithms or model-
based policy optimization algorithms will suffer from the lack of expressivity. We verify this claim
on the randomly generated MDPs discussed in Section 4.3, by running DQN (Mnih et al., 2015),
SLBO (Luo et al., 2019), and MBPO (Janner et al., 2019) with various architecture size. We use the
MDP visualized in the bottom half of Figure 7. The optimal policy for this specific MDP has 765
pieces, and the optimal Q-function has about 4× 104 number of pieces.
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Figure 1: (Left): The performance of DQN, SLBO, and MBPO on the bottom dynamics in Figure 7.
The number after the acronym is the width of the neural network used in the parameterization of
Q. We see that these algorithms still suffers from bad approximability and cannot achieve optimal
reward. (Right): Performance of BOOTS + DQN with various planning steps. A near-optimal
reward is achieved with even k = 3, indicating that the bootstrapping with the learned dynamics
improves the expressivity of the policy significantly.
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Figure 2: (Left two) Comparison of BOOTS-MBSAC vs MBSAC and BOOTS-SAC vs SAC on
Ant and Humanoid. Particularly on the Humanoid environment, BOOTS improves the performance
significantly. The test policies for MBSAC and SAC are the deterministic policy that takes the
mean of the output of the policy network.(Right) BOOTS-MBSAC or BOOTS-MBPO outperforms
previous state-of-the-art algorithms on Humanoid. The results are averaged over 5 random seeds
and shadow area indicates a single standard deviation from the mean.

5 Model-based Bootstrapping Planner
Our theory and experiments in Section 4.2 and 4.3 demonstrate that when theQ-function or the pol-
icy is complex, model-free or model-based policy optimization algorithms will suffer from the lack
of expressivity. On the other hand, model-based planning algorithms will not suffer from the lack
of expressivity because the final policy is not represented by a neural network. For the construction
in Section 4.1, we can actually prove that even a few-steps planner can bootstrap the expressivity of
the Q-function (formalized in Theorem 5.1 below).

Inspired the theoretical result, we apply a simple k-step model-based bootstrapping planner on top
of existing Q-functions (trained from either model-based or model-free approach) in the test time.
The bootstrapping planner is reminiscent of MCTS using in AlphaGo (Silver et al., 2016, 2018).
However, here we use the learned dynamics and deal with the continuous state space.

5.1 Bootstrapping the Q-function

Given a function Q that is potentially not expressive enough to approximate the optimal Q-function,
we can apply the Bellman operator with a learned dynamics f̂ for k times to get a bootstrapped
version of Q:

Bk
f̂
[Q](s, a) = max

a1,··· ,ak
r(s0, a0) + · · ·+ γk−1r(sk−1, ak−1) + γkQ(sk, ak) (4)

where s0 = s, a0 = a and sh+1 = f̂(sh, ah).

Given the bootstrapped version, we can derive a greedy policy w.r.t it:

πboots
k,Q,f̂

(s) = max
a
Bk
f̂
[Q](s, a).

The BOOTS algorithm can be applied on top of any learned Q-function, by optimizing Eq. 4 using
zero-th order algorithm such as cross entropy method or random shooting. When the base algorithm
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does not learn the dynamics directly, we store the samples and learn the dynamics before applying
BOOTS. We summarize our algorithm by Algorithm 1 in Appendix A.1.

For the MDPs constructed in Section 4.1, we can prove that representing the optimal Q-function by
Bk
f̂
[Q] requires fewer pieces in Q than representing the optimal Q-function by Q directly.

Theorem 5.1. Consider the MDPMH defined in Definition 4.1. There exists a constant-piece piece-
wise linear dynamics f̂ and a 2H−k+1-piece piecewise linear functionQ, such that the bootstrapped
policy πboots

k,Q,f̂
(s) achieves the optimal total rewards.

By contrast, recall that in Theorem 4.3, we show that approximating the optimal Q-function directly
with a piecewise linear function requires ≈ 2H piecewise. Thus we have a multiplicative factor
of 2k gain in the expressivity by using the bootstrapped policy. Here the exponential gain is only
magnificent enough when k is close to H because the gap of approximability is huge. However,
in more realistic settings — the randomly-generated MDPs and the MuJoCo environment — the
bootstrapping planner improvs the performance significantly as shown in the next subsection.

5.2 Experiments

BOOTS on random piecewise linear MDPs. We implement BOOTS (Algorithm 1) with various
steps of planning and with the learned dynamics. The planner is an exponential-time planner which
enumerates all the possible future sequence of actions. As shown in Figure 1, BOOTS + DQN
achieves the optimal reward. In the meantime, even a partial planner helps to improve both the
sample-efficiency and performance. More details of this experiment are deferred to Appendix E.3.

BOOTS on MuJoCo environments. We work with the OpenAI Gym environments (Brockman
et al., 2016) based on the Mujoco simulator (Todorov et al., 2012) with maximum horizon 1000 and
discount factor 1. We apply BOOTS on top of three algorithms: (a) SAC (Haarnoja et al., 2018),
the state-of-the-art model-free RL algorithm; (b) MBPO (Janner et al., 2019), a model-based Q-
learning algorithm, and an extension of Dyna (Sutton, 1990); (c) a computationally efficient variant
of MBPO that we develop using ideas from SLBO (Luo et al., 2019), which is called MBSAC.
See Appendix A.2 for details.

We use k = 4 steps of planning unless explicitly mentioned otherwise in the ablation study (Sec-
tion A.3). In Figure 2 (Left), we compare BOOTS+SAC with SAC, and BOOTS + MBSAC with
MBSAC on Gym Ant and Humanoid environments, and demonstrate that BOOTS can be used on
top of existing strong baselines. We found that BOOTS has little help for other simpler environ-
ments, and we suspect that those environments have much less complex Q-functions so that our
theory and intuitions do not necessarily apply. (See Section A.3 for more ablation study.)

In Figure 2 (Right), we compare BOOTS+MBSAC and BOOTS+MBPO with other MBPO, SAC,
and STEVE (Buckman et al., 2018)4 on the humanoid environment. We see a strong performance
surpassing the previous state-of-the-art MBPO.

6 Conclusion

Our study suggests that there exists a significant representation power gap of neural networks be-
tween for expressingQ-function, the policy, and the dynamics in both constructed examples and em-
pirical benchmarking environments. We show that our model-based bootstrapping planner BOOTS
helps to overcome the approximation issue and improves the performance in synthetic settings and
in the difficult MuJoCo environments. We raise some interesting open questions.

• Can we theoretically generalize our results to high-dimensional state space, or continuous ac-
tions space? Can we theoretically analyze the number of pieces of the optimal Q-function of a
stochastic dynamics?

• In this paper, we measure the complexity by the size of the neural networks. It’s conceivable that
for real-life problems, the complexity of a neural network can be better measured by its weights
norm. Could we build a more realistic theory with another measure of complexity?

4For STEVE, we use the official code at https://github.com/tensorflow/models/tree/master/
research/steve
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Algorithm 1 Model-based Bootstrapping Planner (BOOTS) + RL Algorithm X

1: training: run Algorithm X, store the all samples in the set R, store the learned Q-function Q,
and the learned dynamics f̂ if it is available in Algorithm X.

2: testing:
3: if f̂ is not available, learn f̂ from the data in R
4: execute the policy BOOTS(s) at every state s
1: function BOOTS(s)
2: Given: query oracle for function Q and f̂
3: Compute

πboots
k,Q,f̂

(s) = arg max
a

max
a1,...,ak

r(s, a) + · · ·+ γk−1r(sk−1, ak−1) + γkQ(sk, ak)

using a zero-th order optimization algorithm (which only requires oracle query of the function
value) such as cross-entropy method or random shooting.

A Experiment Details in Section 5.2

A.1 BOOTS Algorithm

Algorithm 1 summarizes the BOOTS algorithm.

A.2 Model-based SAC (MBSAC)

Here we describe our MBSAC algorithm in Algorithm 2, which is a model-based policy optimization
and is used in BOOTS-MBSAC. The main difference from MBPO and other works such as (Wang
& Ba, 2019; Kurutach et al., 2018) is that we don’t use model ensemble. Instead, we occasionally
optimize the dynamics by one step of Adam to introduce stochasticity in the dynamics, following
the technique in SLBO (Luo et al., 2019). As argued in (Luo et al., 2019), the stochasticity in
the dynamics can play a similar role as the model ensemble. Our algorithm is a few times faster
than MBPO in wall-clock time. It performs similarlty to MBPO on Humanoid, but a bit worse
than MBPO in other environments. In MBSAC, we use SAC to optimize the policy πβ and the Q-
function Qϕ. We choose SAC due to its sample-efficiency, simplicity and off-policy nature. We mix
the real data from the environment and the virtual data which are always fresh and are generated by
our learned dynamics model f̂θ.5

Our code is available at https://github.com/roosephu/boots.

For Ant, we modify the environment by adding the x and y axis to the observation space to make it
possible to compute the reward from observations and actions. For Humanoid, we add the position
of center of mass. We don’t have any other modifications. All environments have maximum horizon
1000.

For the policy network, we use an MLP with ReLU activation function and two hidden layers, each
of which contains 256 hidden units. For the dynamics model, we use a network with 2 Fixup blocks
(Zhang et al., 2019), with convolution layers replaced by a fully connected layer. We found out
that with similar number of parameters, fixup blocks leads to a more accurate model in terms of
validation loss. Each fixup block has 500 hidden units. We follow the model training algorithm in
Luo et al. (2019) in which non-squared `2 loss is used instead of the standard MSE loss.

A.3 Ablation Study

Planning with oracle dynamics and more environments. We found that BOOTS has smaller
improvements on top of MBSAC and SAC for the environment Cheetah and Walker. To diagnose
the issue, we also plan with an oracle dynamics (the true dynamics). This tells us whether the lack
of improvement comes from inaccurate learned dynamics. The results are presented in two ways

5In the paper of MBPO (Janner et al., 2019), the authors don’t explicitly state their usage of real data in
SAC; the released code seems to make such use of real data, though.
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Algorithm 2 MBSAC

1: Parameterize the policy πβ , dynamics f̂θ, and the Q-function Qϕ by neural networks. Initialize
replay buffer B with ninit steps of interactions with the environments by a random policy, and
pretrain the dynamics on the data in the replay buffer.

2: t← 0, and sample s0 from the initial state distribution.
3: for niter iterations do
4: Perform action at ∼ πβ(·|st) in the environment, obtain s′ as the next state from the envi-

ronment.
5: st+1 ← s′, and add the transition (st, at, st+1, rt) to B.
6: t ← t + 1. If t = T or the trajectory is done, reset to t = 0 and sample s0 from the initial

state distribution.
7: for npolicy iterations do
8: for nmodel iterations do
9: Optimize f̂θ with a mini-batch of data from B by one step of Adam.

10: Sample nreal data Breal and nstart data Bstart from B.
11: Perform q steps of virtual rollouts using f̂θ and policy πβ starting from states in Bstart;

obtain Bvirtual.
12: Update πβ and Qϕ using the mini-batch of data in Breal ∪ Bvirtual by SAC.
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Figure 3: BOOTS with oracle dynamics on top of SAC (top) and MBSAC (bottom) on HalfCheetah,
Walker, Ant and Humanoid. The solid lines are average over 5 runs, and the shadow areas indicate
the standard deviation.

in Figure 3 and Figure 4. In Figure 3, we plot the mean rewards and the standard deviation of
various methods across the randomness of multiple seeds. However, the randomness from the seeds
somewhat obscures the gains of BOOTS on each individual run. Therefore, for completeness, we
also plot the relative gain of BOOTS on top of MBSAC and SAC, and the standard deviation of the
gains in Figure 4.

From Figure 4 we can see planning with the oracle dynamics improves the performance in most of
the cases (but with various amount of improvements). However, the learned dynamics sometimes
not always can give an improvement similar to the oracle dynamics. This suggests the learned
dynamics is not perfect, but oftentimes can lead to good planning. This suggests the expressivity of
the Q-functions varies depending on the particular environment. How and when to learn and use a
learned dynamics for planning is a very interesting future open question.

The effect of planning horizon. We experimented with different planning horizons in Figure 5.
By planning with a longer horizon, we can earn slightly higher total rewards for both MBSAC and
SAC. Planning horizon k = 16, however, does not work well. We suspect that it’s caused by the
compounding effect of the errors in the dynamics.

B Visualization

In this section we provide visualization of our constructed MDPs and randomly generated MDPs.
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Figure 4: The relative gains of BOOTS over SAC (top) and MBSAC (bottom) on HalfCheetah,
Walker, Ant and Humanoid. The solid lines are average over 5 runs, and the shadow areas indicate
the standard deviation.
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Figure 5: Different BOOTS planning horizon k on top of SAC (left) and MBSAC (right) on Hu-
manoid. The solid lines are average over 5 runs, and the shadow areas indicate the standard devia-
tion.

B.1 Visualization of Constructed MDPs

First we visualize the the dynamics, the reward function, and the approximation of its optimal Q-
function for the effective horizon H = 4. (See Figure 6)

B.2 Visualization of Generated MDPs

Figure 7 visualizes the dynamics of two randomly generated MDPs (from the RAND, and SEMI-
RAND methods outlined in Section 4.3.

C Omitted Proofs in Section 4

In this section we provide the proofs omitted in Section 4.

C.1 Proof Sketch of Theorem 4.2

Proof Sketch of Theorem 4.2. The key observation is that the dynamics f essentially shift the bi-
nary representation of the states with some addition. We can verify that the dynamics satisfies
f(s, 0) = 2s mod 1 and f(s, 1) = 2s + κ mod 1 where κ = 2−H . In other words, suppose
s = 0.s(1)s(2) · · · is the binary representation of s, and let left-shift(s) = 0.s(2)s(3) · · · .

f(s, 0) = left-shift(s) (5)

f(s, 1) = (left-shift(s) + 2−H) mod 1 (6)

Moreover, the reward function is approximately equal to the first bit of the binary representation

r(s, 0) = s(1), r(s, a) ≈ s(1) (7)

(Here the small negative drift of reward for action a = 1, −2(γH−1 − γH), is only mostly designed
for the convenience of the proof, and casual readers can ignore it for simplicity.) Ignoring carries,
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(a) Visualization of dynamics for
action a = 0, 1.

(b) The reward function r(s, 0)
and r(s, 1).

(c) Approximation of optimal Q-
function Q?(s, a)

Figure 6: A visualization of the dynamics, the reward function in the MDP defined in Definition 4.1,
and the approximation of its optimal Q-function for the effective horizon H = 4. We can also
construct slightly more involved construction with Lipschitz dynamics and very similar properties.
Please see Appendix D.

Figure 7: Left: The dynam-
ics of two randomly gener-
ated MDPs (from the RAND,
and SEMI-RAND methods
outlined in Section 4.3 and
detailed in Appendix E.1).
Right: The corresponding
Q-functions which are more
complex than the dynamics
(more details in Section 4.3).

the policy pretty much can only affect the H-th bit of the next state s′ = f(s, a): the H-th bit of s′
is either equal to (H + 1)-th bit of s when action is 0, or equal its flip when action is 1. Because
the bits will eventually be shifted left and the reward is higher if the first bit of a future state is
1, towards getting higher future reward, the policy should aim to create more 1’s. Therefore, the
optimal policy should choose action 0 if the (H + 1)-th bit of s is already 1, and otherwise choose
to flip the (H + 1)-th bit by taking action 1.

A more delicate calculation that addresses the carries properly would lead us to the form of the
optimal policy (Equation (2).) Computing the total reward by executing the optimal policy will lead
us to the form of the optimal value function (equation (3).) (This step does require some elementary
but sophisticated algebraic manipulation.)

With the form of the V ?, a shortcut to a formal, rigorous proof would be to verify that it satisfies the
Bellman equation, and verify π? is consistent with it. We follow this route in the formal proof of
Theorem 4.2) in Appendix C.2.

C.2 Proof of Theorem 4.2

Proof of Theorem 4.2. Since the solution to Bellman optimal equations is unique, we only need to
verify that V ? and π? defined in equation (1) satisfy the following,

V ?(s) = r(s, π?(s)) + γV ?(f(s, π?(s))), (8)
V ?(s) ≥ r(s, a) + γV ?(f(s, a)), ∀a 6= π?(s). (9)

Recall that s(i) is the i-th bit in the binary representation of s, that is, s(i) = b2isc mod 2. Let
ŝ = f(s, π?(s)). Since π?(s) = I[s(H+1) = 0], which ensures the H-bit of the next state is 1, we
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have

ŝ(i) =

{
s(i+1), i 6= H,

1, i = H.
(10)

For simplicity, define ε = 2(γH−1 − γH). The definition of r(s, a) implies that

r(s, π?(s)) = I[1/2 ≤ s < 1]− I[π?(s) = 1]ε = s(1) −
(

1− s(H+1)
)
ε.

By elementary manipulation, Eq. (3) is equivalent to

V ?(s) =

H∑
i=1

γi−1s(i) +

∞∑
i=H+1

(
γi−1 − 2(γi−2 − γi−1)

(
1− s(i)

))
, (11)

Now, we verify Eq. (8) by plugging in the proposed solution (namely, Eq. (11)). As a result,

r(s, π?(s)) + γV ?(ŝ)

= s(1) −
(

1− s(H+1)
)
ε+ γ

H∑
i=1

γi−1I[ŝ(i) = 1] + γ

∞∑
i=H+1

(
γi−1 −

(
1− ŝ(i)

)
2(γi−2 − γi−1)

)

= s(1) −
(

1− s(H+1)
)
ε+

H∑
i=2

γi−1s(i) + γH +

∞∑
i=H+2

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)

=

H∑
i=1

γi−1s(i) +

∞∑
i=H+1

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)
= V ?(s),

which verifies Eq. (8).

In the following we verify Eq. (9). Consider any a 6= π?(s). Let s̄ = f(s, a) for shorthand. Note
that s̄(i) = s(i+1) for i > H . As a result,

V ?(s)− γV ?(s̄)

=

H∑
i=1

γi−1s(i) +

∞∑
i=H+1

(
γi−1 −

(
1− s(i)

)
2(γi−2 − γi−1)

)

−
H∑
i=1

γi−1s̄(i) −
∞∑

i=H+1

(
γi−1 −

(
1− s̄(i)

)
2(γi−2 − γi−1)

)

=s(1) +

H−1∑
i=1

γi
(
s(i+1) − s̄(i)

)
− γH s̄(H) + γH − 2

(
1− s(H+1)

) (
γH−1 − γH

)

For the case where s(H+1) = 0, we have π?(s) = 1. For a = 0, s̄(i) = s(i+1) for all i ≥ 1.
Consequently,

V ?(s)− γV ?(s̄) = s(1) + γH − ε > s(1) = r(s, 0),

where the last inequality holds when γH − ε > 0, or equivalently, γ > 2/3.

For the case where s(H+1) = 1, we have π?(s) = 0. For a = 1, we have s(H+1) = 1 and s̄(H) = 0.
Let p = max{i ≤ H : s(i) = 0}, where we define the max of an empty set is 0. The dynamics
f(s, 1) implies that

s̄(i) =


s(i+1), i+ 1 < p or i > H,

1, i+ 1 = p,

0, p < i+ 1 ≤ H + 1.
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Therefore,

V ?(s)− γV ?(s̄) = s(1) + γH +

H−1∑
i=1

γi
(
s(i+1) − s̄(i)

)
> s(1) − ε = r(s, 1).

In both cases, we have V ? − γV ?(s̄) > r(s, a) for a 6= π?(s), which proves Eq. (9).

C.3 Proof of Theorem 4.3

The intuition behind the proof of Theorem 4.3 is as follows. Recall that the optimal policy has
the form π?(s) = I[s(H+1) = 0]. One can expect that any polynomial-pieces policy π behaves
suboptimally in most of the states, which leads to the suboptimality of π.

For a fixed parameter H , let z(π) be the number of pieces in π. For a policy π, define the state
distribution when acting policy π at step h as µπh.

In order to prove Theorem 4.3, we show that if 1/2− 2Hz(π)/2H < 0.3, then η(π) < 0.99η(π?).
The proof is based on the advantage decomposition lemma.
Lemma C.1 (Advantage Decomposition Lemma (Schulman et al., 2015; Kakade & Langford,
2002)). Define Aπ(s, a) = r(s, a) + γV π(f(s, a)) − V π(s) = Qπ(s, a) − V π(s). Given poli-
cies π and π̃, we have

η(π) = η(π̃) +

∞∑
h=1

γh−1Es∼µπh
[
Aπ̃(s, π(s))

]
. (12)

Corollary C.2. For any policy π, we have

η(π?)− η(π) =

∞∑
h=1

γh−1Es∼µπh [V ?(s)−Q?(s, π(s))] . (13)

Intuitively speaking, since π? = I[s(H+1) = 0], the a policy π with polynomial pieces behaves
suboptimally in most of the states. Lemma C.3 shows that the single-step suboptimality gap V ?(s)−
Q?(s, π(s)) is large for a constant portion of the states. On the other hand, Lemma C.4 proves that
the state distribution µπh is near uniform, which means that suboptimal states can not be avoided.
Combining with Corollary C.2, the suboptimal gap of policy π is large.

The next lemma shows that, if π does not change its action for states from a certain interval, the
average advantage term V ?(s)−Q?(s, π(s)) in this interval is large. Proof of this lemma is deferred
of Section C.4.
Lemma C.3. Let `k = [k/2H , (k + 1)/2H), and K = {0 ≤ k < 2H : k mod 2 = 1}. Then for
k ∈ K, if policy π does not change its action at interval `k (that is, |{π(s) : s ∈ `k}| = 1), we have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.15. (14)

Next lemma shows that when the number of pieces in π is not too large, the distribution µπh is close
to uniform distribution for step 1 ≤ h ≤ H. Proof of this lemma is deferred of Section C.4
Lemma C.4. Let z(π) be the number of pieces of policy π. For k ∈ [2H ], define interval
`k = [k/2H , (k + 1)/2H). Let νh(k) = infs∈`k µ

π
h(s), If the initial state distribution µ is uni-

form distribution, then for any h ≥ 1,∑
0≤k<2H

2−H · νh(k) ≥ 1− 2h
z(π)

2H
. (15)

Now we present the proof for Theorem 4.3.

Proof of Theorem 4.3. For any k ∈ [2H ], consider the interval `k = [k/2H , (k + 1)/2H). Let K =
{k ∈ [AH ] : k mod 2 = 1}. If π does not change at interval `k (that is, |{π(s) : s ∈ `k}| = 1), by
Lemma C.3 we have ∫

s∈`k
(V ?(s)−Q?(s, π(s))) ds ≥ 0.15 · 2−H . (16)
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Let νh(k) = infs∈`k µ
π
h(s), then by advantage decomposition lemma (namely, Corollary C.2), we

have

η(π?)− η(π) =

∞∑
h=1

γh−1

(∫
s∈[0,1)

(V ∗(s)−Q?(s, π(s))) dµπh(s)

)

≥
H∑
h=1

γh−1

(∑
k∈K

∫
s∈`k

(V ∗(s)−Q?(s, π(s))) dµπh(s)

)

≥
H∑
h=1

γh−1

(∑
k∈K

∫
s∈`k

νh(k)(V ∗(s)−Q?(s, π(s))) ds

)

≥
H∑
h=1

γh−1

(∑
k∈K

0.15 · 2−H · νh(k)

)
.

By Lemma C.4 and union bound, we get∑
k∈K

2−H · νh(k) ≥ 1

2
− 2h

z(π)

2H
. (17)

For the sake of contradiction, we assume z(π) = o (exp(cH)/H), then for large enoughH we have,

1/2− 2Hz(π)

2H
≥ 0.3.

Consequently,

η(π?)− η(π) ≥
H∑
h=1

0.045γh−1 = 0.045 · 1− γH

1− γ
≥ 0.01

1− γ
.

Now, since η(π?) ≤ 1/(1 − γ), we have η(π) < 0.99η(π?). Therefore for near-optimal policy π,
z(π) = Ω (exp(cH)/H) .

C.4 Proofs of Lemma C.3 and Lemma C.4

In this section, we present the proofs of two lemmas used in Section C.2

Proof of Lemma C.3. Note that for any k ∈ K, s(H) = 1,∀s ∈ `k. Now fix a parameter k ∈ K.
Suppose π(s) = ai for s ∈ `k. Then for any s such that s(H+1) + i 6= 1, we have

V ?(s)−Q?(s, π(s)) ≥ γH − ε.

For H > 15, we have γH − ε > 0.3. Therefore,∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥
∫
s∈`k

0.3 · I[s(H+1) 6= 1− i] ds ≥ 0.3 · 2−H−1 = 0.15 · 2−H .

Proof of Lemma C.4. Now let us fix a parameterH and policy π. For every h, we prove by induction
that there exists a function ξh(s), such that

(a) 0 ≤ ξh(s) ≤ min{µπh(s), 1},

(b) infs∈`k ξh(s) = sups∈`k ξh(s), ∀k ∈ [AH ],

(c)
∫
s∈[0,1) dξh(s) ≥ 1− h · z(π)/2H−1.
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For the base case h = 1, we define ξh(s) = µπh(s) = 1 for all s ∈ [0, 1). Now we construct ξh+1

from ξh.

For a fixed k ∈ [2H ], define lk = k · 2−H , rk = (k + 1) · 2−H as the left and right endpoints of
interval `k. Let {x(i)k }2i=1 be the set of 2 solutions of equation

2x+ 2−H ≡ lk mod 1

where 0 ≤ x < 1, and we define y(i)k = x
(i)
k + 2−H mod 1. By definition, only states from the

set ∪2i=1[x
(i)
k , y

(i)
k ) can reach states in interval `k by a single transition. We define a set Ik = {i :

1 ≤ i ≤ 2, |{π(s) : s ∈ [x
(i)
k , y

(i)
k )}| = 1}. That is, the intervals where policy π acts unanimously.

Consequently, for i ∈ Ik, the set {s : s ∈ [x
(i)
k , y

(i)
k ), f(s, π(s)) ∈ `k} is an interval of length

2−H−1, and has the form

u
(i)
k

def
= [x

(i)
k + w

(i)
k · 2

−H−1, x
(i)
k + (w

(i)
k + 1) · 2−H−1)

for some integer w(i)
k ∈ {0, 1}. By statement (b) of induction hypothesis,

inf
s∈u(i)

k

ξh(s) = sup
s∈u(i)

k

ξh(s). (18)

Now, the density ξh+1(s) for s ∈ `k is defined as,

ξh+1(s)
def
=
∑
i∈Ik

1

2
· ξh(x

(i)
k + w

(i)
k · 2

−H−1)

The intuition of the construction is that, we discard those density that cause non-uniform behavior
(that is, the density in intervals [x

(i)
k , y

(i)
k ) where i 6∈ Ik). When the number of pieces of π is small,

we can keep most of the density. Now, statement (b) is naturally satisfied by definition of ξh+1. We
verify statement (a) and (c) below.

For any set B ⊆ `k, let (T π)
−1

(B) = {s ∈ S : f(s, π(s)) ∈ B} be the inverse of Markov
transition T π . Then we have,

(T πξh)(B)
def
= ξh

(
(T π)

−1
(B)

)
=

∑
i∈{1,2}

ξh

(
(T π)

−1
(B) ∩ [x

(i)
k , y

(i)
k )
)

≥
∑
i∈Ik

ξh

(
(T π)

−1
(B) ∩ [x

(i)
k , y

(i)
k )
)

=
∑
i∈Ik

∣∣∣(T π)
−1

(B) ∩ [x
(i)
k , y

(i)
k )
∣∣∣ ξh (x(i)k + w

(i)
k · 2

−H−1
)

(By Eq. (18))

=
∑
i∈Ik

|B|
2
ξh

(
x
(i)
k + w

(i)
k · 2

−H−1
)
,

where | · | is the shorthand for standard Lebesgue measure.

By definition, we have

ξh+1(B) =
∑
i∈Ik

|B|
2
ξh

(
x
(i)
k + w

(i)
k · 2

−H−1
)
≤ (T πξh)(B) ≤ (T πµπh)(B) = µπh+1(B),

which verifies statement (a).

For statement (c), recall that S = [0, 1) is the state space. Note that T π preserve the overall density.
That is (T πξh) (S) = ξh(S). We only need to prove that

(T πξh) (S)− ξh+1(S) ≤ h · z(π)/2H−1 (19)

and statement (c) follows by induction.
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By definition of ξh+1(s) and the induction hypothesis that ξh(s) ≤ 1, we have

(T πξh) (`k)− ξh+1(`k) ≤ (2− |Ik|)2−H .

On the other hand, for any s ∈ S, the set {k ∈ [2H ] : s ∈ ∪2i=1[x
(i)
k , y

(i)
k )} has cardinality 2, which

means that one intermittent point of π can correspond to at most 2 intervals that are not in Ik for
some k. Thus, we have∑

0≤k<2H

|Ik| ≥ 2H+1 −
∑

s:π−(s)6=π+(s)

∣∣∣{k ∈ [2H ] : s ∈ ∪2i=1[x
(i)
k , y

(i)
k )}

∣∣∣ ≥ 2H+1 − 2 · z(π).

Consequently

(T πξh) (S)− ξh+1(S) =
∑

0≤k<2H

((T πξh) (`k)− ξh+1(`k)) ≤ z(π)2−H+1,

which proves statement (c).

C.5 Sample Complexity Lower Bound of Q-learning

Recall that Theorem 4.3 says that in order to find a near-optimal policy by a Q-learning algorithm, an
exponentially large Q-network is required. In this subsection, we show that even if an exponentially
large Q-network is applied for Q learning, still we need to collect an exponentially large number
of samples, ruling out the possibility of efficiently solving the constructed MDPs with Q-learning
algorithms.

Towards proving the sample complexity lower bound, we consider a stronger family of Q-learning
algorithm, Q-learning with Oracle (Algorithm 3). We assume that the algorithm has access to a
Q-ORACLE, which returns the optimal Q-function upon querying any pair (s, a) during the training
process. Q-learning with Oracle is conceptually a stronger computation model than the vanilla
Q-learning algorithm, because it can directly fit the Q functions with supervised learning, without
relying on the rollouts or the previousQ function to estimate the targetQ value. Theorem C.5 proves
a sample complexity lower bound for Q-learning algorithm on the constructed example.

Algorithm 3 Q-LEARNING WITH ORACLE

Require: A hypothesis space Q of Q-function parameterization.
1: Sample s0 ∼ µ from the initial state distribution µ
2: for i = 1, 2, · · · , n do
3: Decide whether to restart the trajectory by setting si ∼ µ based on historical information
4: Query Q-ORACLE to get the function Q?(si, ·).
5: Apply any action ai (according to any rule) and sample si+1 ∼ f(si, ai).

6: Learn the Q-function that fit all the data the best:

Q← arg min
Q∈Q

1

n

n∑
i=1

(Q(si, ai)−Q?(si, ai))2 + λR(Q)

7: Return the greedy policy according to Q.

Theorem C.5 (Informal Version of Theorem C.7). SupposeQ is an infinitely-wide two-layer neural
networks, andR(Q) is `1 norm of the parameters and serves as a tiebreaker. Then, any instantiation
of the Q-LEARNING WITH ORACLE algorithm requires exponentially many samples to find a policy
π such that η(π) > 0.99η(π?).

Formal proof of Theorem C.5 is given in Appendix C.6. The proof of Theorem C.5 is to exploit the
sparsity of the solution found by minimal-norm tie-breaker. It can be proven that there are at most
O(n) non-zero neurons in the minimal-norm solution, where n is the number of data points. The
proof is completed by combining with Theorem 4.3.

C.6 Proof of Theorem C.5

A two-layer ReLU neural net Q(s, ·) with input s is of the following form,

Q(s, a) =

d∑
i=1

wi,a [kis+ bi]+ + ca, (20)
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where d is the number of hidden neurons. wi,a, ca, ki, bi are parameters of this neural net, where
ci,a, bi are bias terms. [x]+ is a shorthand for ReLU activation I[x > 0]x. Now we define the norm
of a neural net.
Definition C.6 (Norm of a Neural Net). The norm of a two-layer ReLU neural net is defined as,

d∑
i=1

|wi,a|+ |ki|. (21)

Recall that the Q-learning with oracle algorithm finds the solution by the following supervised
learning problem,

min
Q∈Q

1

n

n∑
t=1

(Q(st, at)−Q?(st, at))2 . (22)

Then, we present the formal version of theorem C.5.
Theorem C.7. LetQ be the minimal `1 norm solution to Eq. (22), and π the greedy policy according
to Q. When n = o(exp(cH)/H), we have η(π) < 0.99η(π?).

The proof of Theorem C.5 is by characterizing the minimal-norm solution, namely the sparsity of
the minimal-norm solution as stated in the next lemma.
Lemma C.8. The minimal-norm solution to Eq. (22) has at most 32n + 1 non-zero neurons. That
is, |{i : ki 6= 0}| ≤ 32n+ 1.

We first present the proof of Theorem C.7, followed by the proof of Theorem C.8.

Proof of Theorem C.7. Recall that the policy is given by π(s) = arg maxa∈AQ(s, a). For a Q-
function with 32n + 2 pieces, the greedy policy according to Q(s, a) has at most 64n + 4 pieces.
Combining with Theorem 4.3, in order to find a policy π such that η(π) > 0.99η(π?), n needs to be
exponentially large (in effective horizon H).

Proof of Lemma C.8 is based on merging neurons. Let xi = −bi/ki,wi = (wi,1, wi,2), and
c = (c1, c2). In vector form, neural net defined in Eq. (20) can be written as,

Q(s, ·) =

d∑
i=1

wi [ki(s− xi)]+ + c.

First we show that neurons with the same xi can be merged together.
Lemma C.9. Consider the following two neurons,

k1 [s− x1]+ w1, k2 [s− x2]+ w2.

with k1 > 0, k2 > 0. If x1 = x2, then we can replace them with one single neuron of the form
k′ [x− x1]+ w′ without changing the output of the network. Furthermore, if w1 6= 0,w2 6= 0, the
norm strictly decreases after replacement.

Proof. We set k′ =
√
|k1w1 + k2w2|1, and w′ = (k1w1 + k2w2)/k′, where |w|1 represents the

1-norm of vector w. Then, for all s ∈ R,

k′ [x− x1]+ w′ = (k1w1 + k2w2) [s− x1]+ = k1 [s− x1]+ w1 + k2 [s− x1]+ w2.

The norm of the new neuron is |k′|+ |w′|1. By calculation we have,

|k′|+ |w′|1 = 2
√
|k1w1 + k2w2|1 ≤ 2

√
|k1w1|1 + |k2w2|1

(a)

≤ 2
(√
|k1w1|1 +

√
|k2w2|1

)
≤ |k1|+ |w1|1 + |k2|+ |w2|1.

Note that the inequality (a) is strictly less when |k1w1|1 6= 0 and |k2w2|1 6= 0.

Next we consider merging two neurons with different intercepts between two data points. Without
loss of generality, assume the data points are listed in ascending order. That is, si ≤ si+1.

19



Lemma C.10. Consider two neurons

k1 [s− x0]+ w1, k2 [s− x0 − δ]+ w2.

with k1 > 0, k2 > 0. If si ≤ x0 < x0 + δ ≤ si+1 for some 1 ≤ i ≤ n, then the two neurons can
replaced by a set of three neurons,

k′ [s− x0]+ w′, k̃ [s− si]+ w̃, k̃ [s− si+1]+ (−w̃)

such that for s ≤ si or s ≥ si+1, the output of the network is unchanged. Furthermore, if δ ≤
(si+1 − si)/16 and |w1|1 6= 0, |w2|1 6= 0, the norm decreases strictly.

Proof. For simplicity, define ∆ = si+1 − si. We set

k′ =
√
|k1w1 + k2w2|1,

w′ = (k1w1 + k2w2)/k′,

k̃ =
√
|k2w2|1δ/∆,

w̃ = −k2w2δ/(∆k̃).

Note that for s ≤ si, all of the neurons are inactive. For s ≥ si+1, all of the neurons are active, and

k′w′(s− x0) + k̃w̃(s− si)− k̃w̃(s− si+1)

= (k1w1 + k2w2)(s− x0)− k2w2δ

= k1(s− x0)w1 + k2(s− x0 − δ)w2,

which means that the output of the network is unchanged. Now consider the norm of the two
networks. Without loss of generality, assume |k1w1|1 > |k2w2|1. The original network has norm
|k1|+ |w1|1 + |k2|+ |w2|1. And the new network has norm

|k′|+ |w′|1 + 2|k̃|+ 2|w̃|1 = 2
√
|k1w1 + k2w2|1 + 4

√
|k2w2|1δ/∆

(a)

≤ |k1|+ |w1|1 + |k2|+ |w2|1 +

(
4
√
|k2w2|1δ/∆−

1

2
(|k2|+ |w2|1)

)
,

where the inequality (a) is a result of Lemma F.1, and is strictly less when |w1|1 6= 0, |w2|1 6= 0.

When δ/∆ < 1/16, we have
(

4
√
|k2w2|1δ/∆− 1

2 (|k2|+ |w2|1)
)
< 0, which implies that

|k′|+ |w′|1 + 2|k̃|+ 2|w̃|1 < |k1|+ |w1|1 + |k2|+ |w2|1.

Similarly, two neurons with k1 < 0 and k2 < 0 can be merged together.

Now we are ready to prove Lemma C.8. As hinted by previous lemmas, we show that between two
data points, there are at most 34 non-zero neurons in the minimal norm solution.

Proof of Lemma C.8. Consider the solution to Eq. (22). Without loss of generality, assume that
si ≤ si+1. In the minimal norm solution, it is obvious that |wi|1 = 0 if and only if ki = 0.
Therefore we only consider those neurons with ki 6= 0, denoted by index 1 ≤ i ≤ d′.
Let Bt = {−bi/ki : 1 ≤ i ≤ d′, st < −bi/ki < st+1, ki > 0}. Next we prove that in the minimal
norm solution, |Bt| ≤ 15. For the sake of contradiction, suppse |Bt| > 15. Then there exists i, j
such that, st < −bi/ki < st+1, st < −bj/kj < st+1, |bi/ki − bj/kj | < (st+1 − si)/16, and
ki > 0, kj > 0. By Lemma C.10, we can obtain a neural net with smaller norm by merging neurons
i, j together without violating Eq. (22), which leads to contradiction.

By Lemma C.9, |Bt| ≤ 15 implies that there are at most 15 non-zero neurons with st < −bi/ki <
st+1 and ki > 0. For the same reason, there are at most 15 non-zero neurons with st < −bi/ki <
st+1 and ki < 0.

On the other hand, there are at most 2 non-zero neurons with st = −bi/ki for all t ≤ n, and there
are at most 1 non-zero neurons with −bi/ki < s1. Therefore, we have d′ ≤ 32n+ 1.
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C.7 Proof of Theorem 5.1

In this section we present the full proof of Theorem 5.1.

Proof. First we define the true trajectory estimator

η(s0, a0, a1, · · · , ak) =

k−1∑
j=0

γjr(sj , aj) + γkQ?(sk, ak),

the true optimal action sequence
a?0, a

?
1, · · · , a?k = arg max

a0,a1,··· ,ak
η(s0, a0, a1, · · · , ak),

and the true optimal trajectory
s?0 = s0, s

?
j = f(s?j−1, a

?
j−1),∀j > 1.

It follows from the definition of optimal policy that, a?j = π?(sj). Consequently we have

sk
(H−k+1) = sk

(H−k+2) = · · · = sk
(H) = 1.

Define the set G = {s : s(H−k+1) = s(H−k+2) = · · · = s(H) = 1}. We claim that the following
function satisfies the statement of Theorem 5.1

Q(s, a) = I[s ∈ G] · 2

1− γ
.

Since s?k ∈ G, and sk 6∈ G for sk generated by non-optimal action sequence, we have
Q(s?k, a) > Q?(s?k, a) ≥ Q?(sk, a) > Q(sk, a),

where the second inequality comes from the optimality of action sequence a?h. As a consequence,
for any (a0, a1, · · · , ak) 6= (a?0, a

?
1, · · · , a?k)

η̂(s0, a
?
0, a

?
1, · · · , a?k) > η(s0, a

?
0, a

?
1, · · · , a?k) ≥ η(s0, a0, a1, · · · , ak) > η̂(s0, a0, a1, · · · , ak).

Therefore, (â?0, â
?
1, · · · , â?k) = (a?0, a

?
1, · · · , a?k).

D Extension of the Constructed Family

In this section, we present an extension to our construction such that the dynamics is Lipschitz. The
action space is A = {0, 1, 2, 3, 4}. We define CLIP(x) = max{min{x, 1}, 0}.
Definition D.1. Given effective horizon H = (1 − γ)−1, we define an MDP M ′H as follows. Let
κ = 2−H . The dynamics is defined as

f(s, 0) = CLIP(2s), f(s, 1) = CLIP(2s− 1),

f(s, 2) = CLIP(2s+ κ), f(s, 3) = CLIP(2s+ κ− 1), f(s, 4) = CLIP(2s+ κ− 2).

Reward function is given by
r(s, 0) = r(s, 1) = I[1/2 ≤ s < 1]

r(s, 2) = r(s, 3) = r(s, 4) = I[1/2 ≤ s < 1]− 2(γH−1 − γH)

The intuition behind the extension is that, we perform the mod operation manually. The following
theorem is an analog to Theorem 4.2.
Theorem D.2. The optimal policy π? for M ′H is defined by,

π?(s) =



0, I[s(H+1) = 0] and 2s < 1,

1, I[s(H+1) = 0] and 1 ≤ 2s < 2,

2, I[s(H+1) = 1] and 2s+ θ < 1,

3, I[s(H+1) = 1] and 1 ≤ 2s+ θ < 2,

4, I[s(H+1) = 1] and 2 < 2s+ θ.

(23)

And the corresponding optimal value function is,

V ?(s) =

H∑
h=1

γh−1s(h) +

∞∑
h=H+1

γh−1
(

1 + 2(s(h+1) − s(h))
)

+ γH−1
(

2s(H+1) − 2
)
. (24)
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We can obtain a similar upper bound on the performance of policies with polynomial pieces.
Theorem D.3. Let MH be the MDP constructed in Definition D.1. Suppose a piecewise linear
policy π has a near optimal reward in the sense that η(π) ≥ 0.99 · η(π?), then it has to have at least
Ω (exp(cH)/H) pieces for some universal constant c > 0.

The proof is very similar to that for Theorem 4.3. One of the difference here is to consider the case
where f(s, a) = 0 or f(s, a) = 1 separately. Attentive readers may notice that the dynamics where
f(s, a) = 0 or f(s, a) = 1 may destroy the “near uniform” behavior of state distribution µπh (see
Lemma C.4). Here we show that such destroy comes with high cost. Formally speaking, if the clip
is triggered in an interval, then the averaged single-step suboptimality gap is 0.1/(1− γ).

Lemma D.4. Let `k = [k/2H/2, (k + 1)/2H/2). For k ∈ [2H/2], if policy π does not change its
action at interval `k (that is, |{π(s) : s ∈ `k}| = 1) and f(s, π(s)) = 0, ∀s ∈ `k or f(s, π(s)) =
1, ∀s ∈ `k. We have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ 0.1

1− γ
(25)

for large enough H .

Proof. Without loss of generality, we consider the case where f(s, π(s)) = 0. The proof for
f(s, π(s)) = 1 is essentially the same.

By elementary manipulation, we have

V ?(s)− V ?(0) ≥
H∑
i=1

γi−1s(i).

Let ŝ = f(s, π?(s)). It follows from Bellman equation (1) that

V ?(s) = r(s, π?(s)) + γV ?(ŝ),

Q?(s, π(s)) = r(s, π(s)) + γV ?(0).

Recall that we define ε = 2
(
γH−1 − γH

)
. As a consequence,

(V ?(s)−Q?(s, π(s))) > r(s, π?(s))− r(s, π(s)) + γ(V ?(ŝ)− V ?(0))

≥ −ε+ γ

H∑
i=1

γi−1ŝ(i).

Plugging into Eq (25), we have

1

|`k|

∫
s∈`k

(V ?(s)−Q?(s, π(s))) ds ≥ −ε+
1

|`k|

∫
s∈`k

(
H∑
i=1

γi

)
ŝ(i) ds

≥ − ε+

H∑
i=1

γi
(

1

|`k|

∫
s∈`k

ŝ(i) ds

)
≥ −ε+

γH/2 − γH

1− γ
.

Lemma 25 is proved by noticing for large enough H ,

−ε+
γH/2 − γH

1− γ
>

0.1

1− γ
.

Let D = {0, 1} for simplicity. For any policy π, we define a transition operator T̂ π , such that(
T̂ πµ

)
(Z) = µ ({s : p(s, a) ∈ Z, f(s, π(s)) 6∈ D) ,

and the state distribution induced by it, defined recursively by

µ̂π1 (s) = 1,

µ̂πh = T̂ πµπh−1.

22



We also define the density function for states that are truncated as follows,

ρ̂πh(s) = I[f(s, π(s)) ∈ D]µ̂πh (s) .

Following advantage decomposition lemma (Corollary C.2), the key step for proving Theorem D.3
is

η(π?)− η(π) ≥
∞∑
h=1

γh−1Es∼µ̂πh [V ?(s)−Q?(s, π(s))] +

∞∑
h=1

γhEs∼ρπh [V ?(s)−Q?(s, π(s))] .

(26)

Similar to Lemma C.4, the following lemma shows that the density for most of the small intervals is
either uniformly clipped, or uniformly spread over this interval.

Lemma D.5. Let z(π) be the number of pieces of policy π. For k ∈ [2H/2], define interval `k =
[k/2H/2, (k + 1)/2H/2). Let νh(k) = infs∈`k µ̂

π
h(s) and ωh(k) = infs∈`k ρ̂

π
h(s). If the initial state

distribution µ is uniform distribution, then for any h ≥ 1,

2H/2∑
k=0

2−H/2 · νh(k) +

h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k) ≥ 1− 2h
z(π) + 10

2H/2
. (27)

Proof. Omitted. The proof is similar to Lemma C.4.

Now we present the proof for Theorem D.3.

Proof of Theorem D.3. For any k ∈ [2H/2], consider the interval `k = [k/2H/2, (k + 1)/2H/2).. If
π does not change at interval `k (that is, |{π(s) : s ∈ `k}| = 1), by Lemma C.3 we have∫

s∈`k
(V ?(s)−Q?(s, π(s))) ds ≥ 0.075 · 2−H/2. (28)

By Eq (26), Eq (28) and Lemma (25), we have

η(π?)− η(π)

≥
H∑
h=1

γh−1

2H/2∑
k=0

0.075 · 2−H/2 · νh(k)

+

H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ
. (29)

By Lemma D.5, we get

2H/2∑
k=0

2−H/2 · νh(k) +

h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k) ≥ 1− 2h
z(π) + 10

2H/2
. (30)

For the sake of contradiction, we assume z(π) = o (exp(cH)/H), then for large enoughH we have,

1− 2
Hz(π) + 10

2H/2
> 0.8.

Consequently,

2H/2∑
k=0

2−H/2 · νh(k) > 0.8−
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k). (31)
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Plugging in Eq (29), we get

η(π?)− η(π)

≥
H∑
h=1

0.075γh−1

2H/2∑
k=0

2−H/2νh(k)

+

H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ
.

≥
H∑
h=1

0.075γh−1

0.8−
h−1∑
h′=1

2H/2∑
k=0

2−H/2 · ωh′(k)

+

H∑
h=1

2H/2∑
k=0

γh · 2−H/2 · ωh(k) · 0.1

1− γ

≥ 0.06
1− γH

1− γ
+

H∑
h=1

2H/2∑
k=0

·2−H/2 · ωh(k)

(
0.1γh

1− γ
− 0.075

H∑
h′=h

γh
′−1

)

≥ 0.06
1− γH

1− γ
+

H∑
h=1

2H/2∑
k=0

·2−H/2 · ωh(k)
γh−1

1− γ
(
0.1γ − 0.075

(
1− γH−h

))
When γ > 1/4, we have 0.1γ − 0.075(1− γH−h) > 0. As a consequence,

η(π?)− η(π) > 0.06
1− γH

1− γ
≥ 0.01

1− γ
.

Now, since η(π?) ≤ 1/(1 − γ), we have η(π) < 0.99η(π?). Therefore for near-optimal policy π,
z(π) = Ω (exp(cH)/H) .

E Omitted Details of Empirical Results in the Toy Example

E.1 Two Methods to Generate MDPs

In this section we present two methods of generating MDPs. In both methods, the dynamics p(s, a)
has three pieces and is Lipschitz. The dynamics is generated by connecting kinks by linear lines.

First, we have a uniformly random method, called RAND, where we independently generate two
piecewise linear functions for f(s, 0) and f(s, 1), by generating random positions for the kinks,
generating random outputs for the kinks, and connecting the kinks by linear lines.

In the second method, called SEMI-RAND, we introduce a bit more structure in the generation
process, towards increasing the chance to see the phenomenon. The functions f(s, 0) and f(s, 1)
have 3 pieces with shared kinks. We also design the generating process of the outputs at the kinks
so that the functions have more fluctuations. The reward for both of the two methods is r(s, a) =
s,∀a ∈ A. Figure 7 illustrates the dynamics of the generated MDPs from SEMI-RAND.

RAND method. In this method, the generated MDPs are with less structure. The details are shown
as follows.

• State space S = [0, 1).

• Action space A = {0, 1}.
• Number of pieces is fixed to 3. The positions of the kinks are generated by, xi ∼ U(0, 1)

for i = 1, 2 and x0 = 0, x1 = 1. The values are generated by x′i ∼ U(0, 1).

• The reward function is given by r(s, a) = s, ∀s ∈ S, a ∈ A.
• The horizon is fixed as H = 10.
• Initial state distribution is U(0, 1).

Figure 7 visualizes one of the RAND-generated MDPs with complex Q-functions.

SEMI-RAND method. In this method, we add some structures to the dynamics, resulting in a
more significant probability that the optimal policy is complex. We generate dynamics with fix and
shared kinks, generate the output at the kinks to make the functions fluctuating. The details are
shown as follows.
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• State space S = [0, 1).

• Action space A = {0, 1}.
• Number of pieces is fixed to 3. The positions of the kinks are generated by, xi = i/3, ∀0 ≤
i ≤ 3. And the values are generated by x′i ∼ 0.65× I[i mod 2 = 0] + 0.35× U(0, 1).

• The reward function is r(s, a) = s for all a ∈ A.
• The horizon is fixed as H = 10.
• Initial state distribution is U(0, 1).

Figure 7 visualizes one of the MDPs generated by SEMI-RAND method.

E.2 The Complexity of Optimal Policies in Randomly Generated MDPs

We randomly generate 103 1-dimensional MDPs whose dynamics has constant number of pieces.
We found that, 8.6% fraction of the 103 MDPs independently generated from the RAND method has
policies with more than 100 pieces, much larger than the number of pieces in the dynamics (which
is 4). Using the SEMI-RAND method, a 68.7% fraction of the MDPs has polices with more than
103 pieces. In Section E.1, we plot the histogram of the number of pieces of the Q-functions.

The histogram of number of pieces in optimal policy π? is plotted. As shown in Figure 8, even for
horizon H = 10, the optimal policy tends to have much more pieces than the dynamics.

Figure 8: The histogram of number of pieces in optimal policy π? in random method (left) and
semi-random method(right).

E.3 Implementation Details of Algorithms in Randomly Generated MDP

SEMI-RAND MDP The MDP where we run the experiment is given by the SEMI-RAND
method, described in Section E.1. We list the dynamics of this MDP in the following.

r(s, a) = s, ∀s ∈ S, a ∈ A,

f(s, 0) =


(0.131− 0.690) · x/0.333 + 0.690, 0 ≤ x < 0.333,

(0.907− 0.131) · (x− 0.333)/0.334 + 0.131, 0.333 ≤ x < 0.667,

(0.079− 0.907) · (x− 0.667)/0.333 + 0.907, 0.667 ≤ x,

f(s, 1) =


(0.134− 0.865) · x/0.333 + 0.865, 0 ≤ x < 0.333,

(0.750− 0.134) · (x− 0.333)/0.334 + 0.134, 0.333 ≤ x < 0.667,

(0.053− 0.750) · (x− 0.667)/0.333 + 0.750, 0.667 ≤ x,

Implementation details of DQN algorithm We present the hyper-parameters of DQN algorithm.
Our implementation is based on PyTorch tutorials6.

• The Q-network is a fully connected neural net with one hidden-layer. The width of the
hidden-layer is varying.

6https://pytorch.org/tutorials/intermediate/reinforcement_q_learning.html
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• The optimizer is SGD with learning rate 0.001 and momentum 0.9.

• The size of replay buffer is 104.

• Target-net update frequency is 50.

• Batch size in policy optimization is 128.

• The behavior policy is greedy policy according to the current Q-network with ε-greedy. ε
exponentially decays from 0.9 to 0.01. Specifically, ε = 0.01 + 0.89 exp(−t/200) at the
t-th episode.

Implementation details of MBPO algorithm For the model-learning step, we use `2 loss to train
our model, and we use Soft Actor-Critic (SAC) (Haarnoja et al., 2018) in the policy optimization
step. The parameters are set as,

• number of hidden neurons in model-net: 32,

• number of hidden neurons in value-net: 512,

• optimizer for model-learning: Adam with learning rate 0.001.

• temperature: τ = 0.01,

• the model rollout steps: M = 5,

• the length of the rollout: k = 5,

• number of policy optimization step: G = 5.

Other hyper-parameters are kept the same as DQN algorithm.

Implementation details of TRPO algorithm For the model-learning step, we use `2 loss to train
our model. Instead of TRPO (Schulman et al., 2015), we use PPO (Schulman et al., 2017) as policy
optimizer. The parameters are set as,

• number of hidden neurons in model-net: 32,

• number of hidden neurons in policy-net: 512,

• number of hidden neurons in value-net: 512,

• optimizer: Adam with learning rate 0.001,

• number of policy optimization step: 5.

• The behavior policy is ε-greedy policy according to the current policy network. ε expo-
nential decays from 0.9 to 0.01. Specifically, ε = 0.01 + 0.89 exp(−t/20000) at the t-th
episode.

Implementation details of Model-based Planning algorithm The perfect model-based planning
algorithm iterates between learning the dynamics from sampled trajectories, and planning with the
learned dynamics (with an exponential time algorithm which enumerates all the possible future
sequence of actions). The parameters are set as,

• number of hidden neurons in model-net: 32,

• optimizer for model-learning: Adam with learning rate 0.001.

Implementation details of bootstrapping The training time behavior of the algorithm is exactly
like DQN algorithm, except that the number of hidden neurons in the Q-net is set to 64. Other
parameters are set as,

• number of hidden neurons in model-net: 32,

• optimizer for model-learning: Adam with learning rate 0.001.

• planning horizon varies.
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F Technical Lemmas

In this section, we present the technical lemmas used in this paper.
Lemma F.1. For A,B,C,D ≥ 0 and AC ≥ BD, we have

A+ C +
1

2
(B +D) ≥ 2

√
AC +BD.

Furthermore, when BD > 0, the inequality is strict.

Proof. Note that A+B + 1
2 (C +D) ≥ 2

√
AC +

√
BD. And we have,(

2
√
AC +

√
BD

)2
−
(

2
√
AC +BD

)2
= 4
√
AC ·BD − 3BD ≥ BD ≥ 0.

And when BD > 0, the inequality is strict.
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