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Abstract
Reinforcement learning (RL) with value-based methods (e.g., Q-learning) has
shown success in a variety of domains. One challenge in applying Q-learning to
continuous-action RL problems, however, is the continuous action maximization
(max-Q) required for optimal Bellman backup. While it is common to restrict the
parameterization of the Q-function to be concave in actions to simplify the max-Q
problem, such a restriction might lead to performance degradation. Alternatively,
when the Q-function is parameterized with a generic feed-forward neural network
(NN), the max-Q problem can be NP-hard. In this work, we propose a CAQL
framework which minimizes the Bellman residual using Q-learning with one of
several plug-and-play action optimizers. In particular, leveraging the strides of
optimization theories in deep NN, we show that max-Q problem can be solved
optimally with mixed-integer programming (MIP)—when the Q-function has suf-
ficient representation power, this MIP-based optimization induces better policies
and is more robust than counterparts, e.g., CEM or GA, that approximate the max-
Q solution. To speed up inference of CAQL, we introduce the action function that
concurrently learns the optimal policy. To demonstrate the efficiency of CAQL we
compare it with state-of-the-art RL algorithms on benchmark continuous control
problems that have different degrees of action constraints and show that CAQL
significantly outperforms policy-based methods in heavily constrained environ-
ments.

1 Introduction
Reinforcement learning (RL) has shown success in a variety of domains such as games (Mnih et al.,
2013) and recommender systems (RSs) (Gauci et al., 2018). When the action space is finite, value-
based algorithms such as Q-learning (Watkins & Dayan, 1992), which implicitly finds a policy by
learning the optimal value function, are often very efficient because action optimization can be done
by exhaustive enumeration. By contrast, in problems, such as in robotics (Peters & Schaal, 2006),
with a continuous action space, policy-based algorithms, such as policy gradient (PG) (Sutton et al.,
2000; Silver et al., 2014) or cross-entropy policy search (CEPS) (Mannor et al., 2003; Kalashnikov
et al., 2018), which directly learn a return-maximizing policy, have proven more practical. Recently,
methods such as ensemble critic (Fujimoto et al., 2018) and entropy regularization (Haarnoja et al.,
2018) have been developed to improve the performance of policy-based RL algorithms.

Policy-based approaches require a reasonable choice of policy parameterization. In some continuous
control problems, Gaussian distributions over actions conditioned on some state representation is
used. However, in applications such as recommender systems (RSs), where actions often take form
of high-dimensional item-feature vectors, policies cannot typically be modeled by common action
distributions. Furthermore, the admissible action set in RL is constrained in practice, for example,
when actions must lie within a specific range for safety (Chow et al., 2018). In RSs, the admissible
actions are random functions of the state (Boutilier et al., 2018). In such cases, it is non-trivial to
define policy parameterizations that handle such factors. On the other hand, value-based algorithms
are well-suited to these settings, providing potential advantage over policy methods. Moreover, at
least with linear function approximations (Melo & Ribeiro, 2007), under reasonable assumptions, Q-
learning has been shown to converge to optimality, while such optimality guarantees for non-convex
policy-based methods are generally limited (Fazel et al., 2018). Empirical results also suggest that
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value-based methods are more data-efficient and less sensitive to hyper-parameter tuning (Quillen
et al., 2018). Of course, when the action space is large, exhaustive action enumeration in value-
based algorithms can be expensive—-one solution is to represent actions with continuous features
(Dulac-Arnold et al., 2015).

The main challenge in applying value-based algorithms to continuous-action domains is selecting
optimal actions. Previous work in this direction falls into three broad categories. The first solves
the inner maximization of the (optimal) Bellman residual loss using global nonlinear optimizers,
such as the cross-entropy method (CEM) for QT-Opt (Kalashnikov et al., 2018), gradient ascent
(GA) for Actor-Expert (Lim et al., 2018), and action discretization (Uther & Veloso, 1998; Smart
& Kaelbling, 2000; Lazaric et al., 2008). However, these approaches do not guarantee optimality.
The second approach restricts the Q-function parameterization so that the optimization problem
is tractable. For instance, wire-fitting (Gaskett et al., 1999; III & Klopf, 1993) approximates Q-
values piecewise-linearly over a discrete set of points, chosen to ensure the maximum action is
one of the extreme points. The normalized advantage function (NAF) (Gu et al., 2016) constructs
the state-action advantage function to be quadratic, hence analytically solvable. Parameterizing the
Q-function with an input-convex neural network (ICNN) (Amos et al., 2017) ensures it is concave.
These restricted functional forms, however, may lead to performance degradation if the domain does
not conform to the imposed structure. The third category replaces optimal Q-values with a “soft”
counterpart (Haarnoja et al., 2018): an entropy regularization term ensures that both the optimal Q-
function and the optimal policy have closed-form solutions. The Q-update is typically approximated
by sampling estimates, which can be computationally expensive. Moreover, the sub-optimality gap
of this soft policy scales with the interval of action space (Neu et al., 2017), which grows with the
dimensionality of action space.

Motivated by the shortcomings of the prior approaches, we propose Continuous Action Q-learning
(CAQL), a Q-learning framework for continuous actions in which the Q-function is modeled by a
generic feed-forward neural network. 1 Our contribution is two-fold. The CAQL method minimizes
the Bellman residual using Q-learning, using one of several “plug-and-play” action optimizers. We
show that “max-Q” optimization can be formulated as a mixed-integer programming (MIP) that
solves max-Q optimally—when the Q-function has sufficient representation power, we demonstrate
that MIP-based optimization induces better policies and is more robust than counterparts, CEM or
GA, that approximate the max-Q solution. Second, we compare CAQL with several state-of-the-art
RL algorithms on several benchmark continuous-control problems with varying degrees of action
constraints. Value-based CAQL is generally competitive, and outperforms policy-based methods in
heavily constrained environments, sometimes significantly.

2 Preliminaries
We consider an infinite-horizon, discounted Markov decision process (Puterman, 2014) with states
X , (continuous) action space A, reward function R, a transition kernel P , initial state distribution
β and discount factor γ ∈ [0, 1), all having the usual meaning. A (stationary, Markovian) policy π
specifies a distribution π(·|x) over actions to be taken at state x. Let ∆ be the set of such policies.
The expected cumulative return of π ∈ ∆ is J(π) := E[

∑∞
t=0 γ

trt | P,R, x0 ∼ β, π]. An optimal
policy π∗ satisfies π∗ ∈ arg maxπ∈∆ J(π).

The Bellman operator over Q-functions Q (state-action value functions), F [Q](x, a) = R(x, a) +
γ
∑
x′∈X P (x′|x, a) maxa′∈AQ(x′, a′), has unique fixed point Q∗(x, a) (Puterman, 2014), which

is the optimal Q-function Q∗(x, a) = E [
∑∞
t=0 γ

tR(xt, at) | x0 = x, a0 = a, π∗]. An optimal
(deterministic) policy π∗ can be extracted from Q∗: π∗(a|x) = 1{a = a∗(x)}, where a∗(x) ∈
arg maxaQ

∗(x, a).

For large or continuous state/action spaces, the optimal Q-function can be approximated, e.g., us-
ing a deep NN as in DQN (Mnih et al., 2013). In DQN, the value function Qθ is updated us-
ing the value label r + γmaxa′ Qθtarget(x′, a′), where Qθtarget is a target Q-function. Instead of
training these weights jointly, θtarget is updated in a separate iterative fashion using the previ-
ous θ for a fixed number of training steps, or by averaging θtarget ← τθ + (1 − τ)θtarget for
some small momentum weight τ ∈ [0, 1] (Mnih et al., 2016). DQN is off-policy—the tar-
get is valid no matter how the experience was generated. Typically, the loss is minimized over
mini-batches of past data (x, a, r, x′) ∈ B sampled from an experience replay buffer B (Lin &

1Result can be extended to handle convolutional NNs, but is omitted for brevity.
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Mitchell, 1992). One common loss function for training Qθ∗ is mean squared Bellman error:
minθ

∑|B|
i=1 (Qθ(xi, ai)− ri − γmaxa′ Qθtarget(x′i, a

′))
2
. Under this loss, RL can be viewed as `2-

regression ofQθ(·, ·) w.r.t. target labels r+γmaxa′ Qθtarget(x′, a′). We augment DQN, using double
Q-learning for more stable training (Hasselt et al., 2016), whose loss is:

min
θ

|B|∑
i=1

(
Qθ(xi, ai)− ri − γQθtarget(x′i, arg max

a′
Qθ(x

′
i, a
′))
)2

. (1)

A hinge loss can also be used in Q-learning, and has connections to the linear programming (LP)
formulation of MDP (Puterman (2014)). The weights of the optimal Q-network can be specified
as: minθ

1
|B|
∑|B|
i=1Qθ(xi, ai) + λ (ri + γmaxa′∈AQθ(x

′
i, a
′)−Qθ(xi, ai))+, where λ > 0 is a

tunable penalty weight w.r.t. constraint: r + γmaxa′∈AQθ(x
′, a′) ≤ Qθ(x, a), ∀(x, a, r, x′) ∈ B.

To stabilize training, as above, we replace the Q-network of the inner-maximization with the target
Q-network and the optimal Q-value with the double-Q label, giving (see Appendix A for details):

min
θ

1

|B|

N∑
i=1

Qθ(xi, ai) + λ
(
ri + γQθtarget(x′i, arg max

a′
Qθ(x

′
i, a
′))−Qθ(xi, ai)

)
+
. (2)

In this work we assume the Q-function approximation Qθ to be a feed-forward network (MLP).
Specifically, let Qθ be a K-layer feed-forward NN with state-action input (x, a) (where a is in a
d-dimensional real vector space) and hidden layers arranged according to the equations:

z1 = (x, a), ẑj = Wj−1zj−1 + bj−1, zj = h(ẑj), j = 2, . . . ,K, Qθ(x, a) := c>ẑK ,
2 (3)

where (Wj , bj) are the multiplicative and bias weights, c is the output weight of the Q-network,
θ =

(
c, {(Wj , bj)}K−1

j=1

)
are the weights of the Q-network, ẑj denotes pre-activation values at layer

j, and h(·) is the (component-wise) activation function. For simplicity, in the following analysis we
restrict our attention to the case when the activation functions are ReLU’s. We also assume that the
action space A is a d-dimensional `∞-ball B∞(a,∆) with some radius ∆ > 0 and center a.

3 Continuous Action Q-Learning Algorithm
Policy-based methods (Silver et al., 2014; Fujimoto et al., 2018; Haarnoja et al., 2018) have been
widely-used to handle continuous actions in RL. However, they suffer from several well-known
difficulties, e.g., (i) modeling high-dimensional action distributions, (ii) handling action constraints,
and (iii) data-inefficiency. Motivated by earlier work on value-based RL methods, such as QT-
Opt (Kalashnikov et al., 2018) and Actor-Expert (Lim et al., 2018), we propose Continuous Action
Q-learning (CAQL), a general framework for continuous-action value-based RL, in which the Q-
function is parameterized by a NN (Eq. 3). One novelty of CAQL is the formulation of the “max-Q”
problem, i.e., the inner maximization in (1) and (2), as a mixed-integer programming (MIP).

The benefit of the MIP formulation is that it guarantees that we find the optimal action (and its
true bootstrapped Q-value) when computing target labels (and at inference time). We show em-
pirically that this can induce to better performance, especially when the Q-network has sufficient
representation power. Moreover, since a MIP can readily model a wide range of combinatorial con-
straints (e.g., routing, scheduling, packing), it offers considerable flexibility to incorporate complex
action constraints in RL. That said, solving MIPs to optimality is computationally intensive. To
alleviate this, we develop methods to systematically reduce the computational demands of the inner
maximization—at the price of some approximation. In Sec. 3.2, we introduce the action function to
approximate the arg max-policy at inference time.

3.1 Plug-N-Play Max-Q Optimizers
When the Q-function is parameterized with a feed-forward ReLU NN (see Eq. (3)), the inner max-
imization in CAQL is generally non-convex and NP-hard (Tjeng et al., 2017). In this section, we
illustrate how this problem can be formulated as a MIP, which can be solved using off-the-shelf
optimization packages (e.g., SCIP (Gleixner et al., 2018), CPLEX (CPLEX, 2019), Gurobi (Gurobi,
2019)). In addition, we detail how approximate optimizers, specifically, gradient ascent (GA) and the
cross-entropy method (CEM), can trade optimality for speed in max-Q computation within CAQL.

2Without loss of generality, we simplify the NN by omitting output bias and output activation function.
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Mixed-Integer Programming (MIP) A trained feed-forward ReLU neural network can be mod-
eled via mixed-integer programming by formulating the nonlinear activation function at each indi-
vidual neuron with binary constraints. Specifically, for a ReLU with pre-activation function of form
z = max{0, w>x + b}, where x ∈ [L,U ] is a d-dimensional bounded input, w ∈ Rd, b ∈ R, and
L,U ∈ Rd are the weights, bias and lower-upper bounds respectively, consider the following set
with a binary variable ζ indicating whether the ReLU is active or not:

R(w, b, L, U) =

{
(x, z, ζ)

∣∣∣ z ≥ w>x+ b, z ≥ 0, z ≤ w>x+ b−M−(1− ζ), z ≤M+ζ,

(x, z, ζ) ∈ [L,U ]× R× {0, 1}

}
.

In this formulation both M+ = maxx∈[L,U ] w
>x + b and M− = minx∈[L,U ] w

>x + b can be
computed in linear time in d. These constraints ensure that z is the output of the ReLU: If ζ = 0,
then they are reduced to z = 0 ≥ w>x+ b, and if ζ = 1, then they become z = w>x+ b ≥ 0.

Extending this to model a multi-layer perceptron, the ReLU neural network in (3) can be constructed
by chaining copies of intermediate ReLU networks. Since the output layer is linear, the MIP objec-
tive is linear as well. More precisely, suppose the ReLU Q-network has mj neurons in each layer
j ∈ {2, . . . ,K}, then for any given state x ∈ X , the inner maximization problem maxaQθ (x, a)
can be reformulated as the following MIP:

max c>zK
s.t. z1 := a ∈ B∞(a,∆),

(zj−1, zj,i, ζj,i) ∈ R(Wj,i, bj,i, Lj−1, Uj−1), j ∈ {2, . . . ,K}, i ∈ {1, . . . ,mj},

where L1 = a − ∆, U1 = a + ∆ are the (action) input-bound vectors. Here, Wj,i ∈ Rmj and
bj,i ∈ R are the weights and bias of the neuron i in layer j. Furthermore, Lj , Uj are interval bounds
for the outputs of the neurons in layer j for j ≥ 2, and computing them can be done via interval
arithmetic or other propagation methods (Weng et al., 2018) from the initial action space bounds.
As detailed by Anderson et al. (2019), this can be further tightened with additional constraints, and
its implementation can be found in the tf.opt package described therein. We emphasize that the
MIP returns provably global optima, unlike GA and CEM. Even when interrupted with stopping
conditions such as a time limit, MIP often produces high-quality solutions in practice.

We note that Say et al. (2017) proposed a MIP formulation to solve a planning problem using a
non-linear state transition dynamics model learned by a neural network. While related, it differs
from the max-Q problem addressed here.

Gradient Ascent GA (Nocedal & Wright, 2006) is a simple first-order optimization method for
finding the (local) optimum of a differentiable objective function, such as a neural network Q-
function. At any state x ∈ X , given an initial action a0, the optimal action arg maxaQθ (x, a)
is computed iteratively by at+1 ← at + η∇aQθ(x, a), where η > 0 is a step size (either a tunable
parameter or computed using back-tracking line search (Nocedal & Yuan, 1998)). The process GA
repeats until convergence, |Qθ(x, at+1)−Qθ(x, at)| < ε, or a maximum iteration count is reached.

Cross-Entropy Method CEM (Rubinstein, 1999) is a derivative-free optimization algorithm. At
any given state x ∈ X , it samples a batch of N actions {ai}Ni=1 from A using a fixed distribution,
e.g., a Gaussian, and ranks the corresponding Q-values {Qθ(x, ai)}Ni=1. Using the top K < N
actions, it then updates the sampling distribution, e.g., using the sample mean and covariance to
update the Gaussian. This is repeated until convergence or a maximum iteration count is reached.

3.2 Action Function
In traditional Q-learning, the policy is “implemented” by acting greedily w.r.t. the learned Q-
function: π∗(x) = arg maxaQθ (x, a).3 However, computing the optimal action can be ex-
pensive in the continuous case, which may be especially problematic at inference time (e.g.,
when computational power is limited in, say embedded systems, or real-time response is crit-
ical). To mitigate the problem, we can use an action function πw : X → A, effectively a
trainable actor network, to approximate the greedy-action mapping π∗ w.r.t. Qθ. We train πw as
follows. Training data takes the form {(xi, q∗i )}|B|i=1, where q∗i = maxaQθ (xi, a) is the max-
Q label at state xi. Action function learning is then simply a supervised regression problem:

3Some exploration strategy may be incorporated as well.
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w∗ ∈ arg minw
∑|B|
i=1(q∗i −Qθ(xi, πw(xi)))

2. This is similar to the notion of “distilling” an optimal
policy from max-Q labels, as considered in Actor-Expert (Lim et al., 2018). Unlike that approach,
in which a separate stochastic policy network is jointly learned with the Q-function to maximize
the likelihood with the underlying optimal policy, our method simply learns a deterministic state-to-
action mapping to approximate arg maxaQθ (x, a)—this does not require distribution matching and
will generally be more stable. We note that the use of the action function in CAQL is an (optional)
computational convenience to accelerate data collection (e.g., in simulation) and inference.

4 Experiments on MuJoCo Benchmarks
To illustrate the effectiveness of the CAQL algorithms, in this section we compare their performance
with that from several state-of-the-art baseline methods on multiple domains. Regarding the choices
of baseline methods, we compare with (i) DDPG (Silver et al., 2014), (ii) TD3 (Fujimoto et al.,
2018), which are two popular policy-based deep RL algorithms, (iii) NAF (Gu et al., 2016), which
is a value-based method with action-quadratic Q-function. We also train CAQL with three different
max-Q optimizers, i.e., MIP, GA, and CEM, where the CAQL-CEM counterpart resembles QT-
Opt (Kalashnikov et al., 2018), and the CAQL-GA counterpart resembles Actor-Expert (Lim et al.,
2018), in order to investigate the amount of performance improvement that learning with optimal
Bellman residual via MIP (which corresponds to DDQN (Hasselt, 2010) with continuous actions)
provides over approximations with GA and CEM at the cost of additional computation overhead.

We evaluate CAQL on one classical control benchmark (i.e., Pendulum) and five challenging Mu-
JoCo benchmarks (i.e., Hopper, Walker2D, HalfCheetah, Ant, Humanoid). Different from most
previous experiments (for example that in the aforementioned work), in the following not only do
we evaluate the RL algorithms on domains with default action ranges, but also on the same do-
mains with smaller action ranges (see Table 3 in Appendix C for all the action ranges used in our
experiments). 4 The motivation of this setting is two-fold: (i) To simulate real-world problems
(Dulac-Arnold et al., 2019), where the restricted ranges represent the safe/constrained action sets;
(ii) To validate the hypothesis that action-distribution learning in policy-based methods is inept in
handling constraints, while CAQL does not have this issue. Considering the computational overhead
of MIP, we reduce the episode limit from 1000 steps to 200 steps and use a smaller neural network.
Both changes would lead to lower returns than that reported in existing RL experiments (Duan et al.,
2016). Details on the NN architecture and hyper parameters are described in Appendix C.

Performance evaluation is done periodically (once per 1000 training iterations) with a policy that
does not include exploration. Each measurement is an average of 10 episodic return values, each
generated from a separate random seed. To smoothen the learning curves, data points are averaged
over a sliding window of size 3. Similar to the setting in Actor-Expert (Lim et al., 2018), for efficient
evaluation the CAQL measurements are based on trajectories that are generated by following the
learned action function instead of following the optimal action w.r.t. the learned Q-function.

Table 1 shows 95-percentile for the mean and standard deviation of the final returns using the best
hyper-parameter setting. CAQL significantly outperforms NAF for most benchmarks, as well as
DDPG and TD3 on 10 out of 14 benchmarks. Over all the CAQL policies, the ones trained with MIP
are among the top-performing ones on all the experiments except Ant [-0.25, 0.25] and Humanoid
[-0.25, 0.25]. This verifies our earlier conjecture about CAQL that learning with optimal Bellman
residual will have better performance whenever the Q-function has sufficient representation power
(which is more likely in low dimensional tasks). Additionally, the performance of CAQL-MIP
policy has slightly lower variance than that trained with GA and CEM for most benchmarks. Table 2
shows 95-percentile for the mean and standard deviation of final returns over all 320 configurations
(32 hyper parameter combinations×10 random seeds). This result illustrates the sensitivity to hyper
parameters in each method. CAQL has the best performance on 13 out of 14 tasks, and in particular
policies trained with MIP are the best on 8 out of 14 tasks. This corroborates with the hypothesis that
value-based methods are generally more robust to hyper parameters than policy-based counterparts.

However, worth-noting that CAQL-MIP suffers from performance degradation in several high di-
mensional environments with large action ranges (e.g., Ant [-0.25, 0.25] and Humanoid [-0.25,
0.25]). In these experiments its performance is even worse than that of CAQL-GA or CAQL-CEM.

4Smaller action ranges usually corresponds to easier MIP problems in the max-Q computation. Unfortu-
nately due to high complexity of MIP in more complex environments such as Walker2D, HalfCheetah, Ant,
and Humanoid, we only run experiments with smaller action ranges than the default values.
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Environment [Action range] CAQL-MIP CAQL-GA CAQL-CEM NAF DDPG TD3

Pendulum [-0.66, 0.66] -339.5± 158.3 -342.4± 151.6 -394.6± 246.5 -449.4± 280.5 -407.3± 180.3 -437.5± 154.4
Pendulum [-1, 1] -235.9± 122.7 -237.0± 135.5 -236.1± 116.3 -312.7± 242.5 -252.8± 163.0 -236.7± 131.6
Pendulum [-2, 2] -143.2± 161.0 -145.5± 136.1 -144.5± 208.8 -145.2± 168.9 -146.2± 257.6 -142.0± 133.8
Hopper [-0.25, 0.25] 343.2± 62.6 329.7± 59.4 276.9± 97.4 237.8± 100.0 287.1± 76.9 291.2± 77.3
Hopper [-0.5, 0.5] 411.7± 115.2 341.7± 139.9 342.9± 142.1 248.2± 113.2 294.5± 108.7 316.2± 102.0
Hopper [-1, 1] 459.8± 144.9 427.5± 151.2 417.2± 145.4 245.9± 140.7 368.2± 139.3 245.9± 140.7
Walker2D [-0.25, 0.25] 276.3± 118.5 285.6± 97.6 283.7± 104.6 219.9± 120.8 270.4± 104.2 261.0± 87.9
Walker2D [-0.5, 0.5] 288.9± 118.1 295.6± 113.9 304.7± 116.1 233.7± 99.4 259.0± 110.7 323.4± 124.1
HalfCheetah [-0.25, 0.25] 394.8± 43.8 337.4± 60.0 339.1± 137.9 247.3± 96.0 330.7± 98.9 314.0± 117.6
HalfCheetah [-0.5, 0.5] 718.6± 199.9 736.4± 122.8 686.7± 224.1 405.1± 243.2 456.3± 238.5 225.6± 179.6
Ant [-0.1, 0.1] 402.3± 27.4 406.2± 32.6 378.2± 39.7 295.0± 44.2 374.0± 35.9 346.5± 56.9
Ant [-0.25, 0.25] 413.1± 60.0 443.1± 65.6 451.4± 54.8 323.0± 60.8 444.2± 63.3 473.9± 52.7
Humanoid [-0.1, 0.1] 405.7± 112.5 431.9± 244.8 397.0± 145.7 392.7± 169.9 494.4± 182.0 489.6± 137.7
Humanoid [-0.25, 0.25] 460.2± 143.2 622.8± 158.1 529.8± 179.9 374.6± 126.5 582.1± 176.7 459.6± 141.2

Table 1: 95-percentile for the mean and standard deviation of final returns with the best hyper-
parameter configuration. The full training curves are given in Figure 1 in Appendix D. CAQL sig-
nificantly outperforms NAF on most benchmarks, as well as DDPG and TD3 on 10/14 benchmarks.
The CAQL-MIP policies are among the top-performing CAQL policies on all the experiments except
Ant [-0.25, 0.25] and Humanoid [-0.25, 0.25] and have slightly lower variance.

Environment [Action range] CAQL-MIP CAQL-GA CAQL-CEM NAF DDPG TD3

Pendulum [-0.66, 0.66] -780.5± 345.0 -766.6± 344.2 -784.7± 349.3 -775.3± 353.4 -855.2± 331.2 -886.3± 313.6
Pendulum [-1, 1] -508.1± 383.2 -509.7± 383.5 -500.7± 382.5 -529.5± 377.4 -623.3± 395.2 -634.2± 381.0
Pendulum [-2, 2] -237.3± 487.2 -250.6± 508.1 -249.7± 488.5 -257.4± 370.3 -262.0± 452.6 -300.0± 505.4
Hopper [-0.25, 0.25] 292.7± 93.3 210.8± 125.3 196.9± 130.1 176.6± 109.1 196.4± 127.3 162.6± 112.5
Hopper [-0.5, 0.5] 332.2± 119.7 222.2± 138.5 228.1± 135.7 192.8± 101.6 218.3± 129.6 215.3± 111.8
Hopper [-1, 1] 352.2± 141.3 251.5± 153.6 242.3± 153.8 201.9± 126.2 248.0± 148.3 201.9± 126.2
Walker2D [-0.25, 0.25] 247.6± 109.0 213.5± 111.3 206.7± 112.9 190.5± 117.5 209.9± 103.6 202.2± 110.1
Walker2D [-0.5, 0.5] 213.1± 120.0 209.5± 112.5 209.3± 112.5 179.7± 100.9 210.8± 108.3 196.2± 111.6
HalfCheetah [-0.25, 0.25] 340.9± 110.2 234.3± 136.5 240.4± 143.1 169.7± 123.7 228.9± 118.1 230.3± 134.4
HalfCheetah [-0.5, 0.5] 399.6± 274.3 435.5± 273.7 377.5± 280.5 271.8± 226.9 273.8± 199.5 119.0± 129.3
Ant [-0.1, 0.1] 319.4± 69.3 327.5± 67.5 295.5± 71.9 260.2± 53.1 298.4± 67.6 239.2± 59.6
Ant [-0.25, 0.25] 362.3± 60.3 388.9± 63.9 392.9± 67.1 270.4± 72.5 381.9± 63.3 398.1± 84.4
Humanoid [-0.1, 0.1] 326.6± 93.5 235.3± 165.4 227.7± 143.1 261.6± 154.1 259.0± 188.1 283.1± 142.1
Humanoid [-0.25, 0.25] 267.0± 163.8 364.3± 215.9 309.4± 186.3 270.2± 124.6 347.3± 220.8 303.6± 135.0

Table 2: 95-percentile for the mean and standard deviation of final returns over all 320 configurations
(32 hyper parameter combinations×10 random seeds). The full training curves are given in Figure 2
in Appendix D. CAQL-MIP policies are least sensitive to hyper parameters on 8/14 benchmarks.

We speculate this is due to the fact that the small ReLU NN (32×16) doesn’t have enough represen-
tation power to accurately model the Q-functions in more complex tasks, and therefore optimizing
for the true max-Q value using an inaccurate function approximation indeed cripples the learning.

5 Conclusions and Future Work
In this work, we proposed Continuous Action Q-learning (CAQL), a general framework for han-
dling continuous actions in value-based RL, in which the Q-function is parameterized by a neural
network. Any nonlinear optimization methods, ranging from MIP (global optimization) to CEM or
GA (zeroth-order or first-order local optimization), that can optimize a generic deep neural network
of continuous variables, can be naturally integrated with the framework. We illustrated how the inner
maximization of Q-learning can be formulated as mixed-integer programming when the Q-function
is parameterized with a ReLU network. We showed that CAQL (with action function learning) is
a general Q-learning framework that can be reduced to many existing value-based methods such
as QT-Opt and Actor-Expert, when particular optimization methods are selected. Using several
benchmark continuous-control problems with varying degrees of action constraints, we showed that
the policy learned by CAQL-MIP generally performs better and is more robust to change of hy-
per parameters than the policies learned by CAQL-GA and CAQL-CEM. We also compared CAQL
with several state-of-the-art policy-based RL algorithms and illustrated that CAQL is competitive
with policy-based methods and has better performance especially in heavily-constrained environ-
ments. Future work includes (i) extending CAQL to the batch learning setting, in which the optimal
Q-function is trained using only offline data, (ii) speeding up the MIP computation of the max-Q
problem, to make CAQL more scalable, and (iii) applying CAQL to real-world continuous-action
RL problems.
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A Hinge Q-learning
Consider an MDP with states X , actions A, transition probability function P , discount factor γ ∈
[0, 1), reward function R, and initial state distribution β. We want to find an optimal Q-function by
solving the following optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a)

Q(x, a) ≥ R(x, a) + γ
∑
x′∈X

P (x′|x, a) max
a′∈A

Q(x′, a′), ∀x ∈ X, a ∈ A. (4)

The formulation is based on the LP formulation of MDP (see Puterman (2014) for more details).
Here the distribution p(x, a) is given by the data-generating distribution of the replay buffer B.
(We assume that the replay buffer is large enough such that it consists of experience from almost
all state-action pairs.) It is well-known that one can transform the above constrained optimization
problem into an unconstrained one by applying a penalty-based approach (to the constraints). For
simplicity, here we stick with a single constant penalty parameter λ ≥ 0 (instead of going for a
state-action Lagrange multiplier and maximizing that), and a hinge penalty function (·)+. With a
given penalty hyper-parameter λ ≥ 0 (that can be separately optimized), we propose finding the
optimal Q-function by solving the following optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a) + λ

(
R(x, a)+γ

∑
x′∈X

P (x′|x, a)max
a′∈A

Q(x′, a′)−Q(x, a)

)
+

. (5)

Furthermore, recall that in many off-policy and offline RL algorithms (such as DQN), samples in
form of {(xi, ai, ri, x′i)}

|B|
i=1 are independently drawn from the replay buffer, and instead of the op-

timizing the original objective function, one goes for its unbiased sample average approximation
(SAA). However, viewing from the objective function of problem (5), finding an unbiased SAA for
this problem might be challenging, due to the non-linearity of hinge penalty function (·)+. There-
fore, alternatively we turn to study the following unconstrained optimization problem:

min
Q

∑
x∈X,a∈A

p(x, a)Q(x, a) + λ
∑
x′∈X

P (x′|x, a)

(
R(x, a) + γmax

a′∈A
Q(x′, a′)−Q(x, a)

)
+

. (6)

Using the Jensen’s inequality for convex functions, one can see that the objective function in (6)
is an upper-bound of that in (5). Equality of the Jensen’s inequality will hold in the case when
transition function is deterministic. (This is similar to the argument of PCL algorithm.) Using
Jensen’s inequality one justifies that optimization problem (6) is indeed an eligible upper-bound
optimization to problem (5).

Recall that p(x, a) is the data-generation distribution of the replay buffer B. The unbiased SAA of
problem (6) is therefore given by

min
Q

1

N

N∑
s=1

Q(xi, ai) + λ

(
ri + γmax

a′∈A
Q(x′i, a

′)−Q(xi, ai)

)
+

, (7)

where {(xi, ai, ri, x′i)}Ns=1 are the N samples drawn independently from the replay buffer. In the
following, we will find the optimal Q function by solving this SAA problem. In general when the
state and action spaces are large/uncountable, instead of solving the Q-function exactly (as in the
tabular case), we turn to approximate the Q-function with its parametrized form Qθ, and optimize
the set of real weights θ (instead of Q) in problem (7).
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B Continuous Action Q-learning Algorithm

Algorithm 1 Continuous Action Q-learning

1: Initialize the Q-function parameters θ, target Q-function parameters θtarget, and action function
parameters w

2: Initialize replay buffer R
3: for i← 1, . . . ,M do
4: for t← 1, . . . , T do
5: Select action at = clip(πw(xt) +N (0, σ), l, u)
6: Execute action at and observe reward rt and new state xt+1

7: Store transition (xt, at, rt, xt+1) in R
8: for s← 1, . . . ,K do . K=20 by default
9: Sample a random minibatch of N transitions (xi, ai, ri, x

′
i) from R

10: Compute the optimal action for x′i in the minibatch:

a′i = arg max
a′

Qθ(x
′
i, a
′)

11: Compute TD targets for the minibatch:

qi = ri + γQθtarget(x′i, a
′
i)

12: Update the Q-function parameters:

θ ← arg min
θ

1

N

N∑
i=1

(Qθ(xi, ai)− qi)2

13: Update the action function parameters:

w ← arg min
w

1

N

N∑
i=1

(Qθ(x
′
i, a
′
i)−Qθ(x′i, πw(x′i)))

2

14: Update the target Q-function parameters:

θtarget ← τθ + (1− τ)θtarget

15: Decay the Gaussian noise:

σ ← λσ, λ ∈ [0, 1]
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C Experimental Details
We use a two hidden layer neural network with ReLU activation (32 units in the first layer and 16
units in the second layer) for both the Q-function and the action function. The input layer for the
Q-function is a concatenated vector of state representation and action variables. The Q-function
has a single output unit (without ReLU). The input layer for the action function is only the state
representation. The output layer for the action function has d units (without ReLU), where d is
the action dimension of a benchmark environment. We use SCIP 6.0.0 (Gleixner et al., 2018) for
the MIP solver. A time limit of 60 seconds and a optimality gap limit of 10−4 are used for all
experiments.

Environment State dimension Action dimension Action ranges
Pendulum 3 1 [-2, 2], [-1, 1], [-0.66, 0.66]
Hopper 11 3 [-1, 1], [-0.5, 0.5], [-0.25, 0.25]
Walker2D 17 6 [-0.5, 0.5], [-0.25, 0.25]
HalfCheetah 17 6 [-0.5, 0.5], [-0.25, 0.25]
Ant 111 8 [-0.25, 0.25], [-0.1, 0.1]
Humanoid 376 17 [-0.25, 0.25], [-0.1, 0.1]

Table 3: Benchmark Environments. Various action bounds are tested from the default one to smaller
ones. The action range in bold is the default one. For high-dimensional environments such as
Walker2D, HalfCheetah, Ant, and Humanoid, we use action ranges smaller than the default (i.e.,
[-1, 1]) due to the long computation time for MIP. A smaller action bound results in a MIP that
solves faster.

Hyper Parameter Value(s)
Discount factor 0.99
Exploration policy N (0, σ = 1)
Exploration noise (σ) decay 0.9995, 0.9999
Exploration noise (σ) minimum 0.025
Soft target update rate (τ ) 0.001
Replay memory size 105

Mini-batch size 64
Q-function learning rates 0.001, 0.0005, 0.0002, 0.0001
Action function learning rates 0.001, 0.0005, 0.0002, 0.0001
Neural network optimizer Adam

Table 4: All methods (CAQL(+ MIP, GA, CEM), NAF, DDPG, TD3) use the same hyper parameters.
We sweep over the Q-function learning rates, action function learning rates, and exploration noise
decays.
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D Additional Experimental Results
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(a) Pendulum [-0.66, 0.66]
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(b) Pendulum [-1.0, 1.0]
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(c) Pendulum [-2.0, 2.0]
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(d) Hopper [-0.25, 0.25]
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(e) Hopper [-0.5, 0.5]
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(f) Hopper [-1.0, 1.0]
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(g) Walker2D [-0.25, 0.25]
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(h) Walker2D [-0.5, 0.5]
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(i) HalfCheetah [-0.25,
0.25]
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(j) HalfCheetah [-0.5, 0.5]
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(k) Ant [-0.1, 0.1]
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(l) Ant [-0.25, 0.25]
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(m) Humanoid [-0.1, 0.1]
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(n) Humanoid [-0.25,0.25]

Figure 1: Mean cumulative reward over 10 random seeds. Shaded area is± standard deviation. Data
points are average over a sliding window of size 3. The length of an episode is limited to 200 steps.
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(a) Pendulum [-0.66, 0.66]
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(b) Pendulum [-1.0, 1.0]
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(c) Pendulum [-2.0, 2.0]
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(d) Hopper [-0.25, 0.25]
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(e) Hopper [-0.5, 0.5]
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(f) Hopper [-1.0, 1.0]
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(g) Walker2D [-0.25, 0.25]
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(h) Walker2D [-0.5, 0.5]
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(i) HalfCheetah [-0.25,
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(j) HalfCheetah [-0.5, 0.5]
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(k) Ant [-0.1, 0.1]
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(l) Ant [-0.25, 0.25]
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(m) Humanoid [-0.1, 0.1]

0 100 200 300 400 500
Training Steps (1e3)

100

200

300

400

500

600 cem
ddpg
ga
mip
naf
td3

(n) Humanoid [-0.25,0.25]

Figure 2: Mean cumulative reward over all 320 configurations (32 hyper parameter combinations×
10 random seeds). Shaded area is ± standard deviation. Data points are average over a sliding
window of size 3. The length of an episode is limited to 200 steps.
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