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Abstract

Motivated by the large state and/or action space in recent applications in reinforce-
ment learning, much progress has been made on approximate dynamic program-
ming which aims to approximate the policy evaluation and policy greedy step
and hence improve the efficiency of the learning procedure. Most of the existing
analysis relies on a constant concentrability coefficient assumption, which could
easily be violated with a large state and/or action space. In this paper, we propose
a novel theoretical framework with different analysis based on `1-norm. Our
analysis is based on RKHS nonparametric regression with dependent noise. We
prove that our proposed algorithm converges linearly to the optimal solution in
supremum norm up to a statistical error. Moreover, we show how our framework
can be applied to two-player zero-sum games and regularized MDP problem.

1 Introduction

Reinforcement learning (RL) [43] with function approximation, especially with approximation by
deep neural networks, has huge empirical success [24, 40, 41]. As an efficient and stable method,
batch reinforcement learning (batch RL) provides an elegant theoretical framework for understanding
the statistical aspects of RL algorithms with value function approximation. See [20] for an overview.
In batch RL, we collect a batch of data and use this fixed dataset to learn an optimal policy. One
of the most important algorithms is fitted Q-iteration (FQI) algorithm [11, 33], where we obtain a
sequence of value functions by regression. Specifically, in each iteration, we collect n samples and fit
a least square regression to update the value function.

Although this framework successfully provides theoretical analysis for various algorithms, it often
requires assumptions on the distribution shift. Specifically, define the concentrability coefficient as
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where the ⌧ -weighted `

p

norm is defined as kfk
p,⌧

=

⇥ R |f(x)|p⌧(dx)⇤1/p. Most of the existing
works assume that this concentrability coefficient is an absolute constant. Here ⌧ is the data generating
distribution, and ⌫ is some admissible distribution, which means that this distribution can be generated
in an MDP by following some policy for several time stages. Intuitively, this concentrability coefficient
assumption requires that any admissible distribution is not that far away from the distribution the
data is generated (i.e., the distribution shift is mild). However, when the state and/or action space is
large, it is hard to establish an upper bound on these coefficients without extra information of the
underlying MDP. In [26], the authors provide several examples where this concentrability coefficient
is well controlled. However, these are mostly carefully constructed toy problems in a tabular setting
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with some underlying assumptions on the MDP. In contrast, in [9], the authors show that in general,
the worst case concentrability coefficient will scale with |S ⇥A|. This makes it intolerable as the
size of state space is enormous, and it weakens the value of the analysis based on the concentrability
coefficient assumption. Moreover, they show that no algorithm can achieve polynomial sample
complexity without any assumptions on MDP; hence the concentrability coefficient on worst case
MDP can be exponential in horizon (Theorem 4 in [9]).

As a different approach, in this paper we establish a supremum norm convergence result for these
algorithms when the value functions are approximated by an RKHS. Specifically, we propose to
solve the MDP problem using approximate modified policy iteration (AMPI, [37]) algorithm where
the approximation policy evaluation is obtained by a nonparametric RKHS regression in Hölder
space. We prove the supremum norm convergence of our algorithm where the error rate consists of
statistical error and optimization error. The optimization error converges to zero in a linear rate, and
the statistical error follows from the analysis on RKHS regression [52]. However, different from [52],
in our case the error term is dependent on the state and action space, imposing more difficulties on
quantifying this approximation error. Moreover, we show the complexity of the sampling procedure
of our algorithm explicitly. Finally, we show that our proposed framework can be naturally applied to
two-player zero-sum games and regularized MDP problem with both entropy and KL-regularization.

Our main contributions are as follow. Firstly, we establish a supremum norm statistical rate of
convergence for batch RL with a different analysis based on `1-norm. This contributes to the
theoretical analysis of reinforcement learning. Secondly, our theoretical framework is general and
can be readily modified to handle a two-player zero-sum game, regularized MDP with continuous
action space, etc. Besides, our theory shed new light on the design of batch RL algorithms. It is
preferred to construct value estimators with `1-norm statistical rates. In statistics literature, various
techniques such as de-biasing [46, 18, 56, 29] are proposed for controlling `1-norm errors, which
might be used in batch RL.

2 Background

In this section, we introduce the background of reinforcement learning and RKHS.

2.1 Reinforcement Learning

A Markov decision process (MDP) can be represented by (S,A, P, �, r), where S is the state space,
A is the action space, P : S ⇥A ! P(S) is the transition probability distribution where we denote
P(X ) as the set of probability distributions over X for any X , � 2 (0, 1) is the discounted factor, and
r : S ⇥A ! R is the reward function. Throughout this paper we assume that the state space is given
by S = [0, 1]

d with dimension d, the action space A is finite and the reward function is bounded:
|r(s, a)|  R

max

. A policy is a mapping ⇡ : S ! P(A) that specifies the action that an agent will
take at state s. Given a fixed policy ⇡, the state- and action-value functions of ⇡ are defined as
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to solve the MDP problem include policy iteration (PI) and value iteration (VI). A unified general-
ization of these two approaches is called modified policy iteration (MPI, [32]) with the algorithm
summarized as below.

⇡
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The first step in (3) is the policy greedy step, and the second step is the policy evaluation step. Both
policy iteration and value iteration are special cases of (3). When m = 1 it corresponds to value
iteration and m = 1 corresponds to policy iteration.

2.2 Reproducing Kernel Hilbert Space

A reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions on some nonempty set X
with evaluation function given by L

x

: f 7! f(x). We say that H is an RKHS if for any x 2 X , the
evaluation function L
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is a bounded operator, i.e. there exists some constant M
x
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that |L
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kfkH for any f 2 H. Here kfkH =

phf, fiH is the norm induced by
the inner product. Although this definition is straightforward, a more practical definition comes from
the Riesz representation theorem which says that for all x 2 X there exists a unique element K
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iH. This motivates the definition of reproducing kernel K : X ⇥X ! R
with K(x, y) = hK
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iH. From the definition it is straightforward to verify that this reproducing
kernel is symmetric: K(x, y) = K(y, x), and positive definite:
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other hand, according to the Moore-Aronszajn theorem, with a symmetric and positive definite kernel
K, we can define a unique RKHS on X with K as the reproducing kernel.

We then consider the square integrable function space L
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3 Approximate Modified Policy Iteration

In most of the recent applications in MDP, the state and/or action space are usually large, and therefore
both policy iteration, value iteration and modified policy iteration algorithms are slow since they need
to loop over the whole state and/or action space. Moreover, it is usually impossible to store the whole
state and/or action space in memory without function approximation. As a result, an approximate
version of the algorithm has been proposed to improve the efficiency of the learning procedure,
including approximate value iteration (AVI) [5, 16, 11, 26] and approximate policy iteration (API)
[5, 25, 21]. Next, similar as that MPI generalize VI and PI as reviewed in Section 2.1, we can
generalize AVI and API as an approximate modified policy iteration (AMPI) algorithm as proposed
in [37]. A general version of AMPI is given by
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The first step in (4) is approximate policy greedy step with greedy step error ✏0
k

. This means that
T
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Q
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⇡kQk�1
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0
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for any ⇡. The second step is approximate policy evaluation step with
evaluation step error ✏

k

. In this paper, we consider the AMPI-Q algorithm in [37] and work with
the action-value function Q. Here ✏

0
k

= 0 and ✏

k

corresponds to the approximation error by using
a function in RKHS to update the Q function. In the following, we first introduce the function
class in Section 3.1, and then propose the algorithm for finite and infinite m in Section 3.2 and 3.3,
respectively.
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3.1 Function Class

Suppose F is an RKHS defined on the state space S with inner product h·, ·iF and norm k · kF .
According to the definition of RKHS, for all s 2 S, we have |f(s)|  M

s

· kfkF for any f 2 F
where M

s

is a constant depending on s. Next, we denote the function class on state-action space as
follow:

H = FA
= {f : S ⇥A ! R : f(·, a) 2 F for any a 2 A}.

Define the inner product on H as hf, giH =

P

a2A
⌦

f(·, a), g(·, a)↵F , and the norm on H as
kfk2H =

P

a2A kf(·, a)k2F . We can verify that for all s 2 S and a 2 A we have
|f(s, a)|  M

s

· kf(·, a)kF  M

s

· kfkH.

This shows that the function class H = FA is also an RKHS with inner product defined above. Note
that the definition of inner product and norm on H may not be unique. Throughout this paper we will
assume the state space is given by S = [0, 1]

d where d is the dimension. In the following, we denote
X = S ⇥A as the state-action space, and x = (s, a) as a realization of state-action pair. Denote ⌧ as
some fixed distribution over X . We will use this H = FA as the RKHS for our proposed algorithms.

Throughout the paper we will use the following definition of ↵-Hölder function space
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where f

(b↵c)
(x) denotes the b↵cth derivative of f . We are now ready for the algorithms.

3.2 Implementation of AMPI Algorithm for Finite m.

We start from an initial action-value function Q

0

. In each iteration k we first sample n i.i.d. state
action pairs (s(0)
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) from a fixed distribution ⌧ 2 P(S⇥A) as mentioned at the end of Section 3.1,
and then for each observation i we generate a rollout of size m, according to the current action-value
function Q
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The overall algorithm is summarized in Algorithm 1.
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Algorithm 1 Approximate modified policy iteration with RKHS regression
Input: Initial estimator Q

0

, number of iteration K, function class H, number of samples n.
for k = 0, 1, 2...,K � 1 do

Sample n i.i.d. states and actions
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Compute the greedy policy with respect to Q
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Output: Policy ⇡

K
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K

.

3.3 Implementation of AMPI Algorithm with m = 1.

With m = 1 which corresponds to the policy iteration, Algorithm 1 fails since we cannot generate
rollouts with infinite size in practice. Here we adopt the regularized policy iteration algorithm
proposed in [12]. We first define the empirical Bellman operator. Suppose we have n i.i.d data
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). Following the suggestions of [12], we propose two methods:
Regularized Least Squares Temporal Difference Learning (LSTD) and Regularized Bellman Residual
Minimization (BRM). We detail the first one as follow and put the second on in supplementary
material. We refer to [12] for the detailed discussion.

The Least Squares Temporal Difference Learning (LSTD) algorithm is proposed in [7] where we
aim to find the fixed point of the equation Q = ⇧
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With these two regularized approaches, we are ready for our algorithm for policy iteration. We
start from some an initial Q

0

and in each iteration k we sample n i.i.d data
�
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, r

i

, s

0
i

)

 

n
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as
mentioned before. This step corresponds to the sampling procedure in Algorithm 1 with size m = 1.
We then perform the approximate policy evaluation step as in (16) or (9) to update Q

k+1. Note that
since the function class is an RKHS, we can obtain closed form solution to (16) and (9). See Theorem
10 in [12]. Finally, the policy update is obtained by policy greedy with respect to Q

k+1 as before.
The overall algorithm is summarized in Algorithm 2 in the supplementary material.

4 Theoretical Results

In this section, we provide a theoretical result for our proposed algorithm. We start by stating some
mild assumptions on the function class H and ⇥

↵

(L) as defined in Section 3.1. Recall that the kernel
K has the eigendecomposition K(x, y) =

P1
j=1

⌘
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'
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(y) as in Section 2.2.
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Assumption 1. The eigenvalues of the kernel K satisfy ⌘

j
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�2↵/d

.

Assumption 2. The eigenfunctions of the kernel K are bounded: |'
j

(x)|  C for all j and x 2 X .

Moreover, let �(x, y) be a distance measure on X , we have the Lipschitz property |'
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(y)| 
Cj · �(x, y) for all j and x, y 2 X .

Assumption 3. For any Q 2 H and any policy ⇡, we have that (T

⇡

Q)

m 2 ⇥

↵

(L) and (T

⇡

Q)

m 2 H
where T

⇡

is the Bellman operator with respect to ⇡.

Assumption 4. The sampling density ⌧ is lower bounded from 0 on the support.

Assumption 1 and 2 are standard assumptions in RKHS function spaces. For example, these two
conditions are satisfied for the Matérn kernel with smoothness index (↵�d/2) expanded with respect
to the Fourier basis where d is the dimension of X . Since in our case X involves both state and
action space, we can define a metric on both of them and use product metric to construct the distance
measure �(x, y). This distance measure can then be used to construct the Matérn kernel. See [6, 53]
for details. For Assumption 3, the first part is a mild condition on the function class ⇥

↵

(L) so
that it is rich enough. According to the definition of the Bellman operator (2), we can see that this
condition is satisfied if both the transition probability distribution and the reward function of the
MDP are sufficiently smooth. See [55] for more detailed discussions. The second part corresponds
to Assumption A6 in [12] (no function approximation error). As argued in [12], this assumption
is standard and is satisfied for RKHS with universal kernels. This additional assumption does not
weaken the contribution of our proposed analysis. Assumption 4 is required so that the samples cover
the whole space on the support. It is in in the same spirit as the constant concentrability condition.
However, in Assumption 4 we do not take the supreme over the policies, which is required in the
constant concentrability condition (1). We are now ready for our main theorem for both finite and
infinite m. The following Theorem 5 quantifies the error propagation of the algorithm.
Theorem 5 (error propagation). For large enough n, after K iterations of Algorithm 1 or 2, with
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In order to quantify the first term (one step approximation error) in (10), we adopt the theoretical
analysis in RKHS regression in [52]. However, in [52] the authors assume i.i.d Gaussian noise
and the noise is independent with the covariate x, whereas in our case the noise is given by w

i

=

y

i

� (T

⇡k+1

)

m

Q

k

�

s

(0)

i

, a

(0)

i

�

, and it is dependent with the state action pair
�

s

(0)

i

, a

(0)

i

�

. This imposes
additional difficulty on the proof. The following Theorem 6 quantifies one step approximation error.
Theorem 6 (one step approximation error). Suppose Assumptions 1 - 3 are satisfied. Set � as

� = c

0

·
⇣

log n

n

⌘

2↵
2↵+d

. (11)

For large enough n, with probability at least 1� n

�4

we have

�

�

Q

k+1

� (T

⇡k+1

)

m

Q

k

�

�

1  C ·
⇣

log n

n

⌘

↵
2↵+d

, (12)

for any k and for some constant c

0

and C depends on L,R

max

, �, and ↵.

From Theorem 5 we see that the convergence rate of the algorithm consists of two parts. The first
term in (10) is the statistical error with the explicit rate given by (12) in Theorem 6. The second term
in (10) is the optimization error which converges to zero in linear rate with respect to the number of
iterations. Suppose the number of iteration K satisfies

K �
h

logC +

↵

2↵+ d

log(log n/n)

i

/ log(1/�)

with some constant C, then the convergence rate in (10) is dominated by the statistical error part.
According to (11) and (12), the convergence rate (up to logarithm term) under supremum norm is
given by n

�↵/(2↵+d), which matches the minimax rate of convergence in Hölder class [57, 8]. Our
analysis provides an upper bound of the supremum norm of the error term, which is a stronger result
compared to the literature which mostly focuses on `

p

norm. The proof of Theorem 5 and 6 are
provided in supplementary materials.
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[26] Rémi Munos. Performance bounds in l p-norm for approximate value iteration. SIAM journal

on control and optimization, 46(2):541–561, 2007.
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