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Abstract

We consider the problem of unconstrained minimization of a smooth objective func-
tion in Rd in setting where only function evaluations are possible. We propose and
analyze stochastic zeroth-order method with heavy ball momentum. In particular,
we propose, SMTP, a momentum version of the stochastic three-point method (STP)
[1]. We show new complexity results for non-convex, convex and strongly convex
functions. We test our method on a collection of learning continuous control tasks
on several MuJoCo [2] environments with varying difficulty and compare against
STP, other state-of-the-art derivative-free optimization algorithms and against pol-
icy gradient methods. SMTP significantly outperforms STP and all other methods
that we considered in our numerical experiments. Our second contribution is SMTP
with importance sampling, dubbed SMTP_IS. We provide convergence analysis of
this method for non-convex, convex and strongly convex objectives.

1 Introduction

In this paper, we consider the following minimization problem

min
x∈Rd

f(x), (1)

where f : Rd → R is "smooth" but not necessarily a convex function in a Derivative-Free Opti-
mization (DFO) setting where only function evaluations are possible. The function f is bounded
from below by f(x∗) where x∗ is a minimizer. Lastly and throughout the paper, we assume that f is
L-smooth.
Assumption 1.1. (L-smoothness) We say that f is L-smooth if ‖∇f(x)−∇f(y)‖2 ≤ L‖x− y‖2
for all x, y ∈ Rd.

DFO. In DFO setting [3, 4], the derivatives of the objective function f are not accessible. That is
they are either impractical to evaluate, noisy (function f is noisy) [5] or they are simply not available
at all. In standard applications of DFO, evaluations of f are only accessible through simulations of
black-box engine or software as in reinforcement learning and continuous control environments [2].
This setting of optimization problems appears also in applications from computational medicine [6]
and fluid dynamics [7–9] to localization [10, 11] and continuous control [12, 13] to name a few.
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The literature on DFO for solving (1) is long and rich. The first approaches were based on deterministic
direct search (DDS) and they span half a century of work [14–16]. However, for DDS methods
complexity bounds have only been established recently by the work of Vicente and coauthors [17, 18].
In particular, the work of Vicente [17] showed the first complexity results on non-convex f and the
results were extended to better complexities when f is convex [18]. However, there have been several
variants of DDS, including randomized approaches [19–24]. Only very recently, complexity bounds
have also been derived for randomized methods [25–29]. For instance, the work of [25, 29] imposes
a decrease condition on whether to accept or reject a step of a set of random directions. Moreover,
[30] derived new complexity bounds when the random directions are normally distributed vectors
for both smooth and non-smooth f . They proposed both accelerated and non-accelerated zero-order
(ZO) methods. Accelerated derivative-free methods in the case of inexact oracle information was
proposed in [31]. An extension of [30] for non-Euclidean proximal setup was proposed by Gorbunov
et. al. [32] for the smooth stochastic convex optimization with inexact oracle.

More recently and closely related to our work, Bergou et. al. [1] proposed a new randomized direct
search method called Stochastic Three Points (STP). At each iteration k STP generates a random
search direction sk according to a certain probability law and compares the objective function at three
points: current iterate xk, a point in the direction of sk and a point in the direction of −sk with a
certain step size αk. The method then chooses the best of these three points as the new iterate:

xk+1 = argmin{f(xk), f(xk + αksk), f(xk − αksk)}.

Momentum. Heavy ball momentum1 is a special technique introduced by Polyak in 1964 [33] to get
faster convergence to the optimum for the first-order methods. In the original paper, Polyak proved
that his method converges locally with O

(√
L/µ log 1/ε

)
rate for twice continuously differentiable

µ-strongly convex and L-smooth functions. Despite the long history of this approach, there is still
an open question whether heavy ball method converges to the optimum globally with accelerated
rate when the objective function is twice continuous differentiable, L-smooth and µ-strongly convex.
For this class of functions, only non-accelerated global convergence was proved [34] and for the
special case of quadratic strongly convex and L-smooth functions Lessard et. al. [35] recently proved
asymptotic accelerated global convergence. However, heavy ball method performs well in practice
and, therefore, is widely used. One can find more detailed survey of the literature about heavy ball
momentum in [36].

Importance Sampling. Importance sampling has been celebrated and extensively studied in stochas-
tic gradient based methods [37] or in coordinate based methods [38]. Only very recently, [39]
proposed, STP_IS, the first DFO algorithm with importance sampling. In particular, under coordinate-
wise smooth function, they show that sampling coordinate directions, can be generalized to arbitrary
directions, with probabilities proportional to the function coordinate smoothness constants, improves
the leading constant by the same factor typically gained in gradient based methods.

Contributions. Our contributions can be summarized into three folds.

• First ZO method with heavy ball momentum. Motivated by practical effectiveness of
first-order momentum heavy ball method, we introduce momentum into STP method and
propose new DFO algorithm with heavy ball momentum (SMTP). We summarized the method
in Algorithm 1, with theoretical guarantees for non-convex, convex and strongly convex
functions under generic sampling directions D. To the best of our knowledge it is the first
analysis of derivative-free method with heavy ball momentum, i.e. we show that the same
momentum trick that works for the first order method could be applied for zeroth-order
methods as well.

• First ZO method with both heavy ball momentum and importance sampling. In order
to get more gain from momentum in the case when the sampling directions are coordinate
directions and the objective function is coordinate-wise L-smooth (see Assumption 3.1), we
consider importance sampling to the above method. In fact, we propose the first zeroth-order
momentum method with importance sampling (SMTP_IS) summarized in Algorithm 2 with
theoretical guarantees for non-convex, convex and strongly convex functions.

• Practicality. We conduct extensive experiments on continuous control tasks from the
MuJoCo suite [2] following recent success of DFO compared to model-free reinforcement

1We will refer to this as momentum.
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Algorithm 1 SMTP: Stochastic Momentum Three Points
Require: learning rates {γk}k≥0, starting point x0 ∈ Rd, D— distribution on Rd, 0 ≤ β < 1 —

momentum parameter
1: Set v−1 = 0 and z0 = x0

2: for k = 0, 1, . . . do
3: Sample sk ∼ D
4: Let vk+ = βvk−1 + sk and vk− = βvk−1 − sk
5: Let xk+1

+ = xk − γkvk+ and xk+1
− = xk − γkvk−

6: Let zk+1
+ = xk+1

+ − γkβ
1−β v

k
+ and zk+1

− = xk+1
− − γkβ

1−β v
k
−

7: Set zk+1 = argmin
{
f(zk), f(zk+1

+ ), f(zk+1
− )

}
8: Set xk+1 =


xk+1
+ , if zk+1 = zk+1

+

xk+1
− , if zk+1 = zk+1

−
xk, if zk+1 = zk

and vk+1 =


vk+1
+ , if zk+1 = zk+1

+

vk+1
− , if zk+1 = zk+1

−
vk, if zk+1 = zk

9: end for

Assumptions on f
SMTP

Compleixty
Theorem

Importance
Sampling

SMTP_IS
Complexity

None 2r0LγD/µ2
Dε

2 2.1 pi = Li/∑d
i=1 Li

2r0d
∑d
i=1 Li/ε2

Convex, R0 <∞ ln (2r0/ε) LγDR
2
0/µ2
Dε 2.2 pi = Li/∑d

i=1 Li ln (2r0/ε)R
2
0d

∑d
i=1 Li/ε

µ-strongly convex ln (2r0/ε) L/µµ2
D 2.5 pi = Li/

∑d
i=1 Li ln (2r0/ε)

∑d
i=1 Li/µ

Table 1: Summary of the new derived complexity results of SMTP and SMTP_IS. The complexities
for SMTP are under a generic sampling distribution D satisfying Assumption 2.1 while for SMTP_IS
are under an arbitrary discrete sampling from a set of coordinate directions following [39] where
we propose an importance sampling that improves the leading constant marked in red. Note that
r0 = f(x0)− f(x∗) and that all assumptions listed are in addition to Assumption 1.1. Complexity
means number of iterations in order to guarantee E‖∇f(zK)‖D ≤ ε for the non-convex case,
E
[
f(zK)− f(x∗)

]
≤ ε for convex and strongly convex cases. R0 <∞ is the radius in ‖ · ‖∗D-norm

of a bounded level set where the exact definition is given in Assumption 2.2. We notice that for
STP_IS ‖ · ‖D = ‖ · ‖1 and ‖ · ‖∗D = ‖ · ‖∞ in non-convex and convex cases and ‖ · ‖D = ‖ · ‖2 in
the strongly convex case.

learning [12, 13]. We achieve with SMTP_IS the state-of-the-art results on across all
tested environments on the continuous control outperforming DFO [12] and policy gradient
methods [40, 41].

2 Stochastic Momentum Three Points (SMTP)
Our analysis of SMTP is based on the following key assumption.

Assumption 2.1. The probability distribution D on Rd satisfies the following properties: (1) the

quantity γD
def
= Es∼D‖s‖22 is positive and finite and (2) here is a constant µD > 0 and norm ‖ · ‖D

on Rd such that Es∼D|〈g, s〉| ≥ µD‖g‖D for all g ∈ Rd.

Some examples of distributions that meet above assumption are described in Lemma 3.4 from [1].

The intuition behind SMTP is very similar to STP. STP is an adaptation of the classical gradient descent
method, whereas SMTP is an adaptation of Polyak’s heavy ball method with a slight modification:
following the virtual iterates analysis [42], we introduce new variables zk± and zk. This is the key
ingredient that allows us to modify heavy ball method into DFO method based on STP paradigm.

By definition of zk+1, we get that the sequence {f(zk)}k≥0 is monotone: f(zk+1) ≤ f(zk), ∀k ≥ 0.
Our complexity results are based on the key result presented below.

Lemma 2.1. Assume that f is L-smooth and D satisfies Assumption 2.1. Then for the iterates of
SMTP the following inequalities hold: f(zk+1) ≤ f(zk)− γk

1−β |〈∇f(z
k), sk〉|+ L(γk)2

2(1−β)2 ‖s
k‖22 and

Esk∼D
[
f(zk+1)

]
≤ f(zk)− γkµD

1−β ‖∇f(z
k)‖D + L(γk)2γD

2(1−β)2 .
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2.1 Non-Convex Case

In this section, we show our complexity results for Algorithm 1 in the case when f is allowed to be
non-convex. In particular, we show that SMTP in Algorithm 1 guarantees complexity bounds with the
same order as classical bounds, i.e. 1/

√
K where K is the number of iterations, in the literature.

Theorem 2.1. Let Assumptions 1.1 and 2.1 be satisfied. Let SMTP with γk ≡ γ > 0 pro-
duce points {z0, z1, . . . , zK−1} and zK is chosen uniformly at random among them. Then
E[‖∇f(zK)‖D] ≤ (1−β)(f(x0)−f(x∗))/KγµD + LγγD/2µD(1−β). Moreover, if we choose γ = γ0/

√
K

this inequality reduces to E[‖∇f(zK)‖D] ≤ ((1−β)(f(z0)−f(x∗))/γ0µD+Lγ0γD/2µD(1−β))/
√
K. Then

γ0 =
√

2(1−β)2(f(x0)−f(x∗))/LγD minimizes the right-hand side of the previous inequality and
for this choice we have E[‖∇f(zK)‖D] ≤

√
2(f(x0)−f(x∗))LγD/µD

√
K.

In other words, the above theorem states that SMTP converges no worse than STP for non-convex
problems to the stationary point. However, in practice SMTP significantly outperforms STP. So, the
relationship between SMTP and STP is correlated with the known on the literature relationship between
Polyak’s heavy ball method and gradient descent.

2.2 Convex Case

In this section, we present our complexity results for Algorithm 1 when f is convex. In particular, we
show that this method guarantees complexity bounds with the same order as classical bounds, i.e.
1/K, in the literature. We will need the following additional assumption in the sequel.
Assumption 2.2. We assume that f is convex, has a minimizer x∗ and has bounded level set at

x0: R0
def
= max

{
‖x− x∗‖∗D | f(x) ≤ f(x0)

}
< +∞, where ‖ξ‖∗D

def
= max {〈ξ, x〉 | ‖x‖D ≤ 1}

defines the dual norm to ‖ · ‖D.
Theorem 2.2 (Constant stepsize). Let Assumptions 1.1, 2.1 and 2.2 be satisfied. If we set
γk ≡ γ < (1−β)R0/µD, then for the iterates of SMTP method the following inequality holds:
E[f(zk) − f(x∗)] ≤ (1− γµD/(1−β)R0)

k (
f(x0)− f(x∗)

)
+ LγγDR0/2(1−β)µD. If we choose

γ = ε(1−β)µD/LγDR0 for some 0 < ε ≤ LγDR
2
0/µ2
D and run SMTP for k = K iterations where

K = ln
(
2(f(x0)−f(x∗))/ε

)
LγDR

2
0/µ2
Dε, then we will get E

[
f(zK)

]
− f(x∗) ≤ ε.

In order to get rid of factor ln(2(f(x0)−f(x∗))/ε) in the complexity we consider decreasing stepsizes.

Theorem 2.3 (Decreasing stepsizes). Let Assumptions 1.1, 2.1 and 2.2 be statisified. If γk = 2/αk+θ,
where α = µD/(1−β)R0 and θ ≥ 2/α, then for SMTP iterates the following inequality holds: E[f(zk)]−
f(x∗) ≤ 1/ηk+1max

{
f(x0)− f(x∗), 2LγD/αθ(1−β)2

}
, where η

def
= α/θ. If γk = 2α/α2k+2 where

α = µD/(1−β)R0 and run SMTP for k = K = max
{
(1− β)2(f(x0)− f(x∗)), LγD

}
2R2

0/εµ2
D −

2(1−β)2R2
0/µ2
D, ε > 0, we get E

[
f(zK)

]
− f(x∗) ≤ ε.

When β is sufficiently close to 1, we will obtain from the theorem above that K ≈ 2R2
0LγD/εµ2

D.

2.3 Strongly Convex Case

In this section we present our complexity results for Algorithm 1 when f is µ-strongly convex.
Assumption 2.3. We assume that f is µ-strongly convex with respect to the norm ‖ · ‖D: f(y) ≥
f(x) + 〈∇f(x), y − x〉+ µ

2 ‖y − x‖
2
D for all x, y ∈ Rd.

Theorem 2.4 (Solution-dependent stepsizes). Let Assumptions 1.1, 2.1 and 2.3 be satisfied. If we set
γk =

√
2µ(f(zk)− f(x∗))(1−β)θkµD/L for some θk ∈ (0, 2) such that θ = infk≥0{2θk− γDθ2k} ∈

(0, L/(µ2
Dµ)), then for the iterates of SMTP, the following inequality holds: E

[
f(zk)

]
− f(x∗) ≤(

1− θµ2
Dµ/L

)k (
f(x0)− f(x∗)

)
. Then, if we run SMTP for k = K ln

(
f(x0)−f(x∗)/ε

)
κ/θµ2

D, ε > 0,

where κ
def
= L/µ is the condition number of the objective, we will get E

[
f(zK)

]
− f(x∗) ≤ ε.

Note that the previous result uses stepsizes that depends on the optimal solution f(x∗) which is often
not known in practice. The next theorem removes this drawback without spoiling the convergence rate.
However, we need an additional assumption on the distribution D and one extra function evaluation.
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Algorithm 2 SMTP_IS: Stochastic Momentum Three Points with Importance Sampling
Require: stepsize parameters w1, . . . , wn > 0, probabilities p1, . . . , pn > 0 summing to 1, starting

point x0 ∈ Rd, 0 ≤ β < 1 — momentum parameter
1: Set v−1 = 0 and z0 = x0

2: for k = 0, 1, . . . do
3: Select ik = i with probability pi > 0
4: Choose stepsize γki proportional to 1

wik

5: Let vk+ = βvk−1 + eik and vk− = βvk−1 − eik
6: Let xk+1

+ = xk − γki vk+ and xk+1
− = xk − γki vk−

7: Let zk+1
+ = xk+1

+ − γki β
1−β v

k
+ and zk+1

− = xk+1
− − γki β

1−β v
k
−

8: Set zk+1 = argmin
{
f(zk), f(zk+1

+ ), f(zk+1
− )

}
9: Set xk+1 =


xk+1
+ , if zk+1 = zk+1

+

xk+1
− , if zk+1 = zk+1

−
xk, if zk+1 = zk

and vk+1 =


vk+1
+ , if zk+1 = zk+1

+

vk+1
− , if zk+1 = zk+1

−
vk, if zk+1 = zk

10: end for

Assumption 2.4. We assume that for all s ∼ D we have ‖s‖2 = 1.
Theorem 2.5 (Solution-free stepsizes). Let Assumptions 1.1, 2.1, 2.3 and 2.4 be satisfied. If we
compute f(zk + tsk), set γk = (1−β)|f(zk+tsk)−f(zk)|/(Lt) for t > 0 and assume that D is such
that µ2

D ≤ L/µ, then for the iterates of SMTP the following inequality holds: E
[
f(zk)

]
− f(x∗) ≤(

1− µ2
Dµ/L

)k (
f(x0)− f(x∗)

)
+ L2t2/(8µ2

Dµ). Moreover, for any ε > 0 if we set t such that 0 <
t ≤

√
4εµ2
Dµ/L2, and run SMTP for k = K iterations where K = ln

(
2(f(x0)−f(x∗))/ε

)
κ/µ2
D, where

κ
def
= L/µ is the condition number of f , we will have E

[
f(zK)

]
− f(x∗) ≤ ε.

3 Stochastic Momentum Three Points with Importance Sampling (SMTP_IS)
In this section we consider another assumption, in a similar spirit to [39], on the objective.
Assumption 3.1 (Coordinate-wise L-smoothness). We assume that the objective f has coordinate-
wise Lipschitz gradient, with Lipschitz constantsL1, . . . , Ld > 0, i.e. f(x+hei) ≤ f(x)+∇if(x)h+
Li
2 h

2, for all x ∈ Rd, h ∈ R, where∇if(x) is i-th partial derivative of f at the point x.

For this kind of problems we modify SMTP and present STMP_IS method in Algorithm 2. Due to the
lack of space, we omit theorems with the complexity results for SMTP_IS and state them in Table 1.

4 Experiments
Experimental Setup. We conduct extensive experiments on challenging non-convex problems on
the continuous control task from the MuJoCO suit [2]. In particular, we address the problem of model-
free control of a dynamical system. Policy gradient methods for model-free reinforcement learning
algorithms provide an off-the-shelf model-free approach to learn how to control a dynamical system
and are often benchmarked in a simulator. We compare our proposed momentum stochastic three
points method SMTP and the momentum with importance sampling version SMTP_IS against state-of-
art DFO based methods as STP_IS [39] and ARS [12]. Moreover, we also compare against classical
policy gradient methods as TRPO [40] and NG [41]. We conduct experiments on environments with
varying difficulty Swimmer-v1, Hopper-v1, HalfCheetah-v1, Ant-v1, and Humanoid-v1.

Note that due to the stochastic nature of problem where f is stochastic, we use the mean of the
function values of f(xk), f(xk+) and f(xk−), see Algorithm 1, over K observations. Similar to the
work in [39], we use K = 2 for Swimmer-v1, K = 4 for both Hopper-v1 and HalfCheetah-v1,
K = 40 for Ant-v1 and Humanoid-v1. Similar to [39], these values were chosen based on the
validation performance over the grid that is K ∈ {1, 2, 4, 8, 16} for the smaller dimensional problems
Swimmer-v1, Hopper-v1, HalfCheetah-v1 and K ∈ {20, 40, 80, 120} for larger dimensional
problems Ant-v1, and Humanoid-v1. As for the momentum term, for SMTP we set β = 0.5. For
SMTP_IS, as the smoothness constants are not available for continuous control, we use the coordinate
smoothness constants of a θ parameterized smooth function f̂θ (multi-layer perceptron) that estimates
f . In particular, consider running any DFO for n steps; with the queried sampled {xi, f(xi)}ni=1, we
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Figure 1: SMTP is far more superior to STP on all 5 different MuJoCo tasks particularly on the high
dimensional Humanoid-v1 problem. The horizontal dashed lines are the thresholds used in Table 2
to demonstrate complexity of each method.

Table 2: For each MuJoCo task, we report the average number of episodes required to achieve a
predefined reward threshold. Results for our method is averaged over five random seeds, the rest is
copied from [12] (N/A means the method failed to reach the threshold. UNK means the results is
unknown since they are not reported in the literature.)

Threshold STP STPIS SMTP SMTPIS ARS(V1-t) ARS(V2-t) NG-lin TRPO-nn

Swimmer-v1 325 320 110 80 100 100 427 1450 N/A
Hopper-v1 3120 3970 2400 1264 1408 51840 1973 13920 10000

HalfCheetah-v1 3430 13760 4420 1872 1624 8106 1707 11250 4250
Ant-v1 3580 107220 43860 19890 14420 58133 20800 39240 73500

Humanoid-v1 6000 N/A 530200 161230 207160 N/A 142600 130000 UNK

estimate f by solving θn+1 = argminθ
∑
i(f(xi)− f̂(xi; θ))2. See [39] for further implementation

details as we follow the same experimental procedure. In contrast to STP_IS, our method (SMTP)
does not required sampling from directions in the canonical basis; hence, we use directions from
standard Normal distribution in each iteration. For SMTP_IS, we follow a similar procedure as [39]
and sample from columns of a random matrix B.

Similar to the standard practice, we perform all experiments with 5 different initialization and measure
the average reward, in continuous control we are maximizing the reward function f , and best and
worst run per iteration. We compare algorithms in terms of reward vs. sample complexity.

Comparison Against STP. Our method improves sample complexity of STP and STP_IS significantly.
Especially for high dimensional problems like Ant-v1 and Humanoid-v1, sample efficiency of SMTP
is at least as twice as the STP. Moreover, SMTP_IS helps in some experiments by improving over
SMTP. However, this is not consistent in all environments. We believe this is largely due to the fact
that SMTP_IS can only handle sampling from canonical basis similar to STP_IS.

Comparison Against State-of-The-Art. We compare our method with state-of-the-art DFO and
policy gradient algorithms. For the environments, Swimmer-v1, Hopper-v1, HalfCheetah-v1
and Ant-v1, our method outperforms the state-of-the-art results. Whereas for Humanoid-v1, our
methods results in a comparable sample complexity.

5 Conclusion
We have proposed, SMTP, the first heavy ball momentum DFO based algorithm with convergence
rates for non-convex, convex and strongly convex functions under generic sampling direction. We
specialize the sampling to the set of coordinate bases and further improve rates by proposing a
momentum and importance sampling version SMPT_IS with new convergence rates for non-convex,
convex and strongly convex functions too. We conduct large number of experiments on the task of
controlling dynamical systems. We achieve the state-of-the-art performance compared to all DFO
based and policy gradient based methods.
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