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Abstract

Online learning is a powerful tool for analyzing iterative algorithms. However,
the classic adversarial setup sometimes fails to capture certain regularity in online
problems in practice. Motivated by this, we establish a new setup, called Continu-
ous Online Learning (COL), where the gradient of online loss function changes
continuously across rounds with respect to the learner’s decisions. We show that
COL covers and more appropriately describes many interesting applications, from
general equilibrium problems (EPs) to optimization in episodic MDPs. Using this
new setup, we revisit the difficulty of achieving sublinear dynamic regret. We
prove that there is a fundamental equivalence between achieving sublinear dynamic
regret in COL and solving certain EPs, and we present a reduction from dynamic
regret to both static regret and convergence rate of the associated EP. At the end,
we specialize these new insights into online imitation learning and show improved
understanding of its learning stability.

1 Introduction

Online learning [1, 2] studies the interactions between a learner (i.e. an algorithm) and an opponent
through regret minimization. It has proven to be a powerful framework for analyzing and designing
iterative algorithms. However, while classic online learning setups focus on bounding the worst
case, many applications are not naturally adversarial. This reality gap exists especially for iterative
algorithms that are designed to solve optimization problems concerning Markov decision processes
(MDPs). Because the objective is often stated in expectation for these problems, continuity properties
often arise naturally from the smoothing effect of taking expectations over randomness. When such
properties are ignored, theoretical analyses can be overly conservative.

To this end, we propose a new setup for online learning, called Continuous Online Learning (COL).
In contrast to the standard adversarial setup that treats losses as adversarial, COL concerns online
learning problems where the per-round losses change continuously with respect to the learner’s
decisions, and it models adversity, such as stochasticity and bias, as corruption in the feedback signals
of these continuous loss sequences. This modified setup natively captures regularity in online losses,
while still being able to handle adversity that appears in common problems. As a result, certain
concepts that are difficult to analyze in the classic adversarial setup (e.g. sublinear dynamic regret
with an adaptive opponent) become attainable in COL.
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The goal of this paper is to establish COL and to study, particularly, conditions and efficient algorithms
for achieving sublinear dynamic regret. Our first result shows that achieving sublinear dynamic regret
in COL, interestingly, is equivalent to solving certain equilibrium problems (EPs), which are known
to be PPAD-complete2 [3]. In other words, achieving sublinear dynamic regret that is polynomial
in the dimension of the decision set can be extremely difficult in general. Nevertheless, based on
the solution concept of EP, we present a reduction from sublinear dynamic regret to static regret
and convergence to the solution of the associated EP. This reduction allows us to quickly derive
non-asymptotic dynamic regret bounds of popular online learning algorithms based on their known
static regret rates.

Using these insights of COL, we revisit online imitation learning (IL) [4] and show it can be framed
as a COL problem. We demonstrate that, by using standard analyses of COL, we are able to recover
and improve existing understanding of online IL algorithms [4, 5, 6]. In particular, we characterize
existence and uniqueness of solutions, and present convergence and dynamic regret bounds for a
common class of IL algorithms in deterministic and stochastic settings. A more detailed version of
this paper with additional theoretical results and proofs omitted here can be found in the full technical
report [7].

2 Continuous Online Learning

We recall, generally, an online learning problem repeats the following steps: in round n, the learner
plays a decision xn from a convex and compact decision set X , the opponent chooses a loss function
ln : X → R based on the decisions of the learner, and then information about ln (e.g. ∇ln(xn))
is revealed to the learner to inform the next decision. Classically, this abstract setup studies the
adversarial setting where ln can be almost arbitrarily chosen except for minor restrictions like
convexity [8, 9]. Often the performance is measured relatively through static regret,

RegretsN :=
∑N
n=1 ln(xn)−minx∈X

∑N
n=1 ln(x). (1)

Recently, interest has emerged in algorithms that can make nearly optimal decisions at each round.
The regret is therefore measured on-the-fly and suitably named dynamic regret,

RegretdN :=
∑N
n=1 ln(xn)−

∑N
n=1 ln(x∗n), (2)

where x∗n ∈ arg minx∈X ln(x). As dynamic regret by definition upper bounds static regret, minimiz-
ing the dynamic regret is a more difficult problem.

At a high level, one can view online learning as a protocol to describe iterative algorithms, i.e.,
an algorithm receives some feedback, updates its decision, tries it out and receives a performance
measure, and then repeats. Indeed, this idea has made online learning a ubiquitous tool to analyze a
wide range of problems. But often in these problems, the loss sequence has certain correlations; if
the algorithm outputs the same decision, regardless of which iteration it is in, its performance will
be measured similarly. This structure of regularity, however, is missing the classic adversarial setup.
While it is possible to introduce ad-hoc constraints to limit the amount of adversity in the classic
setup, as in [2, 10, 11, 12, 13, 14, 15], such a scheme often leads to case-by-case analyses and can
hardly model problems where the adversity depends also on the learner’s decision, like online IL of
interest here (see Section 5). This mismatch between practice and theory makes studying certain
convergence concepts difficult, such as sublinear dynamic regret which is useful to understand the
performance of the last iterate produced by the algorithm.

COL differs from the classic setup mainly in the way the loss and the feedback are defined, so that it
can inherently model regularity that shows up in the loss sequence of problems in practice. In COL,
we suppose that the opponent possesses a bifunction f : (x, x′) 7→ fx(x′) ∈ R, for x, x′ ∈ X , that is
unknown to the learner. This bifunction is used by the opponent to determine the per-round losses: in
round n, if the learner chooses xn, then the opponent responds with

ln(x) := fxn(x). (3)

Finally, the learner suffers ln(xn) and receives feedback about ln. For fx(x′), we treat x as the query
argument that proposes a question (i.e. an optimization objective fx(·)), and treat x′ as the decision

2In short, they are NP problems whose solutions are known to exist, but it is open as to if they belong to P.
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argument whose performance is evaluated. This bifunction f generally can be defined online as
queried, with only one limitation that the same loss function fx(·) must be selected by the opponent
whenever the learner plays the same decision x. Thus, the opponent can be adaptive, but in response
to only the learner’s current decision. We assume, for all x ∈ X , ‖∇fx(x)‖∗ < G for some G <∞.
In Section 5, we will discuss how the bifunction provides a natural interpretation for certain difficult
objectives such as in online IL.

In addition to the restriction in (3), we impose regularity into f to relate ln across rounds (so that
seeking sublinear dynamic regret becomes well defined.3)
Definition 1. We say an online learning problem is continuous if ln is set as in (3) by a bifunction f
satisfying, ∀x′ ∈ X ,∇fx(x′) is a continuous map in x 4.

The continuity may appear to restrict COL to purely deterministic settings, but adversity such as
stochasticity can be incorporated via an important nuance in the relationship between loss and
feedback. In the classical online learning setting, the adversity is incorporated in the loss: the
losses ln and decisions xn may themselves be generated adversarially or stochastically and then they
directly determine the feedback, e.g., given as full information (receiving ln or ∇ln(xn)) or bandit
(just ln(xn)). The (expected) regret is then measured with respect to these intrinsically adversarial
losses ln. By contrast, in COL, we always measure regret with respect to the true underlying
bifunction ln = fxn . Instead we give the opponent the freedom to add an additional stochastic
or adversarial component into the feedback; e.g., in first-order feedback, the learner could receive
gn = ∇ln(xn) + ξn, where ξn is a probabilistically bounded and potentially adversarial vector,
which can be used to model noise or bias in feedback. In other words, the COL setting models a true
underlying loss with regularity, but allows adversity to be modeled within the feedback, analogous to
stochastic feedback oracles in convex optimization. This additional structure is especially important
for studying dynamic regret, as it allows us to always consider regret with respect to the true fxn
while still incorporating the possibility of stochasticity and adversity.

3 Equivalence and Hardness of Continuous Online Learning

We first ask what extra information the COL formulation entails. We present this result as an equiva-
lence between achieving sublinear dynamic in COL and solving several mathematical programming
problems. Particularly, suppose X ⊂ Rd; we are interested in whether sublinear dynamic regret with
polynomial dependency on d is even possible. It turns out, in general, this is difficult, as least as
hard as a set of difficult problems known to be PPAD-complete [3], even when fx(·) is convex and
continuous.
Theorem 1. Let f be given in Definition 1 for a convex and compact decision set X ⊂ Rd. Suppose
fx(·) is convex and continuous. For any f satisfying the above assumption, if there is an algorithm
that achieves sublinear dynamic regret that is in poly(d) in the associated COL, then it solves all
PPAD problems in polynomial time. In particular, achieving sublinear dynamic regret is equivalent
to solving the equilibrium problem EP(X ,Φ) with Φ(x, x′) = fx(x′)− fx(x) and the variational
inequality VI(X , F ) with F (x) = ∇fx(x).

Theorem 1 is an excerpt of [7, Theorem 1] in the technical report. We recall an EP problem, EP(X ,Φ),
is defined by a variable set X ⊆ Rd and a bifunction Φ : X ×X → R such that5 Φ(x, x) ≥ 0, Φ(·, x)
is continuous, and Φ(x, ·) is convex. Its goal is to find a point x? ∈ X such that

Φ(x?, x) ≥ 0, ∀x ∈ X .

Similarly, the goal of a VI problem, VI(X , F ) with F : X → Rd, is to find a point x? ∈ X such that

〈F (x?), x− x?〉 ≥ 0, ∀x ∈ X
By definition one can see that the VI problem VI(X , F ) is also an EP problem EP(X ,ΦF ) with
ΦF (x, x′) := 〈F (x), x′ − x〉.
In other words, Theorem 1 states that, based on the identification Φ(x, x′) = fx(x′) − fx(x)
and F (x) = ∇fx(x), achieving sublinear dynamic regret is essentially equivalent to finding an

3Otherwise the opponent can define fx(·) pointwise for each x to make ln(xn)− ln(x
∗
n) constant.

4We define∇fx(x′) as the derivative with respect to x′.
5The convexity and continuity can be relaxed further, e.g., as hemi-continuity.
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equilibrium x? ∈ X?, in which X? denotes the set of solutions of the EP and VI (one can show these
two solution sets coincide [7]). Therefore, a necessary condition for sublinear dynamic regret is that
X? is non-empty, which is true when∇fx(x) is continuous in x and X is compact [16].

Theorem 1 also implies that extra structure on COL is necessary for designing efficient algorithms
that achieve sublinear dynamic regret and find these solutions. Specifically, we are interested in
algorithms whose dynamic regret is sublinear and polynomial in d. The requirement of polynomial
dependency is important to properly define the problem. Without it, sublinear dynamic regret can be
achieved already (at least asymptotically), e.g. by simply performing a grid search that discretizes X
(as X is compact and∇f is continuous) albeit with an exponentially large constant.

Based on this equivalence, we can strengthen the structural properties of COL so that they are
conducive to designing such efficient algorithms.
Definition 2. We say a COL problem with f is (α, β)-regular if for some α, β ∈ [0,∞), ∀x ∈ X ,

1. fx(·) is a α-strongly convex function.

2. ∇f·(x) is a β-Lipschitz continuous map.

Leveraging these, we can identify similar structural properties in the equivalent problems.
Proposition 1. If the COL problem with f is (α, β)-regular, then the map∇fx(x) is (α−β)-strongly
monotone. That is, for all x, y ∈ X ,

〈∇fx(x)−∇fy(y), x− y〉 ≥ (α− β)‖x− y‖2

It is well known that strong monotonicity implies that VI(X ,∇f) has a unique solution. It also
implies that fast linear convergence is possible for deterministic feedback in VI problems [16].

4 Reduction by Regularity

We present a reduction from minimizing dynamic regret to minimizing static regret and convergence
to X?. Intuitively, this is possible because Theorem 1 suggests achieving sublinear dynamic regret
should not be harder than finding x? ∈ X?. Define RegretsN (x?) :=

∑N
n=1 ln(xn)− ln(x?).

Theorem 2. Define DX := maxx,x′∈X ‖x − x′‖. Let x? ∈ X? and ∆n := ‖xn − x?‖. If f is
(α, β)-regular for α, β ∈ [0,∞), then for all N ,

RegretdN ≤ min{G
∑N
n=1 ∆n,RegretsN (x?)}+

∑N
n=1 min{βDX∆n,

β2

2α∆2
n}

Theorem 2 roughly shows that when an equilibrium x? exists (e.g. given by the sufficient conditions
in the previous section), it provides a stabilizing effect to the problem, so the dynamic regret behaves
almost like the static regret when the decisions are around x?.

This relationship can be used as a powerful tool for understanding the dynamic regret of existing
algorithms designed for EPs and VIs. These include, e.g., mirror descent [17], mirror-prox [18, 19],
conditional gradient descent [20], Mann iteration [21], etc. Interestingly, many of those are also
standard tools in online learning with static regret bounds that are well known [9].

We can apply Theorem 2 in different ways, depending on the known convergence of an algorithm. For
algorithms whose convergence rate of ∆n to zero is known, Theorem 2 essentially shows that their
dynamic regret is at most O(

∑N
n=1 ∆n). For the algorithms with only known static regret bounds,

we can use a corollary.

Corollary 1. If f is (α, β)-regular and α > β, it holds RegretdN ≤ RegretsN (x?) +
β2R̃egretsN (x?)

2α(α−β) ,
where R̃egretsN (x?) is the static regret of the linear online learning problem with ln(x) = 〈∇fn(xn), x〉.

The purpose of Corollary 1 is not to give a tight bound, but to show that for nicer problems with
α > β, achieving sublinear dynamic regret is not harder than achieving sublinear static regret under
linear losses. For tighter bounds, we still refer to Theorem 2 to leverage the equilibrium convergence.

Finally, we remark Theorem 2 is directly applicable to expected dynamic regret (the right-hand side
of the inequality will be replaced by its expectation) when the learner only has access to stochastic
feedback, because the COL setup in non-anticipating. Similarly, high-probability bounds can be
obtained based on martingale convergence theorems (see [22] for a COL example). In these cases,
we note that the regret is defined with respect to ln in COL, not the sampled losses.
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5 Application to Online Imitation Learning

In this section, we investigate an application of the COL framework in the sequential decision problem
of online IL [4]. We consider an episodic MDP with state space S , action space A, and finite horizon
T . For any s, s′ ∈ S and a ∈ A, the transition dynamics P gives the conditional density, denoted
by P(s′|s, a), of transitioning to s′ from state s and action a. The reward of state s and action a is
denoted as r(s, a). A policy π is a mapping from S to a density over A. We suppose the MDP starts
from some fixed initial state distribution. We denote the probability of being in state s at time t under
policy π as dπt (s), and we define the average state distribution under π as dπ(s) = 1

T

∑T
t=1 d

π
t (s).

In IL, we assume that P and r are unknown to the learner, but, during training time, the learner
is given access to an expert policy π? and full knowledge of a supervised learning loss function
c(s, π;π?), defined for each state s ∈ S. The objective of IL is to solve

min
π∈Π

Es∼dπ [c(s, π;π?)] , (4)

where Π is the set of allowable parametric policies, which will be assumed convex; note that it is
often the case that π? 6∈ Π.

As dπ is not known analytically, optimizing (4) directly leads to a reinforcement learning problem
and therefore can be sample inefficient. Online IL, such as the popular DAGGER algorithm [4],
bypasses this difficulty by reducing (4) into a sequence of supervised learning problems. Below we
describe a general construction of online IL: at the nth iteration (1) execute the learner’s current
policy πn in the MDP to collect state, action samples; (2) update πn+1 with information of the
stochastic approximation of ln(π) = Edπn [c(s, π;π?)] based the samples collected in the first step.
Importantly, we remark that in these empirical risks, the states are sampled according to dπn of the
learner’s policy.

The use of online learning to analyze online IL is well established [4]. As studied in [5, 6], these online
losses can be formulated through a bifunction formulation, ln(π) = fπn(π) = Es∼dπn [c(s, π;π?)],
and the policy class Π can be viewed as the decision set X . Naturally, this online learning formulation
results in many online IL algorithms resembling standard online learning algorithms, such as follow-
the-leader (FTL), which uses full information feedback ln(·) = Es∼dπn [c(s, ·;π?)] at each round,
[4] and mirror descent [23], which uses the first-order feedback∇ln(πn) = Edπn [∇πnc(s, πn;π?)].
This feedback can also be approximated by unbiased samples. The original work by Ross et al. [4]
analyzed FTL in the static regret case by immediate reductions to known static regret bounds of FTL.
However, a crucial objective is understanding when these algorithms converge to useful solutions in
terms of policy performance, which more recent work has attempted to address [5, 6, 24]. According
to these refined analyses, dynamic regret is a more appropriate solution concept to online IL when
π? /∈ Π, which is the common case in practice.

Below we frame online IL in the proposed COL framework and study its properties based on the
properties of COL that we obtained in the previous sections. We have already shown that the per-
round loss ln(·) can be written as the evaluation of a bifunction fπn(·). This COL problem is actually
an (α, β)-regular COL problem when the expected supervised learning loss Es∼dπn [c(s, π;π?)] is
strongly convex in π and the state distribution dπ is Lipschitz continuous (see [4, 5, 6]). We can
then leverage our results in the COL framework to immediately answer an interesting question in the
online IL problem.
Proposition 2. When α > β, there exists a unique policy π̂ that is optimal on its own distribution:

Es∼dπ̂n [c(s, π̂;π?)] = min
π∈Π

Es∼dπ̂n [c(s, π;π?)] .

This result is immediate from the fact that α > β implies that ∇fπ(π) is a µ-strongly monotone VI
with µ = β − α by Proposition 1, which is guaranteed to have a unique solution [16].

Furthermore, we can improve upon the known sufficient conditions required to find this policy through
online gradient descent and give a non-asymptotic convergence guarantee through a reduction to
strongly monotone VIs. We will additionally assume that f is L-smooth in π, satisfying ‖∇fπ′(π1)−
∇fπ′(π2)‖ ≤ L‖π1 − π2‖ for any fixed query argument π′.

We then apply the projection algorithm [16], which is equivalent to online gradient descent studied in
[23, 6]. Let PΠ denote the Euclidean projection onto Π. The online gradient descent algorithm can
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be described as computing the following at each round: πn+1 = PΠ(πn − ηngn) or equivalently

πn+1 = arg min
π∈Π

ηn〈gn, π〉+
1

2
‖π − πn‖2.

Proposition 3 ([16]). If α > β and the stepsize is chosen such that η < 2µ
(L+β)2 , then, under the

online gradient descent algorithm with deterministic feedback gn = ∇ln(πn), it holds that

‖πn − π̂‖2 ≤
(
1 + (L+ β)2η2 − 2µη

)n−1 ‖π1 − π̂‖2

By Theorem 2, RegretdN will therefore be sublinear (in fact RegretdN = O(1)) and the policy converges
linearly to the policy that is optimal on its own distribution, π̂. The only condition required on the
problem itself is α > β while the state-of-the-art sufficient condition of [6] additionally requires
α
L >

2β
α . The result also gives a new non-asymptotic convergence rate to π̂.

The above result only considers the case when the feedback is deterministic; i.e., there is no sampling
error due to executing the policy on the MDP, and the risk Edπn [c(s, π;π?)] is known exactly at
each round. While this is a standard starting point in analysis of online IL algorithms [4], we are
also interested in the more realistic stochastic case, which has so far not been analyzed for the online
gradient descent algorithm in online IL. It turns out that the COL framework can be easily leveraged
here too to provide a sublinear dynamic regret bound.

At round n, we consider observing the empirical risk l̃n(π) = 1
T

∑T
t=1 c(st, π;π?) where st ∼ dπnt .

Note that E[l̃n(π)|πn] = ln(π) and it is easy to show that the first-order feedback ∇l̃n(πn) can
be modeled as the expected gradient with an additive zero-mean noise: gn = ∇ln(πn) + εn. For
simplicity, we assume E

[
‖εn‖2

]
<∞.

Proposition 4. If α > β and the stepsize is chosen as ηn = 1√
n

, then, under online gradient descent

with stochastic feedback, it holds that E[RegretdN ] = O(
√
N).

The proof leverages the reduction to static regret in Corollary 1. It is immediate from the fact that the
online IL problem is (α, β)-regular (see Proposition 9 in the full technical report [7] for details). The
dynamic regret is worse than that of the deterministic case, but it is still sublinear. This is the price
paid for stochastically sampling from the MDP.

6 Conclusion

We present COL, a new class of online learning problems where the gradient varies continuously
across rounds with respect to the learner’s decisions. We show that this setting can be equated with
certain equilibrium problems (EPs) and variational inequalities (VIs). Leveraging this insight, we
present conditions for achieving sublinear dynamic regret. Furthermore, we show a reduction from
dynamic regret to static regret and the convergence to equilibrium point. This insight suggests that,
when these conditions are met, we may employ standard algorithms from the EP literature to achieve
interpretable, sublinear dynamic regret rates. Lastly, we apply our theoretical results to the online
imitation learning problem, showing that interesting novel results.

There are several directions for future research on this topic. Our current analyses focus on classical
algorithms in online learning. We suspect that the use of adaptive or optimistic methods [25] can
accelerate convergence to equilibria if some coarse model of the bifunction can be estimated. This is
especially relevant in applications on episodic MDPs where the expected losses are exactly determined
by an underlying reward function and transition dynamics. In addition to online IL, there are also
several iterative optimization problems with MDPs that are interesting to consider in the COL setting.
First, the problems of online system identification and structured prediction have also been posed
as adversarial online learning and analyzed under static regret [26, 4]. We also note that the classic
fitted Q-iteration [27, 28] for reinforcement learning also uses a similar setup. In round n, the loss
can be written as ln(Q) = Es,a∼µπ(Qn)

Es′∼P(s,a)[(Q(s, a)−r(s, a)−γmaxa′ Qn(s′, a′))2], where
µπ(Qn) is the state-action distribution induced by running a policy π(Qn) based on the Q-function
estimate Qn of the learner. These problem settings can all be posed as COL problems and it would
be interesting see how their algorithms and analyses can be reconciled with those of EP problems via
this reduction.
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