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Abstract

Generative Adversarial Imitation Learning (GAIL) is a powerful and practical
approach for learning sequential decision-making policies. Different from Rein-
forcement Learning (RL), GAIL takes advantage of demonstration data by experts
(e.g., human), and learns both the policy and reward function of the unknown
environment. Despite the significant empirical progresses, the theory behind GAIL
is still largely unknown. The major difficulty comes from the underlying temporal
dependency of the demonstration data and the minimax computational formulation
of GAIL without convex-concave structure. To bridge such a gap between theory
and practice, this paper investigates the theoretical properties of GAIL. Specifically,
we show: (1) For GAIL with general reward parameterization, the generalization
can be guaranteed as long as the class of the reward functions is properly controlled;
(2) For GAIL, where the reward is parameterized as a reproducing kernel function,
GAIL can be efficiently solved by stochastic first order optimization algorithms,
which attain sublinear convergence to a stationary solution. To the best of our
knowledge, these are the first results on statistical and computational guarantees of
imitation learning with reward/policy function approximation.

1 Introduction
As various robots (Tail et al., 2018), self-driving cars (Kuefler et al., 2017), unmanned aerial ve-
hicles (Pfeiffer et al., 2018) and other intelligent agents are applied to complex and unstructured
environments, programming their behaviors/policy has become increasingly challenging. These
intelligent agents need to accommodate a huge number of tasks with unique environmental demands.
To address these challenges, many reinforcement learning (RL) methods have been proposed for
learning sequential decision-making policies (Sutton et al., 1998; Kaelbling et al., 1996; Mnih et al.,
2015). These RL methods, however, heavily rely on human expert domain knowledge to design
proper reward functions. For complex tasks, which are often difficult to describe formally, these RL
methods become impractical.

The Imitation Learning (IL, Argall et al. (2009); Abbeel and Ng (2004)) approach is a powerful
and practical alternative to RL. Rather than having a human expert handcrafting a reward function
for learning the desired policy, the imitation learning approach only requires the human expert to
demonstrate the desired policy, and then the intelligent agent (a.k.a. learner) learns to match the
demonstration. Most of existing imitation learning methods fall in two categories: 1). Behavioral
Cloning (BC, Pomerleau (1991)) and 2). Inverse Reinforcement Learning (IRL, Russell (1998); Ng
et al. (2000); Finn et al. (2016); Levine and Koltun (2012)). However, BC often suffers from poor
generalization, and IRL often fails to scale to large and high dimensional environments.

More recently, Ho and Ermon (2016) propose a Generative Adversarial Imitation Learning (GAIL)
method, which obtains significant performance gains over existing IL methods in imitating complex
expert policies in large and high-dimensional environments. GAIL generalizes IRL by formulating
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the IL problem as minimax optimization, which can be solved by alternating gradient-type algorithms
in a more scalable and efficient manner.

Specifically, we consider an infinite horizon Markov Decision Process (MDP), where S denotes
the state space, A denotes the action space, P denotes the Markov transition kernel, r∗ denotes the
reward function, and p0 denotes the distribution of the initial state. We assume that the Markov
transition kernel P is fixed and there is an unknown expert policy π∗ : S → P(A), where P(A)

denotes the set of distributions over the action space. As can be seen, {st}T−1t=0 essentially forms a
Markov chain with the transition kernel induced by π∗ as Pπ

∗
(s, s′) =

∑
a∈A π∗(a | s) ·P (s′ | s, a).

Given n demonstration trajectories from π∗ denoted by {s(i)t , a
(i)
t }T−1t=0 , where i = 1, ..., n, s0 ∼ p0,

at ∼ π∗(· | st), and st+1 ∼ P (· | st, at), GAIL aims to learn π∗ by solving the following minimax
optimization problem,

minπ maxr∈R[Eπr(s, a)− Eπ∗nr(s, a)], (1)

where Eπ[r(s, a)] = limT→∞ E[ 1T
∑T−1
t=0 r(st, at)|π] denotes the average reward under the policy

π when the reward function is r, and Eπ∗n [r(s, a)] = 1
nT

∑n
i=1

∑T−1
t=0 [r(s

(i)
t , a

(i)
t )] denotes the

empirical average reward over the demonstration trajectories. As shown in (1), GAIL aims to find a
policy, which attains an average reward similar to that of the expert policy with respect to any reward
belonging to the function classR.

For large and high-dimensional imitation learning problems, we often encounter infinitely many states.
To ease computation, we need to consider function approximations. Specifically, suppose that for
every s ∈ S and a ∈ A, there are feature vectors ψs ∈ RdS and ψa ∈ RdA associated with a and s,
respectively. Then we can approximate the policy and reward as π(·|s) = π̃ω(ψs) and r(s, a) =
r̃θ(ψs, ψa), where π̃ and r̃ belong to certain function classes (e.g. reproducing kernel Hilbert space
or deep neural networks, Ormoneit and Sen (2002); LeCun et al. (2015)) associated with parameters
ω and θ, respectively. Accordingly, we can optimize (1) with respect to the parameters ω and θ by
scalable alternating gradient-type algorithms.

Although GAIL has achieved significant empirical progresses, its theoretical properties are still
largely unknown. There are three major difficulties when analyzing GAIL: 1). There exists temporal
dependency in the demonstration trajectories/data due to their sequential nature (Howard, 1960;
Puterman, 2014; Abounadi et al., 2001); 2). GAIL is formulated as a minimax optimization problem.
Most of existing learning theories, however, focus on empirical risk minimization problems, and
therefore are not readily applicable (Vapnik, 2013; Mohri et al., 2018; Anthony and Bartlett, 2009);
3). The minimax optimization problem in (1) does not have a convex-concave structure, and therefore
existing theories in convex optimization literature cannot be applied for analyzing the alternating
stochastic gradient-type algorithms (Willem, 1997; Ben-Tal and Nemirovski, 1998; Murray and
Overton, 1980; Chambolle and Pock, 2011; Chen et al., 2014).

To bridge such a gap between practice and theory, we establish the generalization properties of GAIL
and the convergence properties of the alternating mini-batch stochastic gradient algorithm for solving
(1). Specifically, our contributions can be summarized as follows:

•We formally define the generalization of GAIL under the “so-called”R-reward distance, and then
show that the generalization of GAIL can be guaranteed under reward distance as long as the class of
the reward functions is properly controlled;

•We provide sufficient conditions, under which an alternating mini-batch stochastic gradient algo-
rithm can efficiently solve the minimax optimization in (1), and attains sublinear convergence to a
stationary solution.

Our work is related to Syed et al. (2008); Cai et al. (2019). Syed et al. (2008) study the generalization
and computational properties of apprenticeship learning. Since they assume that the state space of
the underlying Markov decision process is finite, they do not consider any reward/policy function
approximations; Cai et al. (2019) study the computational properties of imitation learning under a
simple control setting. Their assumption on linear policy and quadratic reward is very restrictive, and
does not hold for many real applications.

2 Generalization of GAIL
To analyze the generalization properties of GAIL, we first assume that we can access an infinite
number of the expert’s demonstration trajectories (underlying population), and that the reward
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function is chosen optimally within some large class of functions. This allows us to remove the
maximum operation from (1), which leads to an interpretation of how and in what sense the resulting
policy is close to the true expert policy. Before we proceed, we first introduce some preliminaries.

Definition 1 (Stationary Distribution). Note that any policy π induces a Markov chain on S × A.
The transition kernel is given by

Pπ(s′, a′ | s, a) = π(a′ | s′) · P (s′ | s, a), ∀(s, a), (s′, a′) ∈ S ×A.
When such a Markov chain is aperiodic and recurrent, we denote its stationary distribution as ρπ .

Note that a policy π is uniquely determined by its stationary distribution ρπ in the sense that
π(a | s) = ρπ(s, a)/

∑
a∈A ρπ(s, a).

Then we can write the expected average reward of r(s, a) under the policy π as

Eπ[r(s, a)] = limT→∞ E
[
1
T

∑T−1
t=0 r(st, at)

∣∣π] = Eρπ
[
r(s, a)

]
=
∑

(s,a)∈S×A ρπ(s, a) · r(s, a).

We further define theR-distance between two policies π and π′ as follows.

Definition 2. LetR denote a class of symmetric reward functions from S ×A to R, i.e., if r ∈ R,
then −r ∈ R. Given two policy π′ and π, theR-distance for GAIL is defined as

dR(π, π′) = supr∈R[Eπr(s, a)− Eπ′r(s, a)].

The R-distance over policies for Markov decision processes is essentially an Integral Probability
Metric (IPM) over stationary distributions (Müller, 1997). For different choices ofR, we have various
R-distances. For example, we can choose R as the class of all 1-Lipschitz continuous functions,
which yields that dR(π, π′) is the Wasserstein distance between ρπ and ρπ′ (Vallender, 1974). For
computational convenience, GAIL and its variants usually choose R as a class of functions from
some reproducing kernel Hilbert space, or a class of neural network functions.

Definition 3. Given n demonstration trajectories from time 0 to T − 1 obtained by an expert policy
π∗ denoted by (s

(i)
t , a

(i)
t )T−1t=0 , where i = 1, ..., n, a policy π̂ learned by GAIL generalizes under the

R-distance dR(·, ·) with generalization error ε, if with high probability, we have
|dR(π∗n, π̂)− dR(π∗, π̂)| ≤ ε,

where dR(π∗n, π̂) is the empiricalR-distance between π∗ and π̂ defined as

dR(π∗n, π̂) = supr∈R[Eπ∗nr(s, a)− Eπ̂r(s, a)] with Eπ∗n [r(s, a)] = 1
nT

∑n
i=1

∑T−1
t=0 [r(s

(i)
t , a

(i)
t )].

The generalization of GAIL implies that theR-distance between the expert policy π∗ and the learned
policy π̂ is close to the empiricalR-distance between them. Our analysis aims to prove the former
distance to be small, whereas the latter one is what we attempts to minimize in practice.

We then introduce the assumptions on the underlying Markov decision process and expert policy.

Assumption 1. Under the expert policy π∗, (st, at)
T−1
t=0 forms a stationary and exponentially β-

mixing Markov chain, i.e.,
β(k) = supn EB∈σn0 supA∈σ∞n+k

|P(A|B)− P(A)| ≤ β0 exp(−β1kα),

where β0, β1, α are positive constants, and σji is the σ-algebra generated by (st, at)
j
t=i for i ≤ j.

Moreover, for every s ∈ S and a ∈ A, there are feature vectors ψs ∈ RdS and ψa ∈ RdA associated
with a and s, respectively, and ψs and ψa are uniformly bounded, where

‖ψs‖2 ≤ 1 and ‖ψa‖2 ≤ 1, ∀s ∈ S and ∀a ∈ A.

Assumption 1 requires the underlying MDP to be ergodic (Levin and Peres, 2017), which is a
commonly studied assumption in exiting reinforcement learning literature on maximizing the expected
average reward (Strehl and Littman, 2005; Li et al., 2011; Brafman and Tennenholtz, 2002; Kearns and
Singh, 2002). The feature vectors associated with a and s allow us to apply function approximations
to parameterize the reward and policy functions. Accordingly, we write the reward function as
r(s, a) = r̃(ψs, ψa), which is assumed to be bounded.

Assumption 2. The reward function class is uniformly bounded, i.e., ‖r‖∞ ≤ Br for any r ∈ R.
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Now we proceed with our main result on generalization properties of GAIL. We use N (R, ε, ‖ · ‖∞)
to denote the covering number of the function classR under the `∞ distance ‖ · ‖∞.

Theorem 1 (Main Result). Suppose Assumptions 1-2 hold, and the policy learned by GAIL satisfies
dR(π∗n, π̂)− infπ dR(π∗n, π) < ε,

where the infimum is taken over all possible learned policies. Then with probability at least 1− δ
over the joint distribution of {(a(i)t , s

(i)
t )T−1t=0 }ni=1, taking ζ = (β−11 log β0T

δ )
1
α , we have

dR(π∗, π̂)− inf
π
dR(π∗, π) ≤ O

(
Br√
nT/ζ

√
logN

(
R,
√

ζ
nT , ‖ · ‖∞

)
+Br

√
log(1/δ)

nT/ζ

)
+ ε.

Theorem 1 implies that the policy π̂ learned by GAIL generalizes as long as the complexity of the
function class R is well controlled. To the best of our knowledge, this is the first result on the
generalization of imitation learning with function approximations.

Example 1: Reproducing Kernel Reward Function. One popular option to parameterize the
reward by functions is the reproducing kernel Hilbert space (RKHS, Kim and Park (2018); Li et al.
(2018)). There have been several implementations of RKHS, and we consider the feature mapping
approach. Specifically, we consider g : RdS × RdA → Rq, and the reward can be written as
r(s, a) = r̃θ(ψs, ψa) = θ>g(ψs, ψa), where θ ∈ Rq. We require g to be Lipschitz continuous with
respect to (ψa, ψs).

Assumption 3. The feature mapping g satisfies g(0, 0) = 0, and there exists a constant ρg such that
for any ψa, ψ′a, ψs and ψ′s, we have ‖g(ψs, ψa)− g(ψ′s, ψ

′
a)‖22 ≤ ρg

√
‖ψs − ψ′s‖22 + ‖ψa − ψ′a‖22.

Assumption 3 is mild and satisfied by popular feature mappings, e.g., random Fourier feature
mapping1 (Rahimi and Recht, 2008; Bach, 2017). The next corollary presents the generalization
bound of GAIL using feature mapping.

Corollary 1. Suppose ‖θ‖2 ≤ Bθ. For large enough n and T , with probability at least 1− δ over
the joint distribution of {(ait, sit)T−1t=0 }ni=1, we have

dR(π∗, π̂)− inf
π
dR(π∗, π) ≤ O

(
ρgBθ√
nT/ζ

√
q log

(
ρgBθ

√
nT/ζ

)
+ ρgBθ

√
log(1/δ)

nT/ζ

)
+ ε.

Corollary 1 indicates that with respect to a class of properly normalized reproducing kernel reward
functions, GAIL generalizes in terms of theR-distance.

Example 2: Neural Network Reward Function. Another popular option to parameterize the reward
function is to use neural networks. Specifically, let σ(v) = [max{v1, 0}, ...,max{vd, 0}]> denote
the ReLU activation for v ∈ Rd. We consider a D-layer feedforward neural network with ReLU
activation as follows,

r(s, a) = r̃W(ψs, ψa) = W>Dσ(WD−1σ(...σ(W1[ψ>a , ψ
>
s ]>))),

whereW = {Wi |Wi ∈ Rdi−1×di , i = 1, ..., D − 1, WD ∈ RdD−1} and d0 = dA + dS . The next
corollary presents the generalization bound of GAIL using neural networks.

Corollary 2. Suppose ‖Wi‖2 ≤ 1, where i = 1, ..., D. For large enough n and T , with probability
at least 1− δ over the joint distribution of {(at, st)T−1t=0 }ni=1, we have

dR(π∗, π̂)− inf
π
dR(π∗, π) ≤ O

(
1√
nT/ζ

√
d2D log

(
D
√
dnT/ζ

)
+

√
log(1/δ)

nT/ζ

)
+ ε.

3 Computation of GAIL
To investigate the computational properties of GAIL, we parameterize the reward by functions
belonging to some reproducing kernel Hilbert space. The policy can be parameterized by functions
belonging to some reproducing kernel Hilbert space or some class of deep neural networks with

1More precisely, Assumption 3 actually holds with overwhelming probability over the distribution of the
random mapping.
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parameter ω. Specifically, we denote π(a|s) = π̃ω(ψs), where π̃ω(ψs) is the parametrized policy
mapping from RdS to a simplex in RdA with |A| = d. For computational convenience, we consider
solving a slightly modified minimax optimization problem:

minω max‖θ‖2≤κ Eπ̃ω [r̃θ(s, a)]− Eπ∗ r̃θ[(ψs, ψa)]− λH(π̃ω)− µ
2 ‖θ‖

2
2 , (2)

where r̃θ(s, a) = θ>g(ψs, ψa), H(π̃ω) is some regularizer for the policy (e.g., causal entropy
regularizer, Ho and Ermon (2016)), and λ > 0 and µ > 0 are tuning parameters.

We apply the alternating mini-batch stochastic gradient algorithm to (2). Specifically, we denote the
objective function in (2) as F (ω, θ) for notational simplicity. At the (t+ 1)-th iteration, we take

θ(t+1) = Πκ

(
θ(t) + ηθ

qθ

∑
j∈M(t)

θ

∇θfj(ω(t), θ(t))
)

and (3)

ω(t+1) = ω(t) − ηω
qω

∑
j∈M(t)

ω
∇ω f̃j(ω(t), θ(t+1)), (4)

where ηθ and ηω are learning rates, the projection Πκ(v) = 1(‖v‖2 ≤ κ) · v + 1(‖v‖2 > κ) · κ ·
v/ ‖v‖2 , ∇fj’s and ∇f̃j’s are independent stochastic approximations of ∇F (Sutton et al., 2000),
andM(t)

θ ,M(t)
ω are mini-batches with sizes qθ and qω, respectively. Before we proceed with the

convergence analysis, we impose the follow assumptions on the problem.

Assumption 4. There are two positive constants Mω and Mθ such that for any ω and ‖θ‖2 ≤ κ,

Unbiased : E∇fj(ω, θ) = E∇f̃j(ω, θ) = ∇F (ω, θ),

Bounded : E‖∇ω f̃j(ω, θ)−∇ωF (ω, θ)‖22 ≤Mω and E‖∇θfj(ω, θ)−∇θF (ω, θ)‖22 ≤Mθ.

Assumption 4 requires the stochastic gradient to be unbiased with a bounded variance, which is a
common assumption in existing optimization literature (Nemirovski et al., 2009; Ghadimi and Lan,
2013; Duchi et al., 2011; Bottou, 2010).

Assumption 5. (i) For any ω, there exists some constant χ > 0 and υ ∈ (0, 1) such that ‖(Pπ̃ω )tρ0−
ρπ̃ω‖TV ≤ χυt, where Pπ̃ω (s′, a′ | s, a) = π̃ω(a′|s′)P (s′ | s, a) is the transition kernel induced by
π̃ω , ρ0 is the initial distribution of (s0, a0), and ρπ̃ω is the stationary distribution induced by π̃ω .

(ii) There exist constants Sπ̃, Bω, Lρ, LQ > 0 such that for any ω, ω′, we have
‖∇ω log(π̃ω(a|s))−∇ω log(π̃ω′(a|s))‖2 ≤ Sπ̃ ‖ω − ω′‖2 , ‖∇ω log π̃ω(a|s)‖2 ≤ Bω,
‖ρπ̃ω − ρπ̃′ω‖TV ≤ Lρ‖ω − ω′‖2, ‖Qπ̃ω −Qπ̃ω′‖∞ ≤ LQ ‖ω − ω′‖2 ,
where Qπ̃ω (s, a) =

∑∞
t=0 E [r̃(st, at)− Eπ̃ω [r̃] | s0 = s, a0 = a, π̃ω] is the action-value function.

(iii) There exist constants BH and SH > 0 such that for any ω, ω′, we have
H(π̃ω) ≤ BH , and ‖∇ωH(π̃ω)−∇ωH(π̃ω′)‖2 ≤ SH ‖ω − ω′‖2 .

Note that (i) of Assumption 5 requires the Markov Chain to be geometrically mixing. (ii) and (iii)
state some commonly used regularity conditions for policies (Sutton et al., 2000; Pirotta et al., 2015).

We then define L-stationary points of F . Specifically, we say that (ω∗, θ∗) is a stationary point of
F , if and only if, for any fixed α > 0, ∇ωF (ω∗, θ∗) = 0 and θ∗ − Πκ(θ∗ + α∇θF (ω∗, θ∗)) = 0.
Accordingly, we take α = 1 and measure the sub-stationarity of the algorithm at the iteration N by

JN = min1≤t≤N E‖θ(t) −Πκ(θ(t) +∇θF (ω(t), θ(t)))‖22 + E‖∇ωF (ω(t), θ(t+1))‖22.
We then state the global convergence of the alternating mini-batch stochastic gradient algorithm.

Theorem 2. Suppose Assumptions 1-5 hold. We choose step sizes ηθ, ηω satisfying

ηω ≤ min

{
Lω

Sω(8Lω + 2)
,

1

2Lω

}
, ηθ ≤ min

{
1

150µ
,

7Lω + 1

150S2
ω

,
1

100(2µ+ Sω)

}
,

and meanwhile ηω/ηθ ≤ µ/(30Lω + 5), where Lω = 2
√

2(Sπ̃ + 2BωLρ)κρgχ/(1− υ) +BωLQ,
and Sω = 2

√
2qκρgχBω/(1 − υ). Given any ε > 0, we choose batch sizes qθ = Õ(1/ε) and

qω = Õ(1/ε). Then we need at most

N = η(C0 + 4
√

2ρgκ+ µκ2 + 2λBH)ε−1

iterations such that JN ≤ ε, where C0 depends on the initialization, and η depends on ηω and ηθ.
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4 Experiment
To verify our theory in Section 3, we conduct experiments in three reinforcement learning tasks:
Acrobot, MountainCar, and Hopper. For each task, we first train an expert policy using the proximal
policy optimization (PPO) algorithm in (Schulman et al., 2017) for 500 iterations, and then use the
expert policy to generate the demonstration data. The demonstration data for every task contains 500
trajectories, each of which is a series of state action pairs throughout one episode in the environment.
When training GAIL, we randomly select a mini-batch of trajectories, which contain at least 8196
state action pairs. We use PPO to update the policy parameters. This avoids the instability of the
policy gradient algorithm, and improves the reproducibility of our experiments.
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Figure 1: Performance of GAIL on three different tasks. The plotted curves are averaged over 5
independent runs with the vertical axis being the average reward and horizontal axis being the number
of iterations.

We use the same neural network architecture for all the environments. For policy, we use a fully
connected neural network with two hidden layers of 128 neurons in each layer and tanh activation.
For reward, we use a fully connected ReLU neural network with two hidden layers of 1024 and
512 neurons, respectively. To implement the kernel reward, we fix the first two layers of the neural
network after random initialization and only update the third layer, i.e., the first two layers mimic the
random feature mapping. We choose κ = 1 and µ = 0.3. When updating the neural network reward,
we use weight normalization in each layer (Salimans and Kingma, 2016).

When updating the kernel reward at each iteration, we choose to take the stochastic gradient ascent
step for either once (i.e., alternating update in Section 3) or 10 times. When updating the neural
network reward at each iteration, we choose to take the stochastic gradient ascent step for only once.
We tune step size parameters for updating the policy and reward, and summarize the numerical results
of the step sizes attaining the maximal average episode reward in Figure 1.

As can be seen, using multiple stochastic gradient ascent steps for updating the reward at each
iteration yields similar performance as that of one step. We present the convergence analysis of
using multiple stochastic gradient ascent steps for updating the reward in Appendix C. Moreover,
we observe that parameterizing the reward by neural networks slightly outperform that of the kernel
reward. However, its training process tends to be unstable and takes longer time to converge.

5 Discussions
Our proposed theories of GAIL are closely related to Generative Adversarial Networks (Goodfellow
et al., 2014; Arjovsky et al., 2017): (1) The generalization of GANs is defined based on the integral
probabilistic metric (IPM) between the synthetic distribution obtained by the generator network and
the distribution of the real data (Arora et al., 2017). As the real data in GANs are considered as
independent realizations of the underlying distribution, the generalization of GANs can be analyzed
using commonly used empirical process techniques for i.i.d. random variables. GAIL, however,
involves dependent demonstration data from experts, and therefore the analysis is more involved. (2)
Our computational theory of GAIL can be applied to MMD-GAN and its variants, where the IPM
is induced by some reproducing kernel Hilbert space (Li et al., 2017; Bińkowski et al., 2018; Arbel
et al., 2018). The alternating mini-batch stochastic gradient algorithm attains a similar sublinear rate
of convergence to a stationary solution.

Moreover, our computational theory of GAIL only considers the policy gradient update when learning
the policy (Sutton et al., 2000). Extending to other types of updates such as natural policy gradient
(Kakade, 2002), proximal policy gradient (Schulman et al., 2017) and trust region policy optimization
(Schulman et al., 2015) is a challenging, but important future direction.
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