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Abstract

Modern deep learning methods provide an effective means to learn good representa-
tions. However, is a good representation itself sufficient for efficient reinforcement
learning? This question is largely unexplored, and the extant body of literature
mainly focuses on conditions which permit efficient reinforcement learning with
little understanding of what are necessary conditions for efficient reinforcement
learning. This work provides strong negative results for reinforcement learning
methods with function approximation for which a good representation (feature
extractor) is known to the agent, focusing on natural representational conditions rel-
evant to value-based learning and policy-based learning. For value-based learning,
we show that even if the agent has a highly accurate linear representation, the agent
still needs to sample exponentially many trajectories to find a near-optimal policy.
For policy-based learning, we show even if the agent’s linear representation is
capable of perfectly representing the optimal policy, the agent still needs to sample
exponentially many trajectories in order to find a near-optimal policy.
These lower bounds highlight the fact that having a good (value-based or policy-
based) representation itself is insufficient for efficient reinforcement learning.
In particular, these results provide new insights into why the existing provably
efficient reinforcement learning methods rely on further assumptions, which are
often model-based in nature. Additionally, our lower bounds imply exponential
separations in the sample complexity between 1) value-based learning with perfect
representation and value-based learning with a good-but-not-perfect representation,
2) value-based learning and policy-based learning, 3) policy-based learning and
supervised learning and 4) reinforcement learning and imitation learning.

1 Introduction

Modern reinforcement learning (RL) problems are often challenging due to the huge state space.
To tackle this challenge, function approximation schemes are often employed to provide a compact
representation, so that reinforcement learning can generalize across states. A common paradigm
is to first use a feature extractor to transform the raw input to features (a succinct representation)
and then apply a linear predictor on top of the features. Traditionally, the feature extractor is often
handcrafted [Sutton and Barto, 2018], while more modern methods often train a deep neural network
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to extract features. The hope of this paradigm is that, if there exists a good low dimensional (linear)
representation, then efficient reinforcement learning is possible.

Empirically, combining various RL function approximation algorithms with neural networks for
feature extraction has lead to tremendous successes on various tasks [Mnih et al., 2015, Schulman
et al., 2015, 2017]. A major problem, however, is that these methods often require a large amount of
samples to learn a good policy. For example, deep Q-network requires millions of samples to solve
certain Atari games [Mnih et al., 2015]. Here, one may wonder if there are fundamental statistical
limitations on such methods, and, if so, under what conditions it would be possible to efficiently learn
a good policy?

In the supervised learning context, it is well-known that empirical risk minimization is a statistically
efficient method when using a low-complexity hypothesis space [Shalev-Shwartz and Ben-David,
2014], e.g. a hypothesis space with bounded VC dimension. For example, a polynomial number
of samples suffice for learning a near-optimal d-dimensional linear classifier, even in the agnostic
setting2. In contrast, in the more challenging RL setting, we seek to understand if efficient learning
is possible (say from a sample complexity perspective) when we have access to an accurate (and
compact) parametric representation — e.g. our policy class contains a near-optimal policy or our
value function hypothesis class accurately approximates the true value functions. In particular, this
work focuses on the following question:

Is a good representation sufficient for sample-efficient reinforcement learning?

This question is largely unexplored, where the extant body of literature mainly focuses on conditions
which are sufficient for efficient reinforcement learning though there is little understanding of what are
necessary conditions for efficient reinforcement learning. The challenge in reinforcement learning is
that it is not evident how agents can leverage the given representation to efficiently find a near-optimal
policy for reasons related to the exploration-exploitation trade-off; there is no direct analogue of
empirical risk minimization in the reinforcement learning context.

Many recent works have provided polynomial upper bounds under various sufficient conditions, and
in what follows we list a few examples. For value-based learning, the work of Wen and Van Roy
[2013] showed that for deterministic systems3, if the optimal Q-function can be perfectly predicted
by linear functions of the given features, then the agent can learn the optimal policy exactly with a
polynomial number of samples. Recent work [Jiang et al., 2017] further showed that if the Bellman
rank, a certain complexity measure, is bounded, then the agent can learn a near-optimal policy
efficiently. For policy-based learning, Agarwal et al. [2019] gave polynomial upper bounds which
depend on a parameter that measures the difference between the initial distribution and the distribution
induced by the optimal policy.

Our contributions. This work gives, perhaps surprisingly, strong negative results to this question.
The main results are exponential sample complexity lower bounds in terms of planning horizon H for
value-based and policy-based algorithms with given good representations4. A summary of previous
upper bounds and along with our new lower bounds is provided in Table 1. These lower bounds
include:

1. For value-based learning, we show even if the Q-functions of all policies can be approximated,
in a worst case sense, by linear functions of the given representation with approximation error

δ = Ω
(√

H
d

)
where d is the dimension of the representation and H is the planning horizon, then

the agent still needs to sample exponential number of trajectories to find a near-optimal policy.
2. We show even if the optimal policy can be perfectly predicted by a linear function of the given

representation with a strictly positive margin, the agent still requires exponential number of
trajectories to find a near-optimal policy.

These lower bounds hold even in deterministic systems and even if the agent knows the transition
model. Furthermore, these negative results also apply to the case where Q∗, the optimal state-action
value, can be accurately approximated by a linear function. Since the class of linear functions is a

2Here we only study the sample complexity and ignore the computational complexity.
3MDPs where both reward and transition are deterministic.
4 Our results can be easily extend to infinite horizon MDPs with discount factors by replacing the planning

horizon H with 1
1−γ

, where γ is the discount factor. We omit the discussion on discount MDPs for simplicity.
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strict subset of many more complicated function classes, including neural networks in particular, our
negative results imply lower bounds for these more complex function classes as well.

Our results highlight a few conceptual insights:

• Efficient RL may require the representation to encode model information (transition and reward).
Under (implicit) model-based assumptions, there exist upper bounds that can tolerate approximation
error [Jiang et al., 2017, Yang and Wang, 2019b, Sun et al., 2019].

• Since our lower bounds apply even when the agent knows the transition model, the hardness is
not due to the difficulty of exploration in the standard sense. The unknown reward function is
sufficient to make the problem exponentially difficult.

• Our lower bounds are not due to the agent’s inability to perform efficient supervised learning, since
our assumptions do admit polynomial sample complexity upper bounds if the data distribution is
fixed.

• Our lower bounds are not pathological in nature and suggest that these concerns may arise in
practice. In a precise sense, almost all feature extractors induce a hard MDP instance in our
construction (see Appendix B).

Instead, one interpretation is that the hardness is due to a distribution mismatch in the following sense:
the agent does not know which distribution to use for minimizing a (supervised) learning error (see
Kakade [2003] for discussion), and even a known transition model is not information-theoretically
sufficient to reduce the sample complexity.

Furthermore, our work implies several exponential separations on the sample complexity between:
1) value-based learning with a perfect representation and value-based learning with a good-but-not-
perfect representation, 2) value-based learning and policy-based learning, 3) policy-based learning
and supervised learning and 4) reinforcement learning and imitation learning. We provide more
details in Section 4.

2 Related Work

A summary of previous upper bounds, together with lower bounds proved in this work, is provided in
Table 1. Some key assumptions are formally stated in Appendix A and Section 3. Our lower bounds
highlight that classical complexity measures in supervised learning including small approximation
error and margin, and standard assumptions in reinforcement learning including optimality gap
and deterministic systems, are not enough for efficient RL with function approximation. We need
additional assumptions, e.g., ones used in previous upper bounds, for efficient RL.

2.1 Previous Lower Bounds

Existing exponential lower bounds, to our knowledge, construct unstructured MDPs with an ex-
ponentially large state space and reduce a bandit problem with exponentially many arms to an
MDP [Krishnamurthy et al., 2016, Sun et al., 2017]. However, these lower bounds do not immediately
apply to MDPs whose transition models, value functions, or policies can be approximated with some
natural function classes, e.g., linear functions, neural networks, etc. The current work gives the first
set of lower bounds for RL with linear function approximation.

2.2 Previous Upper Bounds

We divide previous algorithms (with provable guarantees) into three classes: those that utilize
uncertainty-based bonuses (e.g. UCB variants or Thompson sampling variants); approximate dynamic
programming variants; and direct policy search-based methods (such as Conserve Policy Iteration
(CPI) [Kakade, 2003]) or policy gradient methods. The first class of methods include those based
on witness rank, Belman rank, and the Eluder dimension, while the latter two classes of algorithms
make assumptions either on concentrability coefficients or on distribution mismatch coefficients (see
Agarwal et al. [2019], Scherrer [2014] for discussions).

Uncertainty bonus-based algorithms. Now we discuss existing theoretical results on value-based
learning with function approximation. Wen and Van Roy [2013] showed that in deterministic systems,
if the optimalQ-function is within a pre-specified function class which has bounded Eluder dimension
(for which the class of linear functions is a special case), then the agent can learn the optimal policy
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Query Oracle RL Generative Model Known Transition

Previous Upper Bounds

Exact Linear Q∗ + DetMDP [Wen and Van Roy, 2013] 3 3 3

Exact Linear Q∗ + Bellman-Rank [Jiang et al., 2017] 3 3 3

Exact Linear Q∗ + Low Var + Gap [Du et al., 2019a] 3 3 3

Exact Linear Q∗ + Gap (Open Problem / Theorem D.1) ? 3 3

Exact Linear Qπ for all π (Open Problem / Theorem E.1) ? 3 3

Approx. Linear Qπ for all π +
Bounded Conc. Coeff. [Munos, 2005, Antos et al., 2008] 37 3 3

Approx. Linear Qπ for all π +
Bounded Dist. Mismatch Coeff. [Agarwal et al., 2019] 37 3 3

Lower Bounds (this work)

Approx. Linear Q∗+ DetMDP (Theorem 3.1) 7 7 7

Approx. Linear Qπ for all π + DetMDP(Theorem 3.1) 7 7 7

Exact Linear π∗ + Margin + Gap + DetMDP (Theorem 3.2) 7 7 7

Exact Linear Q∗ (Open Problem) ? ? ?

Table 1: Summary of sample-efficient learnability with linear function approximation. See
Section 2 for further discussion of related works cited in this table. RL, Generative Model, Known
Transition are defined in Appendix A.3. Exact Linear Q∗ (Assumption 3.1): Q∗ is a linear function.
Approx. Linear Q∗ (Assumption 3.1, δ = Ω(

√
H/d)): Q∗ is δ-well approximated by a linear

function. Exact Linear π∗ (Assumption 3.3): π∗ is exactly realized by a linear threshold function.
Margin (Assumption 3.4): the linear threshold function has a margin. Exact Linear Qπ for all π
(Assumption 3.2): Qπ is a linear function for all π. Approx. Linear Qπ for all π (Assumption 3.2,
δ = Ω(

√
H/d)): Qπ is δ-well approximated by a linear function for all π. DetMDP: the MDP has

deterministic transition model (see Appendix A.1). Bellman-rank: Definition 5 in Jiang et al. [2017].
Low Var: Assumption 1 in Du et al. [2019b]. Gap (Assumption A.1): the optimal actiob always has a
gap in value with the next best action. Bounded Concentrability Coefficient: Definition 2 in Antos
et al. [2008]. Bounded Distribution Mismatch Coefficient: Definition 3.3 in Agarwal et al. [2019]. 3:
there exists an algorithm with polynomial sample complexity to find a near-optimal policy. 37: either
requires certain conditions on the data collection policy [Munos, 2005, Antos et al., 2008] or access to
an initial state distribution with favorable properties Agarwal et al. [2019]. 7: an exponential number
of samples is required. ?: open problem.

using a polynomial number of samples. This result has recently been generalized by Du et al. [2019a]
which can deal with stochastic reward and low variance transition but requires strictly positive
optimality gap. As we listed in Table 1, it is an open problem whether the condition that the optimal
Q-function is linear itself is sufficient for efficient RL.

Li et al. [2011] proposed a Q-learning algorithm which requires the Know-What-It-Knows oracle.
However, it is in general unknown how to implement such oracle in practice. Jiang et al. [2017]
proposed the concept of Bellman Rank to characterize the sample complexity of value-based learning
methods and gave an algorithm that has polynomial sample complexity in terms of the Bellman Rank,
though the proposed algorithm is not computationally efficient. Bellman rank is bounded for a wide
range of problems, including MDP with small number of hidden states, linear MDP, LQR, etc. Later
work gave computationally efficient algorithms for certain special cases [Dann et al., 2018, Du et al.,
2019a, Yang and Wang, 2019b, Jin et al., 2019]. Recently, Witness rank, a generalization of Bellman
rank to model-based methods, is studied in Sun et al. [2019].

Approximate dynamic programming-based algorithms. We now discuss approximate dynamic
programming-based results characterized in terms of the concentrability coefficient. While classical
approximate dynamic programming results typically require `∞-bounded errors, the notion of
concentrability (originally due to [Munos, 2005]) permits sharper bounds in terms of average case
function approximation error, provided that the concentrability coefficient is bounded (e.g. see Munos
[2005], Szepesvári and Munos [2005], Antos et al. [2008], Geist et al. [2019]). Under the assumption
that this problem-dependent parameter is bounded, Munos [2005], Szepesvári and Munos [2005]
and Antos et al. [2008] provided sample complexity and error bounds for approximate dynamic
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programming methods when there is a data collection policy (under which value-function fitting
occurs) that induces a finite concentrability coefficient. The assumption that the concentrability
coefficient is finite is in fact quite limiting. See Chen and Jiang [2019] for a more detailed discussion
on this quantity.

Direct policy search-based algorithms. Stronger guarantees over approximate dynamic
programming-based algorithms can be obtained with direct policy search-based methods, where
instead of having a bounded concentrability coefficient, one only needs to have a bounded distribution
mismatch coefficient. The latter assumption requires the agent to have access to a “good” initial state
distribution (e.g. a measure which has coverage over where an optimal policy tends to visit); note
that this assumption does not make restrictions over the class of MDPs. There are two classes of algo-
rithms that fall into this category. First, there is Conservative Policy Iteration [Kakade and Langford,
2002], along with Policy Search by Dynamic Programming (PSDP) [Bagnell et al., 2004], and other
boosting-style of policy search-based methods Scherrer and Geist [2014], Scherrer [2014], which
have guarantees in terms of bounded distribution mismatch ratio. Second, more recently, Agarwal
et al. [2019] showed that policy gradient styles of algorithms also have comparable guarantees; the
results also directly imply the learnability results for the “Approx. Linear Qπ for all π” row in Table 1.
Similar guarantees can be obtained with CPI (and its variants) with comparable assumptions.

3 Main Results

In this section we formally present our lower bounds. Some definitions are deferred to Appendix A,
and the formal proofs is given in Appendix B.

3.1 Lower Bound for Value-based Learning

We first present our lower bound for value-based learning. A common assumption is that the Q-
function can be predicted well by a linear function of the given features (representation) [Bertsekas
and Tsitsiklis, 1996]. Formally, the agent is given a feature extractor φ : S ×A → Rd which can be
hand-crafted or a pre-trained neural network that transforms a state-action pair to a d-dimensional
embedding. The following assumption states that the given feature extractor can be used to predict
the Q-function with approximation error at most δ using a linear function.
Assumption 3.1 (Q∗ Realizability). There exists δ > 0 and θ0, θ1, . . . , θH−1 ∈ Rd such that for any
h ∈ [H] and any (s, a) ∈ Sh ×A, |Q∗h (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

Here δ is the approximation error, which indicates the quality of the representation. If δ = 0, then
Q-function can be perfectly predicted by a linear function of φ (·, ·). In general, δ becomes smaller
as we increase the dimension of φ, since larger dimension usually has more expressive power. When
the feature extractor is strong enough, previous papers [Chen and Jiang, 2019, Farahmand, 2011]
assume that linear functions of φ can approximate the Q-function of any policy.
Assumption 3.2 (Value Completeness). There exists δ > 0, such that for any h ∈ [H] and any policy
π, there exists θπh ∈ Rd such that for any (s, a) ∈ Sh ×A, |Qπh (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

In the theoretical reinforcement learning literature, Assumption 3.2 is often called the (approximate)
policy completeness assumption. This assumption is crucial in proving polynomial sample complexity
guarantee for value iteration type of algorithms [Chen and Jiang, 2019, Farahmand, 2011].

The following theorem shows when δ = Ω
(√

H
d

)
, the agent needs to sample exponential number of

trajectories to find a near-optimal policy.
Theorem 3.1 (Exponential Lower Bound for Value-based Learning). There is a family of MDPs
with |A| = 2 and a feature extractor φ that satisfies Assumption 3.2, such that any algorithm that
returns a 1/2-optimal policy with probability 0.9 needs to sample Ω

(
min{|S|, 2H , exp(dδ2/16)}

)
trajectories.

Note this lower bound also applies to MDPs that satisfy Assumption 3.1, since Assumption 3.2 is a
strictly stronger assumption. We would like to emphasize that since linear functions is a subclass
of more complicated function classes, e.g., neural networks, our lower bound also holds for these
function classes. Moreover, the assumption that |A| = 2 is only for simplicity. Our lower bound can
be easily generalized to the case that |A| > 2.
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3.2 Lower Bound for Policy-based Learning

Next we present our lower bound for policy-based learning. This class of methods use function
approximation on the policy and use optimization techniques, e.g., policy gradient, to find the optimal
policy. In this paper, we focus on linear policies on top of a given representation. A linear policy
π is a policy of the form π(sh) = arg maxa∈A 〈θh, φ(sh, a)〉 where sh ∈ Sh, φ (·, ·) is a given
feature extractor and θh ∈ Rd is the linear coefficient. Note that applying policy gradient on softmax
parameterization of the policy is indeed trying to find the optimal policy among linear policies.

Similar to value-based learning, a natural assumption for policy-based learning is that the optimal
policy is realizable.
Assumption 3.3 (π∗ Realizability). For any h ∈ [H], there exists θh ∈ Rd that satisfies for any
s ∈ Sh, we have π∗ (s) ∈ arg maxa 〈θh, φ (s, a)〉 .

Here we discuss another assumption. For learning a linear classifier in the supervised learning setting,
one can reduce the sample complexity significantly if the optimal linear classifier has a margin.
Assumption 3.4 (π∗ Realizability + Margin). We assume φ (s, a) ∈ Rd satisfies ‖φ(s, a)‖2 = 1
for any (s, a) ∈ S × A. For any h ∈ [H], there exists θh ∈ Rd with ‖θh‖2 = 1 and 4 >
0 such that for any s ∈ Sh, there is a unique optimal action π∗(s), and for any a 6= π∗(s),
〈θh, φ (s, π∗(s))〉 − 〈θh, φ (s, a)〉 ≥ 4.

Here we restrict the linear coefficients and features to have unit norm for normalization. Note that
Assumption 3.4 is strictly stronger than Assumption 3.3. Now we present our result for linear policy.
Theorem 3.2 (Exponential Lower Bound for Policy-based Learning). There is an absolute constant
40, such that for any 4 ≤ 40, there is a family of MDPs and a feature extractor φ that satisfy
Assumption A.1 with ρ = 1

2min{H,d} and Assumption 3.4, such that any algorithm that returns a
1/4-optimal policy with probability at least 0.9 needs to sample Ω

(
min{2H , 2d}

)
trajectories.

Compared with Theorem 3.1, Theorem 3.2 is even more pessimistic, in the sense that even with
perfect representation with benign properties, the agent still needs to sample exponential number of
samples. It also suggests that policy-based learning could be very different from supervised learning.

4 Discussion

In this section we discuss implications of our lower bounds.

Perfect representation vs. good-but-not-perfect representation. For value-based learning in
deterministic systems, Wen and Van Roy [2013] showed polynomial sample complexity upper bound
when the representation can perfectly predict the Q-function. In contrast, if the representation is only
able to approximate the Q-function, then the agent requires exponential number of trajectories. This
exponential separation demonstrates a provable exponential benefit of better representation.

Value-based learning vs. policy-based learning. Note that if the optimal Q-function can be
perfectly predicted by the provided representation, then the optimal policy can also be perfectly
predicted using the same representation. Since Wen and Van Roy [2013] showed polynomial sample
complexity upper bound when the representation can perfectly predict the Q-function, our lower
bound on policy-based learning thus demonstrates that the ability of predicting the Q-function is
much stronger than that of predicting the optimal policy.

Supervised learning vs. reinforcement learning. For policy-based learning, if H = 1, the problem
becomes learning a linear classifier, for which there are polynomial sample complexity upper bounds.
For policy-based learning, the agent needs to learn H linear classifiers sequentially. Our lower bound
on policy-based learning shows the sample complexity dependency on H is exponential.

Imitation learning vs. reinforcement learning. In imitation learning (IL), the agent can observe
trajectories induced by the optimal policy (expert). If the optimal policy is linear in the given
representation, it can be shown that the simple behavior cloning algorithm only requires polynomial
number of samples to find a near-optimal policy [Ross et al., 2011]. Our Theorem 3.2 shows if the
agent cannot observe expert’s behavior, then it requires exponential number of samples. Therefore,
our lower bound shows there is an exponential separation between policy-based RL and IL when
function approximation is used.
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A Preliminaries

Throughout this paper, for a given integer H , we use [H] to denote the set {0, 1, . . . ,H − 1}.

A.1 Episodic Reinforcement Learning

Let M = (S,A, H, P,R) be an Markov Decision Process (MDP) where S is the state space,
A is the action space whose size is bounded by a constant, H ∈ Z+ is the planning horizon,
P : S×A → 4 (S) is the transition function which takes a state-action pair and returns a distribution
over states and R : S ×A → 4 (R) is the reward distribution. Without loss of generality, we assume
a fixed initial state s05. A policy π : S → 4(A) prescribes a distribution over actions for each
state. The policy π induces a (random) trajectory s0, a0, r0, s1, a1, r1, . . . , sH−1, aH−1, rH−1 where
a0 ∼ π(s0), r0 ∼ R(s0, a0), s1 ∼ P (s0, a0), a1 ∼ π(s1), etc. To streamline our analysis, for each
h ∈ [H], we use Sh ⊆ S to denote the set of states at level h, and we assume Sh do not intersect
with each other. We also assume

∑H−1
h=0 rh ∈ [0, 1] almost surely. Our goal is to find a policy π that

maximizes the expected total reward E
[∑H−1

h=0 rh | π
]
. We use π∗ to denote the optimal policy. We

say a policy π is ε-optimal if E
[∑H−1

h=0 rh | π
]
≥ E

[∑H−1
h=0 rh | π∗

]
− ε.

In this paper we prove lower bounds for deterministic systems, i.e., MDPs with deterministic
transition P , deterministic reward R. In this setting, P and R can be regarded as functions instead
of distributions. Since deterministic systems are special cases of general stochastic MDPs, lower
bounds proved in this paper still hold for more general MDPs.

A.2 Q-function, V -function and Optimality Gap

An important concept in RL is the Q-function. Given a policy π, a level h ∈ [H] and a state-action
pair (s, a) ∈ Sh ×A, the Q-function is defined as Qπh(s, a) = E

[∑H−1
h′=h rh′ | sh = s, ah = a, π

]
.

For simplicity, we denote Q∗h(s, a) = Qπ
∗

h (s, a). It will also be useful to define the value function

of a given state s ∈ Sh as V πh (s) = E
[∑H−1

h′=h rh′ | sh = s, π
]
. For simplicity, we denote V ∗h (s) =

V π
∗

h (s). Throughout the paper, for the Q-function Qπh and Q∗h and the value function V πh and V ∗h ,
we may omit h from the subscript when it is clear from the context.

In addition to these definitions, we list below an important assumption, the optimality gap assumption,
which is widely used in reinforcement learning and bandit literature. To state the assumption, we
first define the function gap : S ×A → R as gap(s, a) = maxa′∈AQ∗(s, a′)−Q∗(s, a). Now we
formally state the assumption.
Assumption A.1 (Optimality Gap). There exists ρ > 0 such that ρ ≤ gap(s, a) for all (s, a) ∈ S×A
with gap(s, a) > 0.

Here, ρ is the smallest reward-to-go difference between the best set of actions and the rest. Recently,
Du et al. [2019b] gave a provably efficient Q-learning algorithm based on this assumption and
Simchowitz and Jamieson [2019] showed that with this condition, the agent only incurs logarithmic
regret in the tabular setting.

A.3 Query Models

Here we discuss three possible query oracles interacting with the MDP.

• RL: The most basic and weakest query oracle for MDP is the standard reinforcement learning
query oracle where the agent can only interact with the MDP by choosing actions and observe the
next state and the reward.

• Generative Model: A stronger query model assumes the agent can transit to any state [Kearns
and Singh, 2002, Kakade, 2003, Sidford et al., 2018]. This query model is available in certain
robotic applications where one can control the robot to reach the target state.
5Some papers assume the initial state is sampled from a distribution P1. Note this is equivalent to assuming

a fixed initial state s0, by setting P (s0, a) = P1 for all a ∈ A and now our state s1 is equivalent to the initial
state in their assumption.
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• Known Transition: The strongest query model considered is that the agent can not only transit to
any state, but it also knows the whole transition. In this model, only the reward is unknown.

In this paper, we will prove lower bounds for the strongest Known Transition query oracle. Therefore,
our lower bounds also apply to RL and Generative Model query oracles.

B Proofs of Lower Bounds

In this section we present formal proofs of our lower bounds. We first introduce the INDEX-
QUERY problem, which will be useful in our lower bound arguments.
Definition B.1 (INDEX-QUERY). In the INDQn problem, there is an underlying integer i∗ ∈ [n].
The algorithm sequentially (and adaptively) outputs guesses i ∈ [n] and queries whether i = i∗. The
goal is to output i∗, using as few queries as possible.
Definition B.2 (δ-correct algorithms). For a real number δ ∈ (0, 1), we say a randomized algorithm
A is δ-correct for INDQn, if for any underlying integer i∗ ∈ [n], with probability at least 1− δ, A
outputs i∗.

The following theorem states the query complexity of INDQn for 0.1-correct algorithms, whose proof
is provided in Appendix C.1.
Theorem B.1. Any 0.1-correct algorithm A for INDQn requires at least 0.9n queries in the worst
case.

B.1 Proof of Lower Bound for Value-based Learning

In this section we prove Theorem 3.1. We need the following existential result, whose proof is
provided in Appendix C.2.
Lemma B.1. For any n > 2, there exists a set of vectors P = {p0, p1, . . . , pn−1} ⊂ Rd with
d ≥ d8 lnn/ε2e such that

1. ‖pi‖2 = 1 for all 0 ≤ i ≤ n− 1;

2. |〈pi, pj〉| ≤ ε for any 0 ≤ i, j ≤ n− 1 with i 6= j.

Now we give the construction of the hard MDP instances. We first define the transitions and the
reward functions. In the hard instances, both the rewards and the transitions are deterministic. There
are H levels of states, and level h ∈ [H] contains 2h distinct states. Thus we have |S| = 2H − 1. If
|S| > 2H − 1 we simply add dummy states to the state space S. We use s0, s1, . . . , s2H−2 to name
these states. Here, s0 is the unique state in level h = 0, s1 and s2 are the two states in level h = 1,
s3, s4, s5 and s6 are the four states in level h = 2, etc. There are two different actions, a1 and a2, in
the MDPs. For a state si in level h with h < H − 1, playing action a1 transits state si to state s2i+1

and playing action a2 transits state si to state s2i+2, where s2i+1 and s2i+2 are both states in level
h+ 1. See Figure 1 for an example with H = 3.

In our hard instances, r(s, a) = 0 for all (s, a) pairs except for a unique state s in level H − 2 and a
unique action a ∈ {a1, a2}. It is convenient to define r(s′) = r(s, a), if playing action a transits s to
s′. For our hard instances, we have r(s) = 1 for a unique node s in level H − 1 and r(s) = 0 for all
other nodes.

Now we define the features map φ(·, ·). Here we assume d ≥ 2 · d8 ln 2 ·H/δ2e, and otherwise we
can simply decrease the planning horizon so that d ≥ 2 · d8 ln 2 ·H/δ2e. We invoke Lemma B.1 to
get a set P = {p0, p1, . . . , p2H−1} ⊂ Rd/2. For each state si, φ(si, a1) ∈ Rd is defined to be [pi; 0],
and φ(si, a2) ∈ Rd is defined to be [0; pi]. This finishes the definition of the MDPs. We now show
that no matter which state s in level H − 1 satisfies r(s) = 1, the resulting MDP always satisfies
Assumption 3.2.

Verifying Assumption 3.2. By construction, for each level h ∈ [H], there is a unique state sh
in level h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) pairs such that
s 6= sh or a 6= ah, it is satisfied that Q∗(s, a) = 0. For a given level h and policy π, we take θπh to be
Qπ(sh, ah) · φ(sh, ah). Now we show that |Qπ(s, a)− 〈θπh , φ(s, a)〉| ≤ δ for all states s in level h
and a ∈ {a1, a2}.
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s0

s1

s3

Q∗(s1, a1) = 0

s4

Q∗(s1, a2) = 0

Q∗(s0, a1) = 0

s2

s5

Q∗(s2, a1) = 1

s6

Q∗(s2, a2) = 0

Q∗(s0, a2) = 1

Figure 1: An example with H = 3. For this example, we have r(s5) = 1 and r(s) = 0 for all other
states s. The unique state s5 which satisfies r(s) = 1 is marked as dash in the figure. The induced
Q∗ function is marked on the edges.

Case I: a 6= ah. In this case, we have Qπ(s, a) = 0 and 〈θπh , φ(s, a)〉 = 0, since θπh and φ(s, a) do
not have a common non-zero coordinate.

Case II: a = ah and s 6= sh. In this case, by the second property of P in Lemma B.1 and the fact
that Qπ(sh, ah) ≤ 1, we have |〈θπh , φ(s, a)〉| ≤ δ. Meanwhile, we have Qπ(s, a) = 0.

Case III: a = ah and s = sh. In this case, we have 〈θπh , φ(s, a)〉 = Qπ(sh, ah).

Finally, we prove any algorithm that solves these MDP instances and succeeds with probability
at least 0.9 needs to sample at least 9

20 · 2
H trajectories. We do so by providing a reduction from

INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we show that
such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗ in INDQ2H−1 ,
there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1
0 otherwise

.

Notice that for all MDPs that we are considering, the transition and features are always the same.
Thus, the only thing that the learner needs to learn by interacting with the environment is the reward
value. Since the reward value is non-zero only for states in level H − 1, each time the algorithm for
solving MDP samples a trajectory that ends at state si where si is a state in level H − 1, we query
whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 , and return reward value 1 if i∗ = i − 2H−1 + 1
and 0 otherwise. If the algorithm is guaranteed to return a 1/2-optimal policy, then it must be able to
find i∗.

B.2 Proof of Lower Bound for Policy-based Learning

In this section, we present our hardness results for linear policy learning. In order to prove Theo-
erem 3.2, we need the following geometric lemma whose proof is provided in Appendix C.3.
Lemma B.2. Let d ∈ N+ be a positive integer and ε ∈ (0, 1) be a real number. Then there exists a
set of points N ⊂ Sd−1 with size |N | = Ω(1/εd/2) such that for every point x ∈ N ,

inf
y∈conv(N\{x})

‖x− y‖2 ≥ ε/2.

Now we are ready to prove Theorem 3.2. In the proof we assume H = d, since otherwise we can
take H and d to be min{H, d} by decreasing the planning horizon H or adding dummy dimensions
to the feature extractor φ.

We define a set of 2H−1 deterministic MDPs. The transitions of these hard instances are exactly the
same as those in Appendix B.1. The main difference is in the definition of the feature map φ(·, ·)
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V ∗(s0) = 1/2

V ∗(s1) = 1/2

r(s3) = 1/2 r(s4) = 1/3

V ∗(s2) = 1/3

r(s5) = 1/3 r(s6) = 1/6

Figure 2: An example with H = 3.

V ∗(s0) = 1

V ∗(s1) = 1/2

r(s3) = 1/2 r(s4) = 1/3

V ∗(s2) = 1

r(s5) = 1 r(s6) = 1/6

Figure 3: An example with H = 3. Here we define a new MDP by changing r(s5) from its original
value 1/3 to 1. This also affects the value of V (s2) and V (s0).

and the reward function. Again in the hard instances, r(s, a) = 0 for all s in the first H − 2 levels.
Using the terminology in Appendix B.1, we have r(s) = 0 for all states in the first H − 1 levels.
Now we define r(s) for states s in level H − 1. We do so by recursively defining the optimal value
function V ∗(·). The initial state s0 in level 0 satisfies V ∗(s0) = 1/2. For each state si in the first
H − 2 levels, we have V ∗(s2i+1) = V ∗(si) and V ∗(s2i+2) = V ∗(si)− 1/2H . For each state si in
the level h = H − 2, we have r(s2i+1) = V ∗(si) and r(s2i+2) = V ∗(si)− 1/2H . This implies that
ρ = 1/2H . In fact, this implies a stronger property that each state has a unique optimal action. See
Figure 2 for an example with H = 3.

To define 2H−1 different MDPs, for each state s in levelH−1 of the MDP defined above, we define a
new MDP by changing r(s) from its original value to 1. This also affects the definition of the optimal
V function for states in the first H − 1 levels. In particular, for each level i ∈ {0, 1, 2, . . . ,H − 2},
we have changed the V value of a unique state in level i from its original value (at most 1/2) to 1. By
doing so we have defined 2H−1 different MDPs. See Figure 3 for an example with H = 3.

Now we define the feature function φ(·, ·). We invoke Lemma B.2 with ε = 84 and d = H/2− 1.
Since4 is sufficiently small, we have |N | ≥ 2H . We use P = {p0, p2, . . . , p2H−1} ⊂ RH/2−1 to
denote an arbitrary subset of N with cardinality 2H . By Lemma B.2, for any p ∈ P , the distance
between p and the convex hull of P \ {p} is at least 44. Thus, there exists a hyperplane L which
separates p and P \ {p}, and for all points q ∈ P , the distance between q and L is at least 24.
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Equivalently, for each point p ∈ P , there exists np ∈ RH/2−1 and op ∈ R such that ‖np‖2 = 1,
|op| ≤ 1 and the linear function fp(q) = 〈q, np〉 + op satisfies fp(p) ≥ 24 and fp(q) ≤ −24
for all q ∈ P \ {p}. Given the set P = {p0, p2, . . . , p2H−1} ⊂ RH/2−1, we construct a new set
P = {p0, p2, . . . , p2H−1} ⊂ RH/2, where pi = [pi; 1] ∈ RH/2. Thus ‖pi‖2 =

√
2 for all pi ∈ P .

Clearly, for each p ∈ P , there exists a vector ωp ∈ RH/2 such that 〈ωp, p〉 ≥ 24 and 〈ωp, q〉 ≤ −24
for all q ∈ P \ {p}. It is also clear that ‖ωp‖2 ≤

√
2. We take φ(si, a1) = [0; pi] ∈ RH and

φ(si, a2) = [pi; 0] ∈ RH .

We now show that all the 2H−1 MDPs constructed above satisfy the linear policy assumption. Namely,
we show that for any state s in level H − 1, after changing r(s) to be 1, the resulting MDP satisfies
the linear policy assumption. As in Appendix B.1, for each level h ∈ [H], there is a unique state
sh in level h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) pairs such
that s 6= sh or a 6= ah, it is satisfied that Q∗(s, a) = 0. For each level h, if ah = a1, then we
take (θh)H/2 = 1 and (θh)H = −1, and all other entries in θh are zeros. If ah = a2, we use p
to denote the vector formed by the first H/2 coordinates of φ(sh, a2). By construction, we have
p ∈ P . We take θh = [ωp; 0] in this case. In any case, we have ‖θh‖2 ≤

√
2. Now for each level

h, if ah = a1, then for all states s in level h, we have π∗(s) = a1. In this case, 〈φ(s, a1), θh〉 = 1
and 〈φ(s, a2), θh〉 = −1 for all states in level h, and thus Assumption 3.4 is satisfied. If ah = a2,
then π∗(sh) = a2 and π∗(s) = a1 for all states s 6= sh in level h. By construction, we have
〈θh, φ(s, a1)〉 = 0 for all states s in level h, since θh and φ(s, a1) do not have a common non-zero
entry. We also have 〈θh, φ(sh, a2)〉 ≥ 24 and 〈θh, φ(s, a2)〉 ≤ −24 for all states s 6= sh in level h.
Finally, we normalize all θh and φ(s, a) so that they all have unit norm. Since ‖φ(s, a)‖2 =

√
2 for

all (s, a) pairs before normalization, Assumption 3.4 is still satisfied after normalization.

Finally, we prove any algorithm that solves these MDP instances and succeeds with probability
at least 0.9 needs to sample at least Ω(2H) trajectories. We do so by providing a reduction from
INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we show that
such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗ in INDQ2H−1 ,
there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1
the original (recursively defined) value otherwise

.

Notice that for all MDPs that we are considering, the transition and features are always the same.
Thus, the only thing that the learner needs to learn by interacting with the environment is the reward
value. Since the reward value is non-zero only for states in level H − 1, each time the algorithm for
solving MDP samples a trajectory that ends at state si where si is a state in level H − 1, we query
whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 , and return reward value 1 if i∗ = i − 2H−1 + 1
and it original reward value otherwise. If the algorithm is guaranteed to return a 1/4-optimal policy,
then it must be able to find i∗.

C Technical Proofs

C.1 Proof of Theorem B.1

Proof. The proof is a straightforward application of Yao’s minimax principle Yao [1977]. We provide
the full proof for completeness.

Consider an input distribution where i∗ is drawn uniformly at random from [n]. Suppose there is
a 0.1-correct algorithm for INDQn with worst case query complexity T such that T < 0.9n. By
averaging, there is a deterministic algorithm A′ with worst case query complexity T , such that

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] ≥ 0.9.

We may assume that the sequence of queries made byA′ is fixed. This is because (i)A′ is deterministic
and (ii) before A′ correctly guesses i∗, all responses that A′ receives are the same (i.e., all guesses
are incorrect). We use S = {s1, s2, . . . , sm} to denote the sequence of queries made by A′. Notice
that m is the worst case query complexity of A′. Suppose m < 0.9n, there exist 0.1n distinct i ∈ [n]
such that A′ will never guess i, and will be incorrect if i∗ equals i, which implies

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] < 0.9.
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C.2 Proof of Lemma B.1

We need the following tail inequality for random unit vectors, which will be useful for the proof of
Lemma B.1.
Lemma C.1 (Lemma 2.2 in Dasgupta and Gupta [2003]). For a random unit vector u in Rd and
β > 1, we have

Pr
[
u21 ≥ β/d

]
≤ exp((1 + lnβ − β)/2).

In particular, when β ≥ 6,we have

Pr
[
u21 > β/d

]
≤ exp(−β/4).

Proof of Lemma B.1. Let Q = {q1, q2, . . . , qn} be a set of n independent random unit vectors in Rd
with d ≥ d8 lnn/ε2e. We will prove that with probability at least 1/2, Q satisfies the two desired
properties as stated in Lemma B.1. This implies the existence of such set P .

It is clear that ‖qi‖2 = 1 for all i ∈ [n], since each qi is drawn from the unit sphere. We now prove
that for any i, j ∈ [n] with i 6= j, with probability at least 1− 1

n2 , we have |〈qi, qj〉| ≤ ε. Notice that
this is sufficient to prove the lemma, since by a union bound over all the

(
n
2

)
= n(n− 1)/2 possible

pairs of (i, j), this implies that Q satisfies the two desired properties with probability at least 1/2.

Now, we prove that for two independent random unit vectors u and v in Rd with d ≥ d8 lnn/ε2e,
with probability at least 1− 1

n2 , |〈u, v〉| ≤ ε. By rotational invariance, we assume that v is a standard
basis vector. I.e., we assume v1 = 1 and vi = 0 for all 1 < i ≤ d. Notice that now 〈u, v〉 is the
magnitude of the first coordinate of u. We finish the proof by invoking Lemma C.1 and taking
β = 8 lnn > 6.

C.3 Proof of Lemma B.2

Proof of Lemma B.2. Consider a
√
ε-packing N with size Ω(1/εd/2) on the d-dimensional unit

sphere Sd−1 (for the existence of such a packing, see, e.g., Lorentz [1966]). Let o be the origin. For
two points x, x′ ∈ Rd, we denote |xx′| := ‖x− x′‖2 the length of the line segment between x, x′.
Note that every two points x, x′ ∈ N satisfy |xx′| ≥

√
ε.

To prove the lemma, it suffices to show thatN satisfies the desired property. Consider a point x ∈ N ,
let A be a hyperplane that is perpendicular to x (notice that x is a also a vector) and separates x and
every other points in N . We let the distance between x and A be the largest possible, i.e., A contains
a point in N\{x}. Since x is on the unit sphere and N is a

√
ε-packing, we have that x is at least

√
ε

away from every point on the spherical cap not containing x, defined by the cutting plane A. More
formally, let b be the intersection point of the line segment ox and A. Then

∀y ∈
{
y′ ∈ Sd−s : 〈b, y′〉 ≤ ‖b‖22

}
: ‖x− y‖2 ≥

√
ε.

Indeed, by symmetry, ∀y ∈ {y′ ∈ Sd−1 : 〈b, y′〉 ≤ ‖b‖22
}

,

‖x− y‖2 ≥ ‖x− z‖2 ≥
√
ε.

where z ∈ N ∩ A. Notice that the distance between x and the convex hull of N\{x} is lower
bounded by the distance between x and A, which is given by |bx|. Consider the triangles defined by
x, z, o, b. We have bz ⊥ ox (note that bz lies inside A). By Pythagorean theorem, we have

|bz|2 + |bx|2 = |xz|2;

|bx|+ |bo| = |xo| = 1;

|bz|2 + |bo|2 = |oz|2 = 1.

Solve the above three equations for |bx|, we have

|bx| = |xz|2/2 ≥ ε/2

as desired.
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D Exact Linear Q∗ with Optimality Gap in Generative Model

In this section we prove the following theorem.

Theorem D.1. Under Assumption A.1 and Assumption 3.2 with δ = 0, in the Generative
Model query model, there is an algorithm that finds π∗ with poly

(
d,H, 1ρ

)
trajectories with

probability 0.99.

Proof of Theorem D.1. We first describe the algorithm. For each level h ∈ [H], the agent first
constructs a barycentric spanner Λh ,

{
φ(s1h, a

1
h), . . . φ(sdh, a

d
h)
}
⊂ Φh , {φ (s, a)}s∈Sh,a∈A. See

Awerbuch and Kleinberg [2008] for the definition of barycentric spanner and its construction. It
holds that any φ(s, a) with sh ∈ Sh, a ∈ A, we have c1s,a, . . . , c

d
s,a ∈ [−1, 1] such that φ(s, a) =∑d

i=1 c
i
s,aφ(sih, a

i
h).

The algorithm learns the optimal policy from h = H − 1 to h = 0. At any level h ∈ [H], we assume
the agent has learned the optimal policy π∗h′ at level h′ = h+ 1, . . . ,H − 1.

Now we present a procedure to learn the optimal policy at level h. At level h, the agent queries every
vector φ(sih, a

i
h) in Λh for poly

(
d, 1ρ

)
times and uses π∗h+1, . . . , π

∗
H−1 as the roll-out to get the

on-the-go reward. Note by the definition of π∗ and Q∗, the on-the-go reward is an unbiased sample of
Q∗(sih, a

i
h). We denote Q̂(sih, a

i
h) the average of these on-the-go rewards. By Hoeffding inequality,

it is easy to show with probability 1 − 0.01
H , for all i = 1, . . . , d,

∣∣∣Q̂(sih, a
i
h)−Q∗(sih, aih)

∣∣∣ ≤
poly

(
1
d , ρ
)
. Now we define our estimated Q∗ at level h as follow: for any (s, a) ∈ Sh × A,

Q̂ (s, a) =
∑d
i=1 c

i
s,aQ̂(sih, a

i
h). By the boundedness property of cs,a, we know for any (s, a) ∈

Sh × A,
∣∣∣Q̂ (s, a)−Q∗ (s, a)

∣∣∣ < ρ
2 . Note this implies the policy induced by Q̂ is the same as π∗.

We finish the proof by induction.

E Linear Qπ for all π in Generative Model

In this section we present and prove the following theorem.

Theorem E.1. Under Assumption 3.2 with δ = 0, in the Generative Model query model, there is
an algorithm that finds an ε-optimal policy π̂ using poly

(
d,H, 1ε

)
trajectories with probability 0.99.

Proof of Theorem E.1. The algorithm is the same as the one in Theorem D.1 We only need to change
the analysis. Suppose we are learning at level h and we have learned policies πh+1, . . . , πH−1 for
level h+ 1, h+ 2, . . . ,H − 1, respectively. Because we use the roll-out policy πh+1 ◦ · · · ◦ πH−1,
by Assumption 3.2 and the property of barycentric spanner, using the same argument in the proof of
Theorem D.1, we know with probability 1− 0.01/H , we can learn a policy πh with poly

(
d,H, 1ε

)
samples such that for any s ∈ Sh, we know πh is only sub-optimal by ε

H from the π̃h where π̃h is the
optimal policy at level h such that πh+1 ◦ · · · ◦ πH−1 is the fixed roll-out policy.

Now we can bound the sub-optimality of π̂ , π0 ◦ · · · ◦ πH−1:

V π0◦π1◦···◦πH−1 (s1)− V π
∗
0◦π∗1◦···◦π∗H−1 (s1)

= V π0◦π1◦···◦πH−1 (s1)− V π̃0◦π1◦···◦πH−1 (s1)

+V π̃0◦π1◦···◦πH−1 (s1)− V π
∗
0◦π1◦···◦πH−1(s1)

+V π
∗
0◦π1◦···◦πH−1(s1)− V π

∗
0◦π∗1◦···◦π∗H−1 (s1) .

The first term is at least − ε
H by our estimation bound, The second term is positive by definition of π̃0.

We can just recursively apply this argument to obtain

V π0◦π1◦···◦πH−1 (s1)− V π
∗
0◦π∗1◦···◦π∗H−1 (s1) ≥V π

∗
0◦π1◦···◦πH−1(s1)− V π

∗
0◦π∗1◦···◦π∗H−1 (s1)− ε

H
.

≥V π
∗
0◦π∗1◦···◦πH−1(s1)− V π

∗
0◦π∗1◦···◦π∗H−1 (s1)− 2ε

H
.
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≥ . . .
≥− ε.

F Lower Bound for Model-based Learning

Here we present our lower bound for model-based learning. Recently, Yang and Wang [2019b]
proposed the linear transition assumption which was later studied in Yang and Wang [2019a], Jin et al.
[2019]. Under this assumption, Yang and Wang [2019b,a], Jin et al. [2019] developed algorithms
with polynomial sample complexity. Again, we assume the agent is given a feature extractor
φ : S ×A → Rd, and now we state the assumption formally as follow.
Assumption F.1 (Approximate Linear MDP). There exists δ > 0, β0, β1, . . . , βH−1 ∈ Rd
and ψ : S → Rd such that for any h ∈ [H − 1], (s, a) ∈ Sh × A and s′ ∈ Sh+1,
|P (s′ | s, a)− 〈ψ(s′), φ (s, a)〉| ≤ δ and |E[R(s, a)]− 〈βh, φ(s, a)〉| ≤ δ.

It has been shown in Yang and Wang [2019b,a], Jin et al. [2019] if ‖P (· | s, a)− 〈ψ(·), φ (s, a)〉‖1
is bounded, then the problem admits an algorithm with polynomial sample complexity. Now we show

that when δ = Ω
(√

H
d

)
in Assumption F.1, the agent needs exponential number of samples to find

a near-optimal policy.
Theorem F.1 (Exponential Lower Bound for Linear Transition Model). There exists a family of
MDPs with |A| = 2 and a feature extractor φ that satisfy Assumption F.1, such that any algorithm that
returns a 1/2-optimal policy with probability 0.9 needs to sample Ω

(
min{|S|, 2H , exp(dδ2/16)}

)
trajectories.

Proof of Theorem F.1. We use the same construction in the proof of Theorem 3.1. Note we just need
to verify that the construction satisfies Assumption F.1. By construction, for all h ∈ {1, 2, . . . ,H−1},
for each state s′ in level h, there exists a unique (s, a) pair such that playing action a transits s to
s′, and we take ψ(s′) = φ(s, a). We also take βh = 0 for h ∈ {0, 1, . . . ,H − 4, H − 3} and
βH−2 = φ(s, a) where (s, a) is the unique pair with R(s, a) = 1. Now, according to the design of
φ(·, ·) and Lemma B.1, Assumption F.1 is satisfied.
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