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Abstract

We study catastrophic interference in reinforcement learning. Catastrophic inter-
ference is typically considered for multi-task learning. However, in reinforcement
learning, it could occur even in a single-task setting. To better understand catas-
trophic interference, we aim to quantify interference in reinforcement learning.
Finally, we empirically evaluate the proposed measure of interference in a classic
reinforcement learning environment.

1 Introduction

Generalization is a key issue in function approximation. It is important for an agent to generalize from
previous encountered samples to a larger subset of samples which have not been seen. Generalization
has been extensively studied in supervised learning, where we normally assume that we can sample
i.i.d. inputs {xi}Ni=1 from a fixed input distribution and the targets {yi}Ni=1 are sampled from a fixed
conditional distribution. Therefore, we can use the Empirical Risk Minimization (ERM) to find a
solution θ∗ = arg minθ

∑N
i=1 J(θ;xi, yi) where J is an objective function and θ is the parameter.

The assumption of i.i.d. inputs, however, does no hold in general. For example, in multi-task
learning, the agent continually faces new tasks. While learning on a new task, the learner can
forget previously learned information. This issue is called catastrophic interference. Catastrophic
interference is typically considered for multi-task learning [Kirkpatrick et al., 2017, Riemer et al.,
2018]. In reinforcement learning (with function approximation), it could occur even in a single-task
setting [Goodrich, 2015, Ghiassian et al., 2018] since (a) when an agent explores an environment, it
receives a sequence of observations, which are likely to be temporally correlated; (b) the agent is
changing its policy while learning, which makes the sequence of observations non-stationary; and (c)
the agent uses its own estimates as targets, which makes the target outputs non-stationary. If estimates
change incorrectly due to interference, there could be a cascading effect.

There are several works on quantifying and evaluating interference in reinforcement learning. How-
ever, most of the works study interference between multiple tasks (or multiple objectives) [Riemer
et al., 2018, Schaul et al., 2019]. In this paper, we aim to quantify interference in a single-task setting,
and investigate how it affects the stability and the control performance.

2 Background

In reinforcement learning (RL), an agent interacts with its environment, receiving observations and
selecting actions to maximize a reward signal. We assume the environment can be formalized as a
Markov decision process (MDP). An MDP is a tuple (S,A,Pr, R, γ) where S is a set of states, A is
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an set of actions, Pr : S × A× S → [0, 1] is the transition probability, R : S × A× S → R is the
reward function, and γ is the discount factor ∈ [0, 1] which define the relative value of future rewards.

Given a policy π, the value function is defined as

V π(s) := Eπ

[ ∞∑
k=0

γkRt+k+1|St = s

]
, ∀s ∈ S,

and the optimal value function is defined as

V ∗(s) := max
π

V π(s), ∀s ∈ S.

We define the Bellman optimality operator T : R|S| → R|S| as:

(TV )(s) := max
a∈A

∑
s′∈S

Pr(s, a, s′)[R(s, a, s′) + γV (s′)].

Note that V ∗ is the unique solution of the bellman equation TV = V . Therefore, to obtain the
optimal value function, we aim to find the fixed point of the Bellman optimality operator. If the
environment is deterministic, the optimality bellman operator T can be simply written as

(TV )(s) = max
a′∈A

R(s, a, s′) + γmax
a′

V (s′).

3 Defining Pairwise Interference

We begin by discussing interference in supervised learning, where we consider the pairwise inter-
ference between two samples. When we perform an update based on one sample, the update can
generalize to another sample positively (positive generalization), negatively (interference), or no
effect (no generalization). Then we extend the concept to reinforcement learning.

3.1 Quantifying Interference in Supervised Learning

In supervised learning, we consider a well-defined pointwise loss function J with parameter θ, and
we aim to find a parameter which minimize the expected loss

θ∗ = arg min
θ

E(x,y)∼p[J(θ;x, y)]

where p is a (fixed) data distribution.

We consider pairwise interference between two samples. Suppose we perform a SGD update with the
sample (xt, yt) at time t:

θt+1 = θt − α∇θtJ(θt;xt, yt)

where α is a step size. Given the update based on (xt, yt), we define the pairwise interference as the
change in the loss function for another sample (xi, yi) by

PI(θt; (xt, yt), (xi, yi)) := J(θt+1;xi, yi)− J(θt;xi, yi). (1)

and define the expected interference by

EI(θt; (xt, yt)) := E(xi,yi)∼p[PI(θt; (xt, yt), (xi, yi))]. (2)

Intuitively,EI quantifies how much the loss changes in expectation given one update on the parameter.
If EI is negative, we can expect the loss function decreases in expectation, so it generalizes positively.
If EI is positive, the loss function increases in expectation, so interference occurs. The update on
(xt, yt) results in unlearning of other samples in expectation.

We can approximate equation (1) by a Taylor expansion:

PI(θt; (xt, yt), (xi, yi)) ≈ ∇θtJ(θt;xi, yi)
>(θt+1 − θt)

= −α∇θtJ(θt;xi, yi)
>∇θtJ(θt;xt, yt). (3)
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This analysis provides some insight into previous definition of interference and generalization. Riemer
et al. [2018] define pairwise measures of transfer and interference between two examples (xt, yt) and
(xi, yi). If

∇θtJ(θt;xt, yt)
>∇θtJ(θt;xi, yi) > 0

then transfer occurs. If

∇θtJ(θt;xt, yt)
>∇θtJ(θt;xi, yi) < 0

then interference occurs. In parallel with our work, Fort et al. [2019] define stiffness as

E[sign(∇θtJ(θt;xt, yt),∇θtJ(θt;xi, yi))] or E[cos(∇θtJ(θt;xt, yt),∇θtJ(θt;xi, yi))].

3.2 Quantifying Interference in Policy Evaluation

Given a policy π, we denoteQπ as the true action-value function andQθ as the estimated action-value
function, parameterized by the parameter θ. Similar to supervised learning, we have an loss function
for policy evaluation. We want to minimize the mean square value error (MSVE), defined as:

Es∼dπ(·),a∼π(·|s)[J(θ; s, a)]

where

J(θ; s, a) := (Qπ(s, a)−Qθ(s, a))
2

and dπ is the stationary distribution under π.

In reinforcement learning, we usually use some approximation to the true value as our target. We
denote the target of the t-th example (st, at) by Ut ∈ R. When we perform an update on (st, at), the
update is computed by

θt+1 = θt + αδ(st, at)∇θtQθt(st, at)
where δ(st, at) = Ut −Qθt(st, at). Similar to equation (3), the pairwise interference for between
two samples can be approximated by

PIt(θt; (st, at), (si, ai)) := J(θt+1; si, ai)− J(θt; si, ai)

≈ αδ(st, at)J(θt; si, ai)∇θtQθt(st, at)>∇θtQθt(si, ai). (4)

and

EI(θt; (st, at)) := Es∼dπ(·),a∼π(·|s)[PI(θt; (st, at), (s, a))].

The term ∇θtQθt(st, at)
>∇θtQθt(si, ai) is the neural tangent kernel (NTK) [Jacot et al., 2018] of

the Q function, which has been used to analyze generalization in the Q function across state-action
pairs [Achiam et al., 2019]. However, to determine whether positive generalization or interference
occurs, we also need to know δ(st, at) and J(θt; si, ai).

The PI provides a way to think about interference in reinforcement learning. When we update the
value of a state which has high PI with many other states, the update might cause instability in
training. In linear function approximation, to make PI small, we want orthogonal feature vectors. If
we force the feature vectors to be non-negative, then they are likely to be sparse. The insight matches
the finding in Liu et al. [2019] that sparse representation can mitigate interference in reinforcement
learning.

3.3 Quantifying Interference in Control

For control tasks, we aim to minimize the performance loss of the greedy policy πθ with respect to
the current estimation Qθ:

arg min
θ

Es∼ν [J(θ; s)]

where

J(θ; s) := (Q∗(s, π∗(s))−Qπθ (s, πθ(s)))2

= (V ∗(s)− V πθ (s))2
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and ν is a performance-measuring distribution on S [Farahmand, 2011], which is typically chosen as
the initial state distribution.

Given a update ∆θt = θt+1 − θt on the parameter, we can define expected interference, similar to
equation (2)1, as

EI(θt; ∆θt) := Es∼v[J(θt + ∆θt; s)− J(θt; s)].

This performance loss, however, is difficult to compute because both V ∗ and V πθt are unknown2.
Fortunately, there are some upper bounds on the performance loss [Williams, 1993, Farahmand et al.,
2010, Munos, 2007]. Here, we adapt the bound derived in Munos [2007].

Definition 1 (State Distribution Concentration Coefficient) Let π1, ..., πm be a sequence of poli-
cies. For any integer m ≥ 1, define c(m) ∈ R+ ∪ {∞} by

c(m) = max
π1,...πm,y∈S

(νPπ1 ...Pπm)(y)

µ(y)
.

(let c(m) =∞ if νPπ1 ...Pπm is not absolutely continuous w.r.t µ). We define c(0) = 1. Moreover,
we define C1(ν, µ) ∈ R+ ∪ {∞}, the discounted future state distribution concentration coefficients,
by

C(ν, µ) := (1− γ)

∞∑
m=0

γmc(m).

Theorem 1 (Performance Bound on the Bellman residual) Let Q ∈ R|S|×|A|, π be a greedy pol-
icy with respect to Q, i.e. π(s) = argmaxaQ(s, a), and V (s) = Q(s, π(s)) for all s ∈ S . Let ν and
µ be two probability measures on S. Then

||V ∗ − V π||ν ≤
2

1− γ
[C(ν, µ)]1/2||TV − V ||µ,

where ||V ||d is a d-weighted l2-norm of the vector V . Moreover, for all s ∈ S and a ∈ A,

(TV )(s)− V (s) = (TQ)(s, π(s))−Q(s, π(s)).

By choosing ν as the initial distribution and µ as the stationary distribution induced by πθt , we can
bound the performance loss on the Bellman residual. Therefore, we define the expected interference
in term of the Bellman Residual by

EI(θt; ∆θt) := Es∼u,a∼π(·|s)[Ĵ(θt + ∆θt; s, a)− Ĵ(θt; s, a)] (5)

where

Ĵ(θ; s, a) = ((TQθ)(s, a)−Qθ(s, a))2.

WhenEI is negative, the performance bound decreases and generalization occurs. When it is positive,
then interference might occur. Note that the bellman residual is zero for all state-action pairs if and
only if Qθ = Q∗.

Approximate the Bellman operator In general, it would require multiple samples to compute the
bellman residual [Baird, 1995]. However, in our experiment, we only test on deterministic environ-
ments where (TQθt)(s, a) can be computed with one sample transition. In stochastic environments,
we can use a model of the environment to compute the value.

Approximate the expectation Another question is how to compute the expectation in Equation
5. If we have a model of the environment, we could run the policy πθt to collect transitions to
approximate the expectation. A more practical method is to keep a buffer of recent transitions and
hope the policy does not change much.

1Instead of taking a sample (xt, yy) as an input, we abuse the notation to take a change on the parameter as
an input here.

2In fact, we can estimate V πθt by Monte Carlo rollouts
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Figure 1: Examples of catastrophic interference in cart-pole. The performance is evaluated offline.
We report the sum of discounted rewards per episode.

4 Experimental Results

In this section, we aim to answer the following questions: can we quantify interference? We run a
simple experiment in cart-pole, a classic reinforcement learning environment. We use a Q-learning
agent with a two-layer neural network with hidden size 256 and a replay buffer of size 100. We use a
small buffer to enable learning while allowing interference to occur, since a sufficiently large buffer
might prevent catastrophic interference3 [Lin, 1993]. At each time step, we evaluate equation (5)
on a buffer containing recent transitions of size 1000. We hope the state distribution in the buffer is
approximately close to u.

Figure 1 shows the learning curve of the Q-learning agent, we can see that the performance starts
to oscillate when EI started to increase (e.g. t=100 in figure 1.a and t=500 in figure 1.b), and the
perform drops when EI increases significantly (e.g. t=300 in figure 1.a and t=600 in figure 1.b).
That is, catastrophic interference occurs when EI increases significantly. This result provides some
evidences that EI can be used to quantify interference, and it is correlated with the stability and
control performance.

5 Discussion

In this paper, we propose a measure to quantify positive generalization and interference in rein-
forcement learning, and we empirically evaluate the measure in a classic reinforcement learning

3Note that the goal of the paper is to study this phenomenon, not to propose a new algorithm to solve it.
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environment. This work is a first-step investigation toward understanding catastrophic interference in
reinforcement learning. There are still several open questions we could not answer in the paper. For
example, the bound we use in section 3.2 might be loose in deterministic environments, so we would
need to analyze how tight the bound is. In section 5.4, we only provide qualitative evidence that the
measure is correlated with the control performance. However, quantitative evidences are needed.
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