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Abstract

In this paper, we consider the model-free reinforcement learning problem and
study the popular Q-learning algorithm with linear function approximation for
finding the optimal policy. Despite its popularity, it is known that Q-learning with
linear function approximation may diverge in general due to off-policy sampling.
Our main contribution is to provide a finite-time bound on the performance of
Q-learning with linear function approximation and constant step size under an
assumption on the sampling policy. Unlike some prior work in the literature, we do
not need to make the unnatural assumption that the samples are i.i.d. (since they
are Markovian), and do not require an additional projection step in the algorithm.
To show this result, we first consider a more general nonlinear stochastic approx-
imation algorithm with Markovian noise, and derive a finite-time bound on the
mean-square error, which we believe is of independent interest. Our proof is based
on Lyapunov drift arguments and exploits the geometric mixing of the underlying
Markov chain. We also provide numerical simulations to illustrate the effectiveness
of our assumption on the sampling policy, and demonstrate the rate of convergence
of Q-learning with linear function approximation.

1 Introduction

Reinforcement learning (RL) is a framework for solving sequential decision-making problems by
repeatedly interacting with the environment [25]. This approach has demonstrated tremendous
successes for solving many practical problems in several different areas, such as robotics [17], power
management [28], autonomous driving [22], and board games [23].

An RL problem is often modeled as a Markov decision process (MDP) with unknown transition
probabilities. The goal of the agent is to find an optimal policy to select actions so that the expected
total future reward is maximized. Among potential methods, Q-learning, studied in [32], has been
recognized as a promising solution for finding the optimal policy since it does not require any
knowledge of the environment model. In particular, Q-learning iteratively estimates the optimal
Q-function (state-action value function) based on a sequence of samples generated by applying a
sampling policy to the unknown model. The optimal policy is then computed based on the optimal
Q-function. This makes Q-learning an off-policy approach since it learns the optimal policy through
data generated by a (possibly) non-optimal policy. This further has the advantage that learning can be
decoupled from sampling and can be performed using data that is already collected.

Given the popularity and success of Q-learning, its performance has been studied in the literature.
The asymptotic convergence of Q-learning has been studied in [32, 15, 29] using a martingale-based
approach, while the rate of convergence has been characterized in [12, 27, 2, 13, 10]. However,
since Q-learning requires to store the Q-function values for all state-action pairs, it has been limited
to problems with small state and action spaces, and this challenge is often referred to as the curse
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of dimensionality in RL. To overcome this drawback, we can approximate the Q-function by a
parameterized function class with much smaller dimension. However, Q-learning with function
approximation can in general diverge [1, 25]. The main reason is that Q-learning uses off-policy
sampling to collect the data, making it potentially an expansion mapping [14, 1]. For this reason, the
convergence of Q-learning with function approximation has been limited to special cases, such as,
for optimal stopping problems [31], or when using state aggregation functions [4], or when using
non-parametric regression method (nearest neighbor Q-learning) [21].

In this paper, we focus on studying Q-learning with linear function approximation [19, 33], where
the Q-function is approximated by a linear combination of a given set of basis functions (or features).
Q-learning with linear function approximation can diverge in general as illustrated by the counter
examples in [1, 25]. Therefore, certain conditions need to be imposed on the sampling policy to
guarantee the stability of this approach. One such condition was proposed in [19] to restrict the
sampling policy to be close enough to the optimal policy. Later, based on [19], the work in [33]
studies the finite-time analysis of Q-learning with linear function approximation. In particular,
the approach in [33] is mainly motivated by the work in [5], where the convergence rate of the
popular temporal-difference learning method for solving policy evaluation problems was studied.
One drawback of the techniques used in [5, 33] is that: to stabilize the iterates, their algorithm requires
an additional projection step onto a bounded set related to the unknown stationary distribution of the
underlying Markov chain, which in some cases is impractical.

The contributions of this paper are threefold. Motivated by the work in [19], we first provide a new
condition on the sampling policy in Q-learning to guarantee the stability of the algorithm. Second,
we analyze a finite-time bound on the performance of Q-learning without requiring any projection
steps. Our key technique is to view Q-learning as a stochastic approximation (SA) algorithm for
finding the solution of a suitable nonlinear equation. We then study the convergence rate of such
SA under general conditions, which we believe is of independent interest and may be applicable for
other problems. Finally, we present some numerical experiments based on the example from [1] that
shows divergence of Q-learning with linear function approximation. In particular, we illustrate the
sufficiency of our proposed condition for the stability of the algorithm, and demonstrate the rate of
convergence.

2 MDP and Q-learning

Consider an MDP denoted byM = (S,A,P,R, γ), where S is a finite state space of size n, A is a
finite action space of size m, and P = {Pa ∈ Rn×n | a ∈ A} is a set of action dependent transition
probability matrices. Moreover,R : S ×A 7→ R is the reward function and γ ∈ (0, 1) is the discount
factor.

For each time step k ≥ 0, the agent observes the current state Sk = s of the environment and
takes an action Ak = a according to some policy π, which can be stochastic (a ∼ π(·|Sk)) or
deterministic (a = π(Sk)). The system then moves to the next state Sk+1 = s′ with probability
Pa(s, s′). Moreover, as the transition occurs, the agent receives an instantaneous reward R(s, a).
The goal of the agent is to find an optimal policy π∗ such that its long term cumulative reward is
maximized. Specifically, given a policy π, the value function at state s is defined to be the total
expected reward starting from s, and then following policy π:

Vπ(s) = E

[ ∞∑
k=0

γkR(Sk, Ak)

∣∣∣∣ S0 = s

]
, Ak ∼ π(·|Sk), ∀ k ≥ 0.

The goal is to find an optimal policy π∗ such that Vπ∗(s) = maxπ Vπ(s) for all state s. Denote the
value function associated with π∗ by V ∗, it is well known that V ∗ satisfies the following Bellman
equation:

V ∗(s) = max
a∈A
{R(s, a) + γE [V ∗(s′) | s, a]}︸ ︷︷ ︸

Q∗(s,a)

, (1)

where s′ is the successor state after taking action a at state s. Let Q∗ : S ×A 7→ R be defined as in
Eq. (1), we have V ∗(s) = maxa∈AQ

∗(s, a), and therefore Q∗ verifies another Bellman equation:

Q∗(s, a) = R(s, a) + γEs′
[
max
a′∈A

Q∗(s′, a′)

∣∣∣∣ s, a] . (2)

2



Once Q∗ is obtained, an optimal policy π∗ can be decided as π∗(s) ∈ arg maxa∈AQ
∗(s, a), for all

state s, which does not require any knowledge about the transition probabilities, and so is a model-free
approach. In terms of finding Q∗, Q-learning can be viewed as an SA algorithm for finding the
solution of the Bellman equation (2). In particular, given a sample trajectory {(Sk, Ak)} generated
by some "nice" policy π, Q-learning iteratively updates the estimate Qk of Q∗ as

Qk+1(Sk, Ak)=Qk(Sk, Ak)+εk(Sk, Ak)

[
R(Sk, Ak)+γmax

a∈A
Qk(Sk+1, a)−Qk(Sk, Ak)

]
, (3)

where {εk(s, a)} is the sequence of step sizes associated with the state-action pair (s, a). The
sequence Qk generated by Q-learning converges to Q∗ w.p. 1 as long as every state-action pair is
visited infinitely often under the sampling policy π, and the step size diminishes to zero at a proper
rate [4, 29].

Observe that the estimates {Qk} are represented by a look-up table rather than an analytical expression.
When the number of state-action pairs is very large, Q-learning can be intractable due to the
curse of dimensionality. To overcome this difficulty, we use low-dimensional approximation Q̃
of Q∗, restricting Q̃ to a linear subspace Q with dimension d � mn. In particular, given a set
of basis functions φ` : S × A 7→ R, ` ∈ {1, . . . , d} called features, the approximation of Q∗,
parameterized by a weight vector θ ∈ Rd, is given by Q̃θ(s, a) = φ(s, a)ᵀθ, where φ(s, a) :=
(φ1(s, a), · · · , φd(s, a))ᵀ. TheQ-learning with linear function approximation for iteratively updating
θ is then given by

θk+1 = θk + εφ(Sk, Ak)

[
R(Sk, Ak) + γmax

a∈A
φ(Sk+1, a)ᵀθk − φ(Sk, Ak)ᵀθk

]
, (4)

where ε > 0 is a constant step size. Our goal in this paper is to provide a finite-time error bound for
Algo. (4). Note that unlike the work in [33], we do not assume a projection step to a predefined set
related to the unknown transition probabilities of the underlying Markov chain. Finally, as mentioned
above, Q-learning can be viewed as a nonlinear SA for solving the Bellman equation (2). Motivated
by this observation, we first study the convergence rate of an SA algorithm for finding the solution
of a general nonlinear equation. By utilizing this result, we then provide a finite-time bound for
Q-learning with linear function approximation.

3 Main Results

In this section we present our main results. Specifically, the finite-time analysis of a general nonlinear
SA is presented in Section 3.1. Following from this result, we provide the finite-time error bound of
Q-learning with linear function approximation in Section 3.2. Further discussions about the condition
on the sampling policy to guarantee the stability of Q-learning as well as numerical experiments are
presented in Section 3.3. The proofs of all theorems can be found in the Appendix.

3.1 Finite time analysis of nonlinear stochastic approximation

In this section, we establish the finite-time error bound of a general nonlinear SA. Consider the
problem of solving for θ∗ in the equation

F̄ (θ) := Eµ[F (X, θ)] = 0,

where X is a random variable with finite state space X and distribution µ, which is assumed to be
unknown. The function F : X × Rd 7→ Rd is a general nonlinear mapping. To solve this problem,
we use the celebrated SA algorithm proposed in [20]. In particular, suppose that we can collect a
sequence of samples {Xk} of the random variable X . Then, with initialization θ0, SA iteratively
updates an estimate θk of θ∗ as

θk+1 = θk + εF (Xk, θk). (5)

A concrete example of this equation is the Q-learning update (4) given in the previous section. Under
reasonable assumptions on the nonlinear mapping F , and i.i.d. assumption on the sequence {Xk},
the convergence properties of SA have been studied extensively in [26, 6]. In particular, in the context
of optimization, [7] and the reference therein studied the same problem under the name of stochastic
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gradient descend (SGD). On the other hand, when the samples {Xk} are obtained from a Markov
chain with stationary distribution µ, the asymptotic convergence of SA is provided in [3, 4, 6] using
the ODE approach. That is, the sequence {θk} generated by Eq. (5) is shown to converge to the
equilibrium point of the ODE

θ̇ = F̄ (θ) (6)

under certain stability assumptions on the ODE (6) [16, 3]. As for the convergence rate, in the setting
of linear SA, i.e., F is linear in terms of θ, finite-time analysis has been performed in [8] with i.i.d.
noise, and in [24, 5] with Markovian noise. In optimization, [11] studied the SGD under Markovian
noise, but a projection step is required there to maintain the stability.

Our goal here is to expand the frontier by providing a finite-time bound for general nonlinear SA (5)
under Markovian noise without requiring a projection step in the algorithm. To do that, we start by
presenting a sequence of standard assumptions. Throughout this paper, ‖ · ‖ stands for the Euclidean
norm for vectors, and induced 2-norm for matrices. Our assumptions are given as follows.
Assumption 3.1. The Markov chain {Xk} is irreducible and aperiodic.
Remark 3.1. Assumption 3.1 is often assumed to study the asymptotic convergence of SA under
Markovian noise; see for example [6, 4, 25].
Assumption 3.2. The function F (x, θ) is globally Lipschitz continuous with respect to θ uniformly
in x, i.e., there exists L > 0 s.t. ‖F (x, θ1)− F (x, θ2)‖ ≤ L‖θ1 − θ2‖, for all θ1, θ2 ∈ Rd, x ∈ X .
Remark 3.2. The Lipschitz continuity of F is sufficient to study a nonlinear system, e.g., it guarantees
that ODE (6) has a unique solution. When F (x, θ) is linear in terms of θ as considered in [4, 24],
i.e., F (x, θ) = A(x)θ + b(x), Assumption 3.2 is automatically satisfied.

Note that Lipschitz continuity implies at most linear growth rate in terms of ‖θ‖ for both ‖F (x, θ)‖
and ‖F̄ (θ)‖. In particular, assume without loss of generality that L ≥ maxx∈X ‖F (x, 0)‖. By letting
θ1 = θ and θ2 = 0 in Assumption 3.2, it is easy to show using triangular inequality and Jensen’s
inequality that

‖F (x, θ)‖ ≤ L(‖θ‖+ 1), and ‖F̄ (θ)‖ ≤ L(‖θ‖+ 1), ∀ θ ∈ Rd, x ∈ X .

Assumption 3.3. The equation F̄ (θ) = 0 has a solution θ∗, and there exists α > 0 such that

(θ − θ∗)ᵀ(F̄ (θ)− F̄ (θ∗)) ≤ −α‖θ − θ∗‖2, ∀ θ ∈ Rd. (7)

Remark 3.3. This assumption can be viewed as a strongly monotone property of the nonlinear
mapping−F , or an exponential dissipativeness property of the dynamical system (6) with zero supply
rate and a quadratic storage function.

Before we present the finite-time error bound of SA (5), the following definition and lemma regarding
the mixing time of the Markov chain {Xk} are needed.
Definition 3.1. For any δ > 0, let τδ be defined as

τδ = min{t ≥ 1 : ‖E[F (Xk, θ)|X0 = x]− F̄ (θ)‖ ≤ δ(‖θ‖+ 1),∀k ≥ t, ∀θ ∈ Rd,∀x ∈ X}.
Lemma 3.1. Suppose Assumptions 3.1 and 3.2 hold, then there exists L1 > 0 s.t. for any δ > 0:

τδ ≤ L1(log (1/δ) + 1)

(See Appendix A for the proof).
Remark 3.4. Here τδ is referred to as the mixing time of the underlying Markov chain, which by
Lemma 3.1 satisfies limδ→0 δτδ = 0. Since we will always use δ = ε, where ε is the constant step
size, for convenience, we drop the subscript ε in τε in the following.

We will now present our finite-time error bound for SA (5).
Theorem 3.1. Consider iterates {θk} generated by SA (5). Suppose that Assumptions 3.1–3.3 hold,
and ετ ≤ min(1/4L,α/114L2) (α is given in (7)), then we have for all k ≥ τ :

E[‖θk − θ∗‖2] ≤ β1(1− αε)k−τ +
β2
α
ετ, (8)

where β1 = (‖θ0‖+ ‖θ0 − θ∗‖+ 1)2, and β2 = 114L2(‖θ∗‖+ 1)2 (See Appendix B for the proof).
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The r.h.s. of Eq. (8) can be viewed as a combination of the bias and variance. The first term shows
the impact of the bias due to the initial estimate θ0, which goes to zero geometrically fast. The
second term corresponds to the variance of the Markovian noise. Since we use constant step size,
the variance does not go to zero. However, note that we have limε→0 ετ = 0 by Lemma 3.1, the
variance vanishes when the step size diminishes to zero. We will next use Theorem 3.1 to establish
the finite-time bound of Q-learning with linear function approximation.

3.2 Finite-time analysis of Q-learning with linear function approximation

First of all, we show that Q-learning can be reformulated as a variant of the nonlinear SA studied
in Section 3.1. Recall the update of Q-learning from Eq. (4). Since π is predetermined and fixed,
the MDP becomes a Markov chain {Sk}. Let Xk = (Sk, Ak, Sk+1), it is clear that {Xk} is also a
Markov chain with state space

X = {(s, a, s′) | s ∈ S, π(a|s) > 0, Pa(s, s′) > 0}.
Thus, Eq. (4) can now be rewritten in the same form as the nonlinear SA given in Section 3.1:

θk+1 = θk + εF (Xk, θk), (9)

where the nonlinear mapping F is defined as

F (x, θ) = F ((s, a, s′), θ) = φ(s, a)

[
R(s, a) + γ max

a′∈A
φ(s′, a′)ᵀθ − φ(s, a)ᵀθ

]
. (10)

We next present the finite-time error bound of Algo. (9). Before that, we assume that the feature
vectors {φ`}1≤`≤d are linearly independent and are normalized so that ‖φ(s, a)‖ ≤ 1 for all (s, a).
Note that this is w.o.l.g. since we can disregard dependent features. Let rmax = max(s,a) |R(s, a)|.
Theorem 3.2. Consider iterates {θk} generated by Algo. (9). Suppose that:
(a) The Markov chain {Sk} induced by π is irreducible and aperiodic.
(b) The equation F̄ (θ) = 0 has a solution θ∗, and

γ2Eµ[max
a′∈A

(φ(s, a′)ᵀθ)2]− Eµ[(φ(s, a)ᵀθ)2] ≤ −α‖θ‖2, ∀ θ ∈ Rd. (11)

(c) ετ ≤ min(1/4L,α/228L2), where L = γ + 1 + rmax.
Then we have for all k ≥ τ :

E[‖θk − θ∗‖2] ≤ β1
(

1− α

2
ε
)k−τ

+
2β2
α
ετ, (12)

where β1 = (‖θ0‖+ ‖θ0 − θ∗‖+ 1)2, and β2 = 114L2(‖θ∗‖+ 1)2 (See Appendix C for the proof).
Remark 3.5. Condition (a) is standard in studying finite MDPs [4, 30]. As for condition (b), the
solution θ∗ to the Eq. F̄ (θ) = 0 can be equivalently characterized as a solution to a projected
Bellman equation [19]. However, we need to point out that the solution to such fixed point equation
may not exist in general [9]. Eq. (11) is essentially a requirement on the sampling policy π to stabilize
Q-learning, which will be analyzed in detail in the next section.

Theorem 3.2 is qualitatively similar to Theorem 3.1 in that Q-learning achieves an exponential
convergence rate in expectation to a ball centered at θ∗, and the size of this ball shrinks as a function
of the step size ε. Eq. (11) is essentially to guarantee the stability of Q-learning with linear function
approximation, i.e., to satisfy Assumption 3.3 in the case of nonlinear SA. A weaker form of (11) is

γ2Eµ[max
a′∈A

(φ(s, a′)ᵀθ)2] < Eµ[(φ(s, a)ᵀθ)2], ∀ θ 6= 0, (13)

which does not give exponential rate, but can be used to establish a.s. convergence [19]. In the next
section, we present further discussions about when condition (13) may be satisfied and also present
numerical simulations to verify its sufficiency.

3.3 Discussion and numerical experiments

We start by giving some illustration on condition (13). Consider Eq. (13). Since the action is chosen
according to π on the r.h.s. while greedily on the l.h.s., clearly we have

Eµ[max
a∈A

(φ(s, a)ᵀθ)2] ≥ Eµ[(φ(s, a)ᵀθ)2], ∀ θ ∈ Rd.
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To meet condition (13), besides the presence of γ2, there should be some requirements on the
sampling policy π. To make it explicit, define

δ(π) := min
‖θ‖=1

{
Eµ[(φ(s, a)ᵀθ)2]

/
Eµ[max

a∈A
(φ(s, a)ᵀθ)2]

}
(14)

Note that δ(π) ∈ [0, 1] for any policy π. Moreover, from Eq. (14) we see that the larger δ(π) is, the
closer π is to the policy induced greedily from Q̃2

θ for all θ. On the contrary, when δ(π) is small,
convergence can happen only when the discount factor γ is sufficiently small. One way to compute
δ(π) is presented in Appendix D for an MDP with a sampling policy π when the underlying model is
known, which is used to perform numerical simulations.

In our simulation, we consider the divergent counter example of Q-learning introduced in [1], (see
full description of this example in Appendix D). Since the reward function is identically zero, Q∗
is zero, implying θ∗ is zero. Because of this structure, it is possible for the Q-learning algorithm
to converge even when constant step size is used. We choose the sampling policy π which takes
each action with equal probability. It turns out that δ(π) ≈ 0.5, giving the threshold for γ being
δ(π)1/2 ≈ 0.7. In our simulation, we choose ε = 0.01, γ ∈ {0.7, 0.9, 0.97}, and plot ‖θk‖ as a
function of the number of iterations k in Figure 1. Here, θk converges when γ = 0.7 and also when
γ = 0.9 and diverges when γ = 0.97. This demonstrates that condition (13) is sufficient but not
necessary for convergence. This also shows that by modifying the problem to ensure (13), the counter
example from [1] can be made to converge. Finally, to show the convergence rate of Q-learning, we
consider the convergence of θk when γ = 0.7 given in Figure 2, where we plot logE[‖θk‖2] as a
function on the number of iterations k. In this case, θk seems to converge exponentially to 0, which
agrees with our theoretical result given in Theorem 3.2.

Figure 1: Convergence of Q-learning with
linear function approximation for different
discount factor γ

Figure 2: Exponentially fast convergence of
Q-learning with linear function approxima-
tion for γ = 0.7

4 Conclusion

In this paper we establish a finite-time bound for Q-learning with linear function approximation and
a constant step size, without either making an i.i.d. noise assumption, or requiring an additional
projection step to bound the iterates. Our approach is to obtain finite-time bounds for a more general
nonlinear SA algorithm with Markovian noise. We also provide sufficient conditions for the stability
ofQ-learning, and study the need of this condition numerically in the context of a well-known counter
example. Future work includes obtaining finite-time error bounds under diminishing step sizes and
optimizing the step sizes to achieve the best convergence rate. Since (11) is quite restrictive on the
sampling policy π, another future direction is to relax this condition by considering using time-varying
sampling policy. Studying finite-time error bounds for the on-policy variant of Q-learning called
SARSA is probably a first step in this direction.
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A Proof of Lemma 3.1

Since {Xk} is irreducible and aperiodic, by Theorem 4.9 in [18], it has a unique stationary distribution
µ, and there exist constants C > 0 and ρ ∈ (0, 1) such that

dTV (P (Xk = ·|X0 = x), µ) ≤ Cρk, ∀k ≥ 0, x ∈ X ,
where dTV (·, ·) is the total-variation distance defined as

dTV (P,Q) = sup
{f :‖f‖∞≤ 1

2}

∣∣∣∣∫ fdP −
∫
fdQ

∣∣∣∣ . (15)

Let Fi(x, θ) be the i-th component of F (x, θ). Under Assumption 3.2 we have

|Fi(x, θ)| ≤ ‖F (x, θ)‖ ≤ L(‖θ‖+ 1), ∀x ∈ X , θ ∈ Rd.

Therefore, we obtain for any θ ∈ Rd and x ∈ X :

‖E[F (Xk, θ)|X0 = x]− Eµ[F (X, θ)]‖

≤
d∑
i=1

|E[Fi(Xk, θ)|X0 = x]− Eµ[Fi(X, θ)]|

=2L(‖θ‖+ 1)

d∑
i=1

∣∣∣∣E [ Fi(Xk, θ)

2L(‖θ‖+ 1)

∣∣∣ X0 = x

]
− Eµ

[
Fi(X, θ)

2L(‖θ‖+ 1)

]∣∣∣∣
≤2L(‖θ‖+ 1)dCρk,

Solve

2L(‖θ‖+ 1)dCρt ≤ δ(‖θ‖+ 1)

and we get

t ≥
log 1

δ + log (2LCd)

log 1
ρ

.

Thus, by definition of τδ , we have

τδ ≤
log 1

δ + log (2LCd)

log 1
ρ

≤ L1(‖θ‖+ 1),

where

L1 =
1 + | log (2LCd)|

log
(

1
ρ

) .

B Proof of Theorem 3.1

The proof of Theorem 3.1 involves the following sequence of Lemmas.
Lemma B.1. The following inequality holds for all k ≥ τ :

E[‖θk+1 − θk‖2|Xk−τ , θk−τ ] ≤ 2L2ε2
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
.

Proof of Lemma B.1. Assumption 3.2 implies ‖F (x, θ)‖ ≤ L(‖θ‖ + 1) for all x ∈ X and θ ∈ Rd.
Thus, using the update rule (5) and we have

‖θk+1 − θk‖ = ε‖F (Xk, θk)‖ ≤ Lε(‖θk‖+ 1), ∀k ≥ 0. (16)

The preceding inequality implies for all k ≥ τ :

E[‖θk+1 − θk‖2|Xk−τ , θk−τ ] ≤ L2ε2E[(‖θk‖+ 1)2|Xk−τ , θk−τ ]

≤ L2ε2E[(‖θk − θ∗‖+ ‖θ∗‖+ 1)2|Xk−τ , θk−τ ]

≤ 2L2ε2
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
,

where the last line follows from (x+ y)2 ≤ 2(x2 + y2) for all x, y ∈ R.
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Lemma B.2. The following inequalities hold for all k ≥ τ :

‖θk − θk−τ‖ ≤ 2Lετ(‖θk−τ‖+ 1),

‖θk − θk−τ‖ ≤ 4Lετ(‖θk‖+ 1).

Proof of Lemma B.2. For any k ≥ τ , we first upper bound ‖θt‖ for t ∈ [k − τ, k]. Indeed, by (16)
we have

‖θt+1 − θt‖ ≤ Lε(‖θt‖+ 1), (17)

which by the triangular inequality gives

(‖θt+1‖+ 1) ≤ (Lε+ 1)(‖θt‖+ 1).

Recursively using the preceding inequality gives

‖θt‖+ 1 ≤ (Lε+ 1)t−k+τ (‖θk−τ‖+ 1), ∀ k − τ ≤ t ≤ k.

Therefore,

‖θk − θk−τ‖ ≤
k−1∑
t=k−τ

‖θt+1 − θt‖

≤ Lε
k−1∑
t=k−τ

(‖θt‖+ 1)

≤ Lε(‖θk−τ‖+ 1)

k−1∑
t=k−τ

(Lε+ 1)t−k+τ

= [(Lε+ 1)τ − 1] (‖θk−τ‖+ 1)

≤ (eLετ − 1)(‖θk−τ‖+ 1)

≤ 2Lετ(‖θk−τ‖+ 1),

where in the last two inequalities we used 1 + x ≤ ex ≤ 1 + 2x for all x ∈ [0, 1/4]. It follows from
the preceding inequality that

‖θk − θk−τ‖ ≤ 2Lετ(‖θk−τ‖+ 1) ≤ 2Lετ(‖θk − θk−τ‖+ ‖θk‖+ 1),

which implies

(1− 2Lετ)‖θk − θk−τ‖ ≤ 2Lετ(‖θk‖+ 1).

Since Lετ ≤ 1/4, we have

‖θk − θk−τ‖ ≤ 4Lετ(‖θk‖+ 1).

Lemma B.3. The following inequality holds for any k ≥ τ :

E[(θk − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

≤ 56L2ετ
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
.

Proof of Lemma B.3. We begin by considering the l.h.s. of the desired inequality as follows

E[(θk − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

=E[(θk − θk−τ )ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]︸ ︷︷ ︸
(T1)

+ E[(θk−τ − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]︸ ︷︷ ︸
(T2)

.
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First, we analyze the term (T1) using Cauchy-Schwartz inequality and Lemma B.2:

(T1) =E[(θk − θk−τ )ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

≤E[‖θk − θk−τ‖‖F (Xk, θk)− F̄ (θk)‖|Xk−τ , θk−τ ]

≤E[‖θk − θk−τ‖(‖F (Xk, θk)‖+ ‖F̄ (θk)‖)|Xk−τ , θk−τ ]

≤2LE[‖θk − θk−τ‖(‖θk‖+ 1)|Xk−τ , θk−τ ]

≤8L2ετE[(‖θk‖+ 1)2|Xk−τ , θk−τ ]

≤8L2ετE[(‖θk − θ∗‖+ ‖θ∗‖+ 1)2|Xk−τ , θk−τ ]

≤16L2ετ
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
. (18)

Next we consider the term (T2). Using the Lipschitz continuity of F (x, θ) and F̄ (θ), we have

|(θk−τ − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))− (θk−τ − θ∗)ᵀ(F (Xk, θk−τ )− F̄ (θk−τ ))|
≤|(θk−τ − θ∗)ᵀ(F (Xk, θk)− F (Xk, θk−τ ))|+ |(θk−τ − θ∗)ᵀ(F̄ (θk)− F̄ (θk−τ ))|
≤‖θk−τ − θ∗‖(‖F (Xk, θk)− F (Xk, θk−τ )‖+ ‖F̄ (θk)− F̄ (θk−τ )‖)
≤2L‖θk−τ − θ∗‖‖θk − θk−τ‖,

which gives

(T2) =E[(θk−τ − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

≤E[(θk−τ − θ∗)ᵀ(F (Xk, θk−τ )− F̄ (θk−τ ))|Xk−τ , θk−τ ]

+ 2L‖θk−τ − θ∗‖E[‖θk − θk−τ‖|Xk−τ , θk−τ ]

=(θk−τ − θ∗)ᵀ(E[F (Xk, θk−τ )|Xk−τ , θk−τ ]− F̄ (θk−τ ))

+ 2L‖θk−τ − θ∗‖E[‖θk − θk−τ‖|Xk−τ , θk−τ ]. (19)

On the one hand, Lemma 3.1 implies

(θk−τ − θ∗)ᵀ(E[F (Xk, θk−τ )|Xk−τ , θk−τ ]− F̄ (θk−τ ))

≤‖θk−τ − θ∗‖‖E[F (Xk, θk−τ )|Xk−τ , θk−τ ]− F̄ (θk−τ )‖
≤ε‖θk−τ − θ∗‖(‖θk−τ‖+ 1).

On the other hand, Lemma B.2 gives

‖θk−τ − θ∗‖E[‖θk − θk−τ‖|Xk−τ , θk−τ ] ≤ 2Lετ‖θk−τ − θ∗‖(‖θk−τ‖+ 1).

Using the preceding two relations into Eq. (19) gives

(T2) ≤ ε‖θk−τ − θ∗‖(‖θk−τ‖+ 1) + 4L2ετ‖θk−τ − θ∗‖(‖θk−τ‖+ 1)

≤ 5L2ετ‖θk−τ − θ∗‖(‖θk−τ‖+ 1)

≤ 5L2ετE[(‖θk−τ − θk‖+ ‖θk − θ∗‖)×
(‖θk−τ − θk‖+ ‖θk − θ∗‖+ ‖θ∗‖+ 1)|Xk−τ , θk−τ ]

≤ 5L2ετE[(‖θk‖+ 1 + ‖θk − θ∗‖)(‖θk‖+ ‖θk − θ∗‖+ ‖θ∗‖+ 2)|Xk−τ , θk−τ ] (20)

≤ 20L2ετE[(‖θk − θ∗‖+ ‖θ∗‖+ 1)2|Xk−τ , θk−τ ]

≤ 40L2ετ
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
, (21)

where (20) follows from Lemma B.2 and our assumption that Lετ ≤ 1
4 . Combine the upper bounds

for (T1) and (T2), and we obtain

E[(θk − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

=(T1) + (T2)

≤56L2ετ
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
.

Lemma B.4. The following inequality holds for all k ≥ τ :

E[‖θk+1 − θ∗‖2] ≤ (1− αε)E[‖θk − θ∗‖2] + 114L2ε2τ(‖θ∗‖+ 1)2.

11



Proof of Lemma B.4. For any k ≥ τ , we have

E[‖θk+1 − θ∗‖2 − ‖θk − θ∗‖2|Xk−τ , θk−τ ]

=E[(θk+1 − θk)ᵀ(θk+1 + θk − 2θ∗)|Xk−τ , θk−τ ]

=E[(θk+1 − θk)ᵀ(θk+1 − θk + 2θk − 2θ∗)|Xk−τ , θk−τ ]

=E[‖θk+1 − θk‖2|Xk−τ , θk−τ ] + 2E[(θk − θ∗)ᵀ(θk+1 − θk)|Xk−τ , θk−τ ]

=E[‖θk+1 − θk‖2|Xk−τ , θk−τ ] + 2εE[(θk − θ∗)ᵀF (Xk, θk)|Xk−τ , θk−τ ]

=E[‖θk+1 − θk‖2|Xk−τ , θk−τ ] + 2εE[(θk − θ∗)ᵀ(F (Xk, θk)− F̄ (θk))|Xk−τ , θk−τ ]

+ 2εE[(θk − θ∗)ᵀ(F̄ (θk)− F̄ (θ∗))|Xk−τ , θk−τ ]

≤2L2ε2
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
(22)

+ 112L2ε2τ
[
E[‖θk − θ∗‖2|Xk−τ , θk−τ ] + (‖θ∗‖+ 1)2

]
(23)

− 2αεE[‖θk − θ∗‖2|Xk−τ , θk−τ ] (24)

≤(114L2ετ − 2α)εE[‖θk − θ∗‖2|Xk−τ , θk−τ ] + 114L2ε2τ(‖θ∗‖+ 1)2

≤− αεE[‖θk − θ∗‖2|Xk−τ , θk−τ ] + 114L2ε2τ(‖θ∗‖+ 1)2, (25)

where (22) follows from Lemma B.1, (23) follows from Lemma B.3, and (24) follows from Assump-
tion 3.3. In the last inequality we used the assumption that ετ ≤ min (1/4L,α/114L2). Taking
expectation with respect to Xk−τ and θk−τ on both side of Eq. (25) gives the desired result.

With the help of Lemmas B.1 – B.4, we next prove Theorem 3.1.

Proof of Theorem 3.1. Let zk = E[‖θk − θ∗‖2], Lemma B.4 gives

zk+1 ≤ azk + b,

where a = 1 − αε ∈ (0, 1), and b = 114L2ε2τ(‖θ∗‖ + 1)2. Note that the preceding Eq. can be
equivalently written as

zk+1 −
b

1− a
≤ a

(
zk −

b

1− a

)
,

which implies that {zk − b/(1− a)} is upper bounded by a geometric sequence with initial value
zτ − b/(1− a) and common ratio a. Therefore, we have for all k ≥ τ :

zk ≤ ak−τ
(
zτ −

b

1− a

)
+

b

1− a
≤ ak−τzk +

b

1− a
.

Plugging in the definition of zk, a, and b, we obtain

E[‖θk − θ∗‖2] ≤ (1− αε)k−τE[‖θτ − θ∗‖2] +
114L2(‖θ∗‖+ 1)2

α
ετ.

The last thing to do is to control E[‖θτ − θ∗‖2]. By Lemma B.2 and our assumption that ετ ≤ 1/4L,
we have

E[‖θτ − θ∗‖2] ≤ E[(‖θτ − θ0‖+ ‖θ0 − θ∗‖)2] ≤ (‖θ0‖+ ‖θ0 − θ∗‖+ 1)2.

Combining the preceding two inequalities gives the desired finite-time error bound for SA (5):

E[‖θk − θ∗‖2] ≤ β1(1− αε)k−τ +
β2
α
ετ,

where β1 = (‖θ0‖+ ‖θ0 − θ∗‖+ 1)2, and β2 = 114L2(‖θ∗‖+ 1)2.

C Proof of Theorem 3.2

We will verify each Assumption in Section 3.1 as a lemma in the following, the resulting finite-time
bound (12) then follows from Theorem 3.1.
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Lemma C.1. The function F (x, θ) defined in (10) is globally Lipschitz continuous w.r.t. θ uniformly
in x, and L = γ + 1 + rmax is a valid Lipschitz constant.

Proof of Lemma C.1. Since ‖φ(s, a)‖ ≤ 1 for all state-action pairs, we have for any θ1, θ2 ∈ Rd and
x ∈ X :

‖F (x, θ1)− F (x, θ2)‖
=‖φ(s, a)(R(s, a) + γ max

a1∈A
φ(s′, a1)ᵀθ1 − φ(s, a)ᵀθ1)

− φ(s, a)(R(s, a) + γ max
a2∈A

φ(s′, a2)ᵀθ2 − φ(s, a)ᵀθ2)‖

≤γ‖φ(s, a)(max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a2)ᵀθ2)‖+ ‖φ(s, a)φ(s, a)ᵀ(θ1 − θ2)‖

≤γ|max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a2)ᵀθ2|+ ‖θ1 − θ2‖.

To control |maxa1∈A φ(s′, a1)ᵀθ1−maxa2∈A φ(s′, a2)ᵀθ2|, let ā ∈ arg maxa2∈A φ(s′, a2)ᵀθ2, we
have

max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a2)ᵀθ2 = max
a1∈A

φ(s′, a1)ᵀθ1 − φ(s′, ā)ᵀθ2

≥ φ(s′, ā)ᵀ(θ1 − θ2)

≥ min
a′∈A

φ(s′, a′)ᵀ(θ1 − θ2).

Similarly, we also have

max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a2)ᵀθ2 ≤ max
a′∈A

φ(s′, a′)ᵀ(θ1 − θ2).

Therefore,

|max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a1)ᵀθ2| ≤max(| min
a′∈A

φ(s′, a′)ᵀ(θ1 − θ2)|, |max
a′∈A

φ(s′, a′)ᵀ(θ1 − θ2)|)

= max
a′∈A

|φ(s′, a′)ᵀ(θ1 − θ2)|

≤max
a′∈A

‖φ(s′, a′)‖‖θ1 − θ2‖

≤‖θ1 − θ2‖.

It follows that

‖F (x, θ1)− F (x, θ2)‖ ≤γ|max
a1∈A

φ(s′, a1)ᵀθ1 − max
a2∈A

φ(s′, a2)ᵀθ2|+ ‖θ1 − θ2‖

≤(γ + 1)‖θ1 − θ2‖, ∀θ1, θ2 ∈ Rd,∀x ∈ X .

Note that

‖F (x, 0)‖ = ‖φ(s, a)R(s, a)‖ ≤ rmax, ∀x ∈ X .

It is clear that L = γ + 1 + rmax can be served as a Lipschitz constant for F (x, θ), and L ≥
maxx∈X ‖F (x, 0)‖.

Lemma C.2. The Markov chain {Xk = (Sk, Ak, Sk+1)} is irreducible and aperiodic.

Proof of Lemma C.2. Let pn(s, s′) be the probability of the transition from s to s′ in n steps following
policy π. Consider two arbitrary states x1 = (s1, a1, s

′
1), x2 = (s2, a2, s

′
2) ∈ X . Since {Sk} is

irreducible, there exists n > 0 such that pn(s′1, s2) > 0. Hence we have

pn+1(x1, x2) = pn(s′1, s2)π(a2|s2)Pa2(s2, s
′
2) > 0.

It follows that {Xk} is irreducible. To show {Xk} is aperiodic, assume for a contradiction that {Xk}
is periodic with period T ≥ 2. Since {Xk} is irreducible, every state in X has the same period.
Therefore, for any x = (s, a, s′) ∈ X ,

pn(x, x) = 0 for all n not divisible by T .
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However, notice that for any n not divisible by T , we have

pn(s′, s′) =
∑
s∈S

pn−1(s′, s)p(s, s′)

=
∑
s∈S

∑
a∈A

pn−1(s′, s)π(a|s)Pa(s, s′)

=
∑
s∈S

∑
a∈A

pn((s, a, s′), (s, a, s′)) (26)

=
∑
s∈S

∑
a∈A

0

= 0. (27)

To see (26), since {Sk} is a Markov chain, we have

pn((s, a, s′), (s, a, s′)) = P (Sn = s,An = a, Sn+1 = s′|S0 = s,A0 = a, S1 = s′)

= P (Sn = s,An = a, Sn+1 = s′|S1 = s′)

= pn−1(s′, s)π(a|s)Pa(s, s′).

Therefore, (27) shows that the period of s′ is at least T , which is a contradiction to the fact that {Sk}
being aperiodic.

Lemma C.3. The following inequality holds for all θ ∈ Rd:

(θ − θ∗)ᵀ(F̄ (θ)− F̄ (θ∗)) ≤ −α
2
‖θ − θ∗‖2,

where α is given in (11).

Proof of Lemma C.3. The existence of a solution to F̄ (θ) = 0 is also assumed in Theorem 3.2
condition (b), it is enough to show the drift.

(θ − θ∗)ᵀ(F̄ (θ)− F̄ (θ∗))

=(θ − θ∗)ᵀ(γEµ[φ(s, a)(max
a1∈A

φ(s′, a1)ᵀθ − max
a2∈A

φ(s′, a2)ᵀθ∗)]− Eµ[φ(s, a)φ(s, a)ᵀ](θ − θ∗))

≤γ
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

√
Eµ[(max

a1∈A
φ(s′, a1)ᵀθ − max

a2∈A
φ(s′, a2)ᵀθ∗)2]

− Eµ[(φ(s, a)ᵀ(θ − θ∗))2].

Note that we have shown in Lemma B.4 that

|max
a1∈A

φ(s′, a1)ᵀθ − max
a2∈A

φ(s′, a2)ᵀθ∗| ≤ max
a′∈A

|φ(s′, a′)ᵀ(θ − θ∗)|,

which gives

(max
a1∈A

φ(s′, a1)ᵀθ − max
a2∈A

φ(s′, a2)ᵀθ∗)2 ≤ (max
a′∈A

|φ(s′, a′)ᵀ(θ − θ∗)|)2

= max
a′∈A

(φ(s′, a′)ᵀ(θ − θ∗))2.
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Therefore, we have

(θ − θ∗)ᵀ(F̄ (θ)− F̄ (θ∗))

≤
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

√
γ2Eµ[max

a′∈A
(φ(s′, a′)ᵀ(θ − θ∗))2]

− Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

=
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]×

×
(√

γ2Eµ[max
a′∈A

(φ(s′, a′)ᵀ(θ − θ∗))2]−
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

)
=
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]×

×

(
γ2Eµ[maxa′∈A(φ(s′, a′)ᵀ(θ − θ∗))2]− Eµ[(φ(s, a)ᵀ(θ − θ∗))2]√
γ2Eµ[maxa′∈A(φ(s′, a′)ᵀ(θ − θ∗))2] +

√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

)

≤
−α
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]‖θ − θ∗‖2√

γ2Eµ[maxa′∈A(φ(s′, a′)ᵀ(θ − θ∗))2] +
√
Eµ[(φ(s, a)ᵀ(θ − θ∗))2]

=− α‖θ − θ∗‖2
/(

γ
√
Eµ[maxa′∈A(φ(s′, a′)ᵀ(θ − θ∗))2]√

Eµ[(φ(s, a)ᵀ(θ − θ∗))2]
+ 1

)
≤− α

2
‖θ − θ∗‖2.

D Numerical Experiments

We first present one way to compute δ(π) for an MDP with a sampling policy π when the underlying
model is known. Before that, the following definitions are needed.
Definition D.1. Define the feature matrix Φ ∈ Rnm×d as

Φ =

[ | |
φ1 · · · φd
| |

]
=

[ — φ(s1, a1)ᵀ —
· · · · · · · · ·
— φ(sn, am)ᵀ —

]
. (28)

Definition D.2. Let Dµ,π ∈ Rmn×mn be a diagonal matrix with diagonal entries
{µ(s)π(a|s)}(s,a)∈S×A, and let Σµ,π := ΦᵀDµ,πΦ ∈ Rd×d, where Φ ∈ Rmn×d is the feature
matrix given in (28).
Definition D.3. Let B = An ⊆ Rn be the set of all deterministic policies.
Definition D.4. Let Dµ ∈ Rn×n be a diagonal matrix with diagonal entries {µ(s)}s∈S , and let
Σµ,b := Φᵀ

bDµΦb ∈ Rd×d, where Φb = [φ(s1, b1), φ(s2, b2), · · · , φ(sn, bn)]ᵀ ∈ Rn×d for any
b ∈ B.
Lemma D.1. Suppose that µ(s)π(a|s) > 0 for all (s, a) ∈ S ×A. Let δ(π) be defined in (14) and
let λmax(M) be the largest eigenvalue of a positive semi-definite matrix M . Then we have

δ(π) = min
b∈B

[
1/λmax(Σ−1/2µ,π Σµ,bΣ

−1/2
µ,π )

]
.

Proof of Lemma D.1. Recall our definition for δ(π):

δ(π) = min
‖θ‖=1

∑
s∈S µ(s)

∑
a∈A π(a|s)(φ(s, a)ᵀθ)2∑

s∈S µ(s) maxa∈A(φ(s, a)ᵀθ)2
· (29)

Let f(θ) be the numerator, we have

f(θ) =
∑
s∈S

µ(s)
∑
a∈A

π(a|s)(φ(s, a)ᵀθ)2 = θᵀΦᵀDµ,πΦθ = θᵀΣµ,πθ.
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Since the diagonal entries of Dµ,π are all positive, and Φ is full column rank, Σµ,π is symmetric and
positive definite. To represent the denominator of (29) in a similar form, let

g(θ, b) =

n∑
i=1

µ(si)(φ(si, bi)
ᵀθ)2 = θᵀΦᵀ

bDµΦbθ = θᵀΣµ,bθ, where b ∈ B.

Since the columns of Φb can be dependent, Σµ,b is in general only symmetric and positive semi-
definite. With the definition of f(θ) and g(θ, b), δ(π) can be represented as

δ(π) = min
θ 6=0

f(θ)

maxb∈B g(θ, b)
= min

θ 6=0
min
b∈B

f(θ)

g(θ, b)
= min

b∈B
min
θ 6=0

f(θ)

g(θ, b)
.

Now since Σµ,π is positive definite, Σ
1/2
µ,π and Σ

−1/2
µ,π are both well-defined and positive definite, we

have

min
θ 6=0

f(θ)

g(θ, b)
=

[
max
θ 6=0

g(θ, b)

f(θ)

]−1
=

[
max
θ 6=0

θᵀΣµ,bθ

θᵀΣµ,πθ

]−1
=

(max
x6=0

‖Σ1/2
µ,bΣ

−1/2
µ,π x‖
‖x‖

)2
−1

=
1

λmax(Σ
−1/2
µ,π Σµ,bΣ

−1/2
µ,π )

,

where the function λmax(·) returns the largest eigenvalue. It follows that

δ(π) = min
b∈B

[
1

λmax(Σ
−1/2
µ,π Σµ,bΣ

−1/2
µ,π )

]
.

Our numerical experiments in section 3.3 adopt the MDP model of the classical divergent example
of Q-learning with linear function approximation introduced in [1]. Consider the infinite-horizon
seven-state, two-action MDP shown in Figure 3. The dashed action takes the system to one of the six
upper states with equal probability, whereas the solid action takes the system to the seventh state with
probability one. The sampling policy π selects the dashed and solid actions with equal probability.
The reward is zero on all transitions.

Figure 3: Baird’s counterexample [1].

Consider estimating the Q-function under the linear parameterization indicated by the expression
showing along each arrow in Figure 3. For example, the estimated value of state 1 taking the solid
action is θ0 + 2θ1, where the subscript corresponds to the component of the overall weight vector
θ ∈ R14. It is easy to check that the feature matrix Φ is full column rank in this example.
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