
Learning Reward Machines for Partially Observable
Reinforcement Learning (Abridged Report)

Rodrigo Toro Icarte
University of Toronto

Vector Institute

Ethan Waldie
University of Toronto

Toryn Q. Klassen
University of Toronto

Vector Institute

Richard Valenzano
Element AI

Margarita P. Castro
University of Toronto

Sheila A. McIlraith
University of Toronto

Vector Institute

Abstract

Reward Machines (RMs), originally proposed for specifying problems in Rein-
forcement Learning (RL), provide an automata-based representation of a reward
function that allows an agent to decompose problems into subproblems that can
be efficiently learned using off-policy learning. Here we show that RMs can be
learned from experience, instead of being specified by the user, and that the result-
ing problem decomposition can be used to effectively solve partially observable
RL problems. We pose the task of learning RMs as a discrete optimization problem
and show its effectiveness on three partially observable domains.

1 Introduction

The use of neural networks for function approximation has led to many advances in Reinforcement
Learning (RL). Such deep RL methods have allowed agents to learn effective policies in many complex
environment [22, 18, 2]. However, RL methods (including deep RL ones) often struggle when the
environment is partially observable. This is because agents in such environments usually require
some form of memory to learn optimal behaviour [23]. Recent approaches give memory to RL agents
via recurrent neural networks [19, 10, 28, 21] or memory-augmented neural networks [20, 13].

In this work, we show that Reward Machines (RMs) are another useful tool for providing memory in
a partially observable environment. An RM is an automata-based encoding of a reward function that
was proposed as a way to expose the reward function structure [25]. This structure can be exploited
by the Q-Learning for Reward Machines (QRM) algorithm [25]. QRM has been shown to outperform
standard and hierarchical deep RL over a variety of domains. However, QRM was only defined for
fully observable environments and required a handcrafted RM.

This paper proposes a method for learning an RM directly from experience in a partially observable
environment, in a manner that allows the RM to serve as memory for an RL algorithm. We characterize
an objective for RM learning that allows us to formulate the task as a discrete optimization problem
and propose an efficient local search approach to solve it. By simultaneously learning an RM and a
policy for the environment, we are able to outperform several deep RL baselines that use recurrent
neural networks as memory in three domains. We also extend QRM to the case of partial observability.

2 Preliminaries

RL agents learn policies from experience. When the problem is fully-observable, the underlying
environment model is typically assumed to be a Markov Decision Process (MDP). An MDP is a tuple

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

M = 〈S,A, r, p, γ〉, where S is a finite set of states, A is a finite set of actions, r : S×A→ R is the
reward function, p(s, a, s′) is the transition probability distribution, and γ is the discount factor. The
agent starts not knowing what r or p are. On every time step t, the agent observes the current state
st ∈ S and executes an action at ∈ A following a policy π(at|st). As a result, the state st changes
to st+1 ∼ p(st+1|st, at) and the agent receives a reward signal r(st, at). The goal is to learn the
optimal policy π∗, which maximizes the future expected discounted reward for every state in S [24].

In partially observable problems, the underlying environment model is typically assumed to
be a Partially Observable Markov Decision Process (POMDP). A POMDP is a tuple PO =
〈S,O,A, r, p, ω, γ〉, where S, A, r, p, and γ are defined as in an MDP, O is a finite set of ob-
servations, and ω(s, o) is the observation probability distribution. At every time step t, the agent is in
exactly one state st ∈ S, executes an action at ∈ A, receives reward rt+1 = r(st, at), and moves to
state st+1 according to p(st, at, st+1). However, the agent does not observe st+1, but only receives
an observation ot+1 ∈ O. This observation provides the agent a clue about st+1 is via ω [4].

RL methods cannot be immediately applied to POMDPs because the transition probabilities and
reward function are not necessarily Markovian w.r.t.O. As such, optimal policies may need to consider
the complete history o0, a0, . . . , at−1, ot when selecting actions. Several partially observable RL
methods use a recurrent neural network to compactly represent the history.

3 Reward Machines for Partially Observable Environments

RMs are finite state machines that are used to encode a reward function [25]. They are defined over a
set of propositional symbols P that correspond to high-level features that the agent can detect using a
labelling function L : O∅ × A∅ ×O → 2P where (for any set X) X∅ , X ∪ {∅}. L assigns truth
values to symbols in P given an environment experience e = (o, a, o′) where o′ is the observation
seen after executing action a when observing o. We use L(∅, ∅, o) to assign truth values to the initial
observation. We call the truth value assignment of P an abstract observation because it provides a
high-level view of the low-level environment observations. A formal definition of an RM follows:
Definition 3.1 (reward machine). Given a set of propositional symbols P , a Reward Machine is
a tuple RP = 〈U, u0, δu, δr〉 where U is a finite set of states, u0 ∈ U is an initial state, δu is the
state-transition function, δu : U×2P → U , and δr is the reward-transition function, δr : U×2P → R.
Example 3.1. The cookie domain, shown in Figure 1, has three rooms connected by a hallway. The
agent (purple triangle) can move in the four cardinal directions and can only see what it is in the
room that it is currently in. There is a button in the yellow room that, when pressed, causes a cookie
to randomly appear in the red or blue room (if the environment already contains a cookie, it gets
randomly moved to the red or blue room). There is no cookie at the beginning of the episode. The
agent receives a reward of +1 for each time it reaches a cookie (which removes the cookie).

Figure 1: The cookie domain.

RMs decompose problems into a set of high-level states U and
define transitions using if-like conditions defined by δu. These
conditions are over a set of binary properties P that the agent
can detect using L. For example, in the cookie domain, P =
{ , , , , , , }. These properties are true (i.e., part of
an experience label according to L) in the following situations:
, , , or is true if the agent ends the experience in a room

of that color; is true if the agent ends the experience in the same
room as a cookie; is true if the agent pushed the button with its last action; and is true if the
agent ate a cookie with its last action (by moving onto the space where the cookie was).

Figure 2 shows three RMs for the cookie domain. Each RM starts in the initial state u0. Edge labels
in the figures provide a visual representation of the functions δu and δr. For example, label 〈 , 1〉
between state u2 and u0 in Figure 2b represents δu(u2, { , }) = u0 and δr(u2, { , }) = 1.
Intuitively, this means that if the RM is in state u2 and the agent’s experience ended in room imme-
diately after eating the cookie , then the agent will receive a reward of 1 and the RM will transition
to u0. Any properties not listed in the label are false (e.g. must be false to take the transition
labelled 〈 , 1〉). We use multiple labels separated by a semicolon (e.g., “〈 , 0〉; 〈 , 0〉”) to
describe different conditions for transitioning between the RM states, each with their own associated
reward. The label 〈o/w, r〉 (“o/w” for “otherwise”) on an edge from ui to uj means that that transition
will be made (and reward r received) if none of the other transitions from ui can be taken.

2

u0

〈 , 1〉;
〈 , 1〉;
〈o/w, 0〉

(a) Naive RM.

u0

u1 u2

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉

(b) “Optimal” RM.

u0

u1 u2u3

〈o/w, 0〉

〈o/w, 0〉 〈o/w, 0〉〈o/w, 0〉

〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 0〉;
〈 , 0〉

〈 , 1〉〈 , 1〉

〈 , 0〉〈 , 0〉

(c) Perfect RM.

Figure 2: Three possible Reward Machines for the Cookie domain.

Let us illustrate the behaviour of an RM using the one shown in Figure 2c. The RM will stay in
u0 until the agent presses the button (causing a cookie to appear), whereupon the RM moves to u1.
From u1 the RM may move to u2 or u3 depending on whether the agent finds a cookie when it enters
another room. It is also possible to associate meanings with being in a RM states: u0 means that
there is no cookie available, u1 means that there is a cookie in some room (either blue or red), etc.

When learning a policy for a given RM, one simple technique is to learn a policy π(o, u) that considers
the current observation o ∈ O and the current RM state u ∈ U . Interestingly, a partially observable
problem might be non-Markovian over O, but Markovian over O × U for some RMRP .

4 Learning Reward Machines from Traces

Our overall idea is to search for an RM that can be used as external memory by an agent for a given
task. As input, our method will only take a set of high-level propositional symbols P , and a labelling
function L that can detect them. Then, the key question is what properties should such an RM have.

Three proposals naturally emerge from the literature. The first comes from the work on learning
Finite State Machines (FSMs) [3, 30, 7], which suggests learning the smallest RM that correctly
mimics the external reward signal given by the environment, as in Giantamidis and Tripakis’ method
for learning Moore Machines [7]. Unfortunately, such an approach would learn RMs of limited utility,
as shown in Figure 2a. This naive RM correctly predicts the reward from the cookie domain (i.e., +1
for eating a cookie , zero otherwise) but provides no memory in support of solving the task.

The second proposal comes from the literature on learning Finite State Controllers (FSC) [17] and on
model-free RL methods [24]. This work suggests looking for the RM whose optimal policy receives
the most reward. For instance, the RM from Figure 2b is “optimal” in this sense. It decomposes the
problem into three states. The optimal policy for u0 goes directly to press the button, the optimal
policy for u1 goes to the blue room and eats the cookie if present, and the optimal policy for u2 goes
to the red room and eats the cookie. Together, these three policies give rise to an optimal policy for
the complete problem. This is a desirable property for RMs, but requires computing optimal policies
in order to compare the relative quality of RMs, which seems prohibitively expensive. However, we
believe that finding ways to efficiently learn “optimal” RMs is a promising future work direction.

Finally, the third proposal comes from the literature on Predictive State Representations (PSR)
[15], Deterministic Markov Models (DMMs) [16], and model-based RL [11]. These works suggest
learning the RM that remembers sufficient information about the history to make accurate Markovian
predictions about the next observation. For instance, the cookie domain RM shown in Figure 2c
is perfect w.r.t. this criterion. Intuitively, every transition in the cookie environment is already
Markovian except for transitioning from one room to another. Depending on different factors, when
entering to the red room there could be a cookie there (or not). The perfect RM is able to encode
such information using 4 states, where u0 represents the state where the agent knows that there is
no cookie, at u1 the agent knows that there is a cookie in the blue or the red room, at u2 the agent
knows that there is a cookie in the red room, and at u3 the agent knows that there is a cookie in the

3

blue room. Since keeping track of more information will not result in better predictions, this RM is
perfect. Below, we develop a theory about perfect RMs and describe an approach to learn them.

4.1 Perfect Reward Machines: Formal Definition and Properties

The key insight behind perfect RMs is to use their states U and transitions δu to keep track of relevant
past information such that the partially observable environment PO becomes Markovian w.r.t. O×U .
Definition 4.1 (perfect reward machine). An RM RP = 〈U, u0, δu, δr〉 is considered perfect for a
POMDP PO = 〈S,O,A, r, p, ω, γ〉 with respect to a labelling function L if and only if for every
trace o0, a0, . . . , ot, at generated by any policy over PO, the following holds:

Pr(ot+1, rt+1|o0, a0, . . . , ot, at) = Pr(ot+1, rt+1|ot, xt, at) (1)

where x0 = u0 and xt = δu(xt−1, L(ot−1, at−1, ot)) .

Two interesting properties follow from Definition 4.1. First, if the set of belief states B for the
POMDP PO is finite [4], then there exists a perfect RM for PO with respect to some L. Second, the
optimal policies for perfect RMs are also optimal for the POMDP (see Appendix A).
Theorem 4.1. Given any POMDP PO with a finite reachable belief space, there will always exists at
least one perfect RM for PO with respect to some labelling function L.
Theorem 4.2. Let RP be a perfect RM for a POMDP PO w.r.t. a labelling function L, then any
optimal policy forRP w.r.t. the environmental reward is also optimal for PO.

4.2 Perfect Reward Machines: How to Learn Them

We now consider the problem of learning a perfect RM from traces, assuming one exists w.r.t. the
given labelling function L. Recall that a perfect RM transforms the original problem into a Markovian
problem over O × U . Hence, we should prefer RMs that accurately predict the next observation
o′ and immediate reward r from the current observation o, RM state u, and action a. This might
be achieved by collecting a training set of traces from the environment, fitting a predictive model
for Pr(o′, r|o, u, a), and picking the RM that makes better predictions. However, this can be very
expensive, especially considering that the observations might be images.

Instead, we propose an alternative that focuses on a necessary condition for a perfect RM: the RM
must predict what is possible and impossible in the environment at the abstract level. For example,
it is impossible to be at u3 in the RM from Figure 2c and make the abstract observation { , },
because the RM reaches u3 only if the cookie was seen in the blue room or not in the red room.

minimize
〈U,u0,δu,δr〉

∑
i∈I

∑
t∈Ti

log(|Nxi,t,L(ei,t)|) (LRM)

s.t. 〈U, u0, δu, δr〉 ∈ RP (2)
|U | ≤ umax (3)
xi,t ∈ U ∀i ∈ I, t ∈ Ti (4)
xi,0 = u0 ∀i ∈ I (5)
xi,t+1 = δu(xi,t, L(ei,t+1)) ∀i ∈ I, t ∈ Ti (6)

Nu,l ⊆ 22
P

∀u ∈ U, l ∈ 2P (7)
L(ei,t+1) ∈ Nxi,t,L(ei,t) ∀i ∈ I, t ∈ Ti (8)

This idea is formalized in the optimization
model LRM. Let T = {T0, . . . , Tn} be a set of
traces, such that each trace Ti is a sequence
of observations, actions, and rewards: Ti =
{oi,0, ai,0, ri,0, . . . , oi,ti , ai,ti , ri,ti}. We now
look for an RM 〈U, u0, δu, δr〉 that can be used
to predict L(ei,t+1) from L(ei,t) and the cur-
rent RM state xi,t, where ei,t+1 is the experi-
ence (oi,t, ai,t, oi,t+1) and ei,0 is (∅, ∅, oi,0) by
definition. The model parameters are the set of
traces T , the set of propositional symbols P , the
labelling function L, and a maximum number of states in the RM umax. The model also uses the sets
I = {0 . . . n} and Ti = {0 . . . ti − 1}, where I contains the index of the traces and Ti their time
steps. The model has two auxiliary variables xi,t and Nu,l. Variable xi,t ∈ U represents the state of
the RM after observing trace Ti up to time t. Variable Nu,l ⊆ 22

P
is the set of all the next abstract

observations seen from the RM state u and the abstract observations l at some point in T . In other
words, l′ ∈ Nu,l iff u = xi,t, l = L(ei,t), and l′ = L(ei,t+1) for some trace Ti and time t.

Constraints (2) and (3) ensure that we find a well-formed RM over P with at most umax states.
Constraint (4), (5), and (6) ensure that xi,t is equal to the current state of the RM, starting from u0
and following δu. Constraint (7) and (8) ensure that the sets Nu,l contain every L(ei,t+1) that have
been seen right after l and u in T . The objective function comes from maximizing the log-likelihood
for predicting L(ei,t+1) using a uniform distribution over all the possible options given by Nu,l.

4

A key property of this formulation is that any perfect RM is optimal with respect to the objective
function in LRM when the number of traces tends to infinity (see Appendix A):

Theorem 4.3. When the set of training traces (and their lengths) tends to infinity and is collected by
a policy such that π(a|o) > ε for all o ∈ O and a ∈ A, any perfect RM with respect to L and at most
umax states will be an optimal solution to the formulation LRM.

Finally, note that the definition of a perfect RM does not impose conditions over the rewards associated
with the RM (i.e., δr). This is why δr is a free variable in the model LRM. However, we still expect δr
to model the external reward signals given by the environment. To do so, we estimate δr(u, l) using
its empirical expectation over T (as commonly done when constructing belief MDPs [4]).

4.3 Searching for a Perfect Reward Machine Using Tabu Search

We now describe the specific optimization technique used to solve LRM. We experimented with
many discrete optimization approaches—including mixed integer programming [5] (included in
Appendix B), Benders decomposition [6], evolutionary algorithms [12], and others—and found local
search algorithms [1] to be the most effective at finding high quality RMs given short time limits. In
particular, we use Tabu search [8], a simple and versatile local search procedure with convergence
guarantees and many successful applications in the literature [27].

In the context of our work, Tabu search starts from a random RM and, on each iterations it evaluates
all “neighbouring” RMs. We define the neighbourhood of an RM as the set of RMs that differ by
exactly one transition (i.e., removing/adding a transition, or changing its value) and evaluate RMs
using the objective function of LRM. When all neighbouring RMs are evaluated, the algorithm chooses
the one with lowest values and sets it as the current RM. To avoid local minimum, Tabu search
maintains a Tabu list of all the RMs that were previously used as the current RM. Then, RMs in the
Tabu list are pruned when examining the neighbourhood of the current RM.

5 Simultaneously Learning a Reward Machine and a Policy

We now describe our overall approach for simultaneously finding an RM and learn a policy for it
(the pseudo-code is in Appendix C). It starts by collecting a training set of traces T generated by a
random policy during tw “warmup” steps. This set of traces is used to find an initial RM R using
Tabu search. The algorithm then initializes policy π, sets the RM state to the initial state u0, and
sets the current label l to the initial abstract observation L(∅, ∅, o). The standard RL learning loop
is then followed: an action a is selected following π(o, u) where u is the current RM state, and the
agent receives the next observation o′ and the immediate reward r. The RM state is then updated
to u′ = δu(u, L(o, a, o

′)) and the last experience (〈o, u〉, a, r, 〈o′, u′〉) is used by an RL method to
update π. When a terminal state is reached, then the environment and RM are reset.

If on any step, there is evidence that the current RM might not be the best one, our approach will
attempt to find a new one. Recall that the RMR was selected using the cardinality of its prediction
sets N (LRM). Hence, if the current abstract observation l′ is not in Nu,l, adding the current trace to T
will increase the size of Nu,l forR. As such, the cost ofR will increase and it may no longer be the
best RM. Thus, if l′ 6∈ Nu,l, we add the current trace to T and search for a new RM. Recall that we
use Tabu search, though any discrete optimization method could be applied. Our method only uses
the new RM if its cost is lower thanR’s. If the RM is updated, a new policy is learned from scratch.

Given the current RM, we can use any RL algorithm to learn a policy π(o, u), by treating the
combination of o and u as the current state. If the RM is perfect, then the optimal policy π∗(o, u)
will also be optimal for the original POMDP (Theorem 4.2). However, to exploit the RM structure,
we extended the QRM algorithm to work under partial observability (as described in Appendix E).

6 Experimental Evaluation

We tested our approach on three partially observable grid domains. The agent can move in the four
cardinal directions and can only see what is in the current room. The first environment is the cookie
domain described in §3. Each episode is 5, 000 steps long, during which the agent should attempt to
get as many cookies as possible. The rest of the environments are described on Appendix D.1.

5

Cookie domain Symbol domain 2-keys domains

0 1 · 106 2 · 106 3 · 106
0

50

100

150

200

Training steps

R
ew

ar
d

0 1 · 106 2 · 106

0

200

400

Training steps

R
ew

ar
d

0 2 · 106 4 · 106
0

50

100

150

Training steps

R
ew

ar
d

Legend: DDQN A3C PPO ACER LRM + DDQN LRM + DQRM Optimal

Figure 3: Total reward collected every 10, 000 training steps.

We tested two versions of our Learned Reward Machine (LRM) approach: LRM+DDQN and
LRM+DQRM. Both learn an RM from experience as described in §4.2, but LRM+DDQN learns
a policy using DDQN [26] while LRM+DQRM uses QRM (Appendix E). We compared against 4
baselines: DDQN [26], A3C [19], ACER [28], and PPO [21]. DDQN uses the concatenation of the
last 10 observations as input whereas A3C, ACER, and PPO use an LSTM to summarize the history.
The output of the labelling function was also given to the baselines. More details on Appendix D.

Figure 3 shows the total reward that each approach gets every 10, 000 training steps and compares it
to the optimal policy. For the LRM algorithms, the figure shows the median performance over 30
runs per domain, and percentile 25 to 75 in the shadowed area. Note that LRM approaches largely
outperform all the baselines. A key factor in the strong performance of the LRM approaches is that
Tabu search finds high-quality RMs in less than 2.5 minutes using 62 workers (see Appendix D.3).

7 Related Work

State-of-the-art approaches for partially observable RL use Recurrent Neural Networks (RNNs) as
memory in combination with policy gradient [19, 28, 21, 10], or use external neural-based memories
[20, 13, 9]. While our experiments highlight the merits of our approach w.r.t. RNN-based approaches,
we rely on ideas that are largely orthogonal. As such, we believe there is significant potential in
mixing these approaches to get the benefit of memory at both the high and low-level.

The effectiveness of automata-based memory has long been recognized in the POMDP literature [4],
where the objective is to find policies given a complete specification of the environment. The idea
is to encode policies using Finite State Controllers (FSCs) which are FSMs where the transitions
are defined in terms of low-level observations from the environment and each state in the FSM is
associated with one primitive action. When interacting with the environment, the agent always selects
the action associated with the current state in the controller. Meuleau et al. [17] adapted this idea to
work in the RL setting by exploiting policy gradient to learn policies encoded as FSCs. RMs can be
considered as a generalization of FSC as they allow for transitions using conditions over high-level
events and associate complete policies (instead of just one primitive action) to each state.

8 Concluding Remarks

We have presented a discrete optimization-based approach for learning Reward Machines that can
be used to solved partially observable RL problems. We believe this work represents an important
building block for creating RL agents that can solve cognitively challenging partially observable
tasks. Not only did our approach solve problems that were unsolvable by A3C, ACER and PPO, but
it did so in a relatively small number of training steps. RM learning provided the agent with memory,
but more importantly the combination of RM learning and policy learning provided it with discrete
reasoning capabilities that operated at a higher level of abstraction while leveraging deep RL’s ability
to learn policies from low-level inputs. This work leaves open many interesting questions relating
to abstraction, observability, and properties of the language over which RMs are constructed. We
believe that addressing these questions will push the boundary of RL problems that can be solved.

6

References
[1] E. Aarts, E. H. Aarts, and J. K. Lenstra. Local search in combinatorial optimization. Princeton

University Press, 2003.
[2] M. Andrychowicz, B. Baker, M. Chociej, R. Jozefowicz, B. McGrew, J. Pachocki, A. Petron,

M. Plappert, G. Powell, A. Ray, et al. Learning dexterous in-hand manipulation. arXiv preprint
arXiv:1808.00177, 2018.

[3] D. Angluin and C. H. Smith. Inductive inference: Theory and methods. ACM Computing
Surveys (CSUR), 15(3):237–269, 1983.

[4] A. R. Cassandra, L. P. Kaelbling, and M. L. Littman. Acting optimally in partially observable
stochastic domains. In Proceedings of the 12th National Conference on Artificial Intelligence
(AAAI), pages 1023–1028, 1994.

[5] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume 271. Springer,
2014.

[6] A. M. Geoffrion. Generalized Benders decomposition. Journal of optimization theory and
applications, 10(4):237–260, 1972.

[7] G. Giantamidis and S. Tripakis. Learning moore machines from input-output traces. In
Proceedings of the 21st International Symposium on Formal Methods (FM), pages 291–309,
2016.

[8] F. Glover and M. Laguna. Tabu search. In Handbook of combinatorial optimization, pages
2093–2229. Springer, 1998.

[9] C.-C. Hung, T. Lillicrap, J. Abramson, Y. Wu, M. Mirza, F. Carnevale, A. Ahuja, and
G. Wayne. Optimizing agent behavior over long time scales by transporting value. arXiv
preprint arXiv:1810.06721, 2018.

[10] M. Jaderberg, V. Mnih, W. M. Czarnecki, T. Schaul, J. Z. Leibo, D. Silver, and K. Kavukcuoglu.
Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint arXiv:1611.05397,
2016.

[11] L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of artificial intelligence research, 4:237–285, 1996.

[12] D. Kasenberg and M. Scheutz. Interpretable apprenticeship learning with temporal logic
specifications. In Proceedings of the 56th IEEE Annual Conference on Decision and Control
(CDC), pages 4914–4921, 2017.

[13] A. Khan, C. Zhang, N. Atanasov, K. Karydis, V. Kumar, and D. D. Lee. Memory augmented
control networks. arXiv preprint arXiv:1709.05706, 2017.

[14] D. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[15] M. L. Littman, R. S. Sutton, and S. Singh. Predictive representations of state. In Proceedings
of the 15th Conference on Advances in Neural Information Processing Systems (NIPS), pages
1555–1561, 2002.

[16] M. Mahmud. Constructing states for reinforcement learning. In Proceedings of the 27th
International Conference on Machine Learning (ICML), pages 727–734, 2010.

[17] N. Meuleau, L. Peshkin, K.-E. Kim, and L. P. Kaelbling. Learning finite-state controllers for
partially observable environments. In Proceedings of the 15th Conference on Uncertainty in
Artificial Intelligence (UAI), pages 427–436, 1999.

[18] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. Human-level control through deep rein-
forcement learning. Nature, 518(7540):529–533, 2015.

[19] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and K. Kavukcuoglu.
Asynchronous methods for deep reinforcement learning. In Proceedings of the 33rd Interna-
tional Conference on Machine Learning (ICML), pages 1928–1937, 2016.

[20] J. Oh, V. Chockalingam, S. Singh, and H. Lee. Control of memory, active perception, and
action in minecraft. In Proceedings of the 33rd International Conference on Machine Learning
(ICML), pages 2790–2799, 2016.

7

[21] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[22] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of Go without human knowledge. Nature, 550
(7676):354, 2017.

[23] S. P. Singh, T. Jaakkola, and M. I. Jordan. Learning without state-estimation in partially
observable markovian decision processes. In Machine Learning Proceedings 1994, pages
284–292. Elsevier, 1994.

[24] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. MIT press, 2018.
[25] R. Toro Icarte, T. Q. Klassen, R. Valenzano, and S. A. McIlraith. Using reward machines for

high-level task specification and decomposition in reinforcement learning. In Proceedings of
the 35th International Conference on Machine Learning (ICML), pages 2112–2121, 2018.

[26] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-learning. In
Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI), pages 2094–2100,
2016.

[27] S. Voß, S. Martello, I. H. Osman, and C. Roucairol. Meta-heuristics: Advances and trends in
local search paradigms for optimization. Springer Science & Business Media, 2012.

[28] Z. Wang, V. Bapst, N. Heess, V. Mnih, R. Munos, K. Kavukcuoglu, and N. de Freitas. Sample
efficient actor-critic with experience replay. arXiv preprint arXiv:1611.01224, 2016.

[29] C. J. C. H. Watkins and P. Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.
[30] Z. Zeng, R. M. Goodman, and P. Smyth. Learning finite state machines with self-clustering

recurrent networks. Neural Computation, 5(6):976–990, 1993.

8

A Theorems and Proof Sketches

When we do have access to a full POMDP model PO, then the history can be summarized into a
belief state. A belief state is a probability distribution bt : S → [0, 1] over S, such that bt(s) is the
probability that the agent is in state s ∈ S given the history up to time t. The initial belief state is
computed using the initial observation o0: b0(s) = ω(s, o0) for all s ∈ S. The belief state bt+1 is
then determined from the previous belief state bt, the executed action at, and the resulting observation
ot+1 as bt+1(s

′) ∝ ω(s′, ot+1)
∑
s∈S p(s, at, s

′)bt(s) for all s′ ∈ S. Since the state transitions and
reward function are Markovian w.r.t. bt, the set of all belief states B can be used to construct the
belief MDPMB . Optimal policies forMB are also optimal for the POMDP [4]. Below, we use this
theory to prove Theorems 4.1 and 4.2.
Theorem A.1. Given any POMDP PO with a finite reachable belief space, there will always exist at
least one perfect RM for PO with respect to some labelling function L.

Proof sketch. If the reachable belief space B is finite, we can construct an RM that keeps track of the
current belief state using one RM state per belief state and emulating their progression using δu and
one propositional symbol for every action-observation pair. Thus, the current belief state bt can be
inferred from the last observation, last action, and the current RM state. As such, the equality from
Definition 4.1 holds.

Two interesting properties follow from the definition of a perfect RM. First, if the set of belief states
B for the POMDP PO is finite, then there exists a perfect RM for PO with respect to some L. Second,
the optimal policies for perfect RMs are also optimal for the POMDP.
Theorem A.2. Let RP be a perfect RM for a POMDP PO w.r.t. a labelling function L, then any
optimal policy forRP w.r.t. the environmental reward is also optimal for PO.

Proof sketch. As the next observation and immediate reward probabilities can be predicted from
O × U ×A, an optimal policy over O × U must also be optimal over PO.

A key property of this formulation is that any perfect RM is optimal with respect to objective function
in LRM when the number of traces tends to infinity:
Theorem A.3. When the set of training traces (and their lengths) tends to infinity and is collected by
a policy such that π(a|o) > ε for all o ∈ O and a ∈ A, any perfect RM with respect to L and at most
umax states will be an optimal solution to the formulation LRM.

Proof sketch. In the limit, l′ ∈ Nu,l if and only if the probability of observing l′ after executing an
action from the RM state u while observing l is non-zero. In particular, for all i ∈ I and t ∈ T ,
the cardinality of Nxi,t,L(ei,t) will be minimal for a perfect RM. This follows from the fact that
perfect RMs make perfect predictions for the next observation o′ given o, u, and a. Therefore, as we
minimize the sum over log(|Nxi,t,L(ei,t)|), the objective value for a perfect RM must be minimal.

B Mixed Integer Linear Programming Model for LRM

We now present a Mixed Integer Linear Programming Model MILP for LRM. For this model we assume
|U | = umax and we use K = 22

|P|
. Variables du,u′,l ∈ {0, 1} represent the possible transitions

in the RM for each pair of states u, u′ ∈ U and abstract observation l ∈ 2P , i.e., du,u′,l = 1 iff
δu(u, l) = u′. Variable wi,t,u ∈ {0, 1} indicates if the agent is at state u ∈ U of the RM on trace
i ∈ I and time step t ∈ Ti, i.e., wi,t,u = 1 iff xi,t = u . Variable pl,u,l′ ∈ {0, 1} indicates if l′ ∈ 2P

is a possible next abstract observation at RM state u when observing l ∈ 2P , i.e., pl,u,l′ = 1 iff
l′ ∈ Nu,l. Variable yu,l,n ∈ {0, 1} represents the cardinality of Nu,l, i.e., yu,l,n = 1 iff |Nu,l| = n.
Lastly, variables zi,t represents the log-likelihood cost for trace i ∈ I and time step t ∈ Ti, i.e.,
zi,t = log(|Nxi,t,L(ei,t)|). Then, the model is as follows:

9

min
∑
i∈I

∑
t∈Ti

zi,t (MILP)

s.t. zi,t ≥
K∑
n=1

yu,l,n · log (n)− (1− wi,t,u) · log (K) ∀i ∈ I, t ∈ Ti, u ∈ U, l = L(ei,t) (9)

K∑
n=1

yu,l,n = 1 ∀u ∈ U, l ∈ 2P (10)

∑
l′∈2P

pl,u,l′ =

K∑
n=1

yu,l,n · n ∀u ∈ U, l ∈ 2P , n ∈ {1..K} (11)

pl,u,l′ ≥ wi,t,u ∀i ∈ I, t ∈ Ti, l = L(ei,t), l
′ = L(ei,t+1) (12)∑

u′∈U

du,u′,l = 1 ∀u ∈ U, l ∈ 2P (13)

∑
u∈U

wi,t,u = 1 ∀i ∈ I, t ∈ Ti, u ∈ U (14)

wi,0,u0 = 1 ∀i ∈ I (15)

wi,t+1,u′ ≥ wi,t,u + du,u′,l − 1 ∀i ∈ I, t ∈ Ti, u, u′ ∈ U, l = L(ei,t+1) (16)

du,u′,l ∈ {0, 1} ∀u, u′ ∈ U, l ∈ 2P (17)
wi,t,u ∈ {0, 1} ∀i ∈ I, t ∈ Ti, u ∈ U (18)

pl,u,l′ ∈ {0, 1} ∀u ∈ U, l, l′ ∈ 2P (19)

yu,l,n ∈ {0, 1} ∀u ∈ U, l ∈ 2P , n ∈ {1..K} (20)
zi,t ≥ 0 ∀i ∈ I, t ∈ Ti (21)

Constraint (9) models the log-likelihood cost for each time step of a trace. Constraints (10) and
(11) compute the cardinality of Nu,l. Constraint (12) defines the possible predictions given a trace.
Constraint (13) enforces that for each RM state an abstract observation can lead to exactly one other
RM state. Constraint (14) enforces that at any time step of a trace the agent can be at exactly one RM
state. Constraint (15) imposes the initial RM state of a trace and constraint (16) encodes the RM state
transitions for a trace. Lastly, constraints (17)-(21) correspond to the variables domains.

C Algorithm for Simultaneously Learning Reward Machines and a Policy

Algorithm 1 shows our overall approach for simultaneously learning an RM and exploiting that RM to
learn a policy. The algorithm inputs are the set of propositional symbols P , the labelling function L,
a maximum on the number of RM states umax, and the number of “warmup" steps tw. Our approach
starts by collecting a training set of traces T generated by a random policy during tw steps (Line 2).
This set of traces is used to find an initial RMR using Tabu search (Line 3). If later traces show that
R is incorrect, our method will then find a new RM learned using the additional traces.

Lines 4 and 5 initialize the environment and the policy π, and set variables x and l to the initial RM
state u0 and initial abstract observation L(∅, ∅, o), respectively. Lines 7–19 are the main loop of
our approach. Lines 7–10 are part of the standard RL loop: the agent executes an action a selected
following π(o, x) and receives the next observation o′, the immediate reward r, and a boolean variable
done indicating if the episode has terminated. Then, the state in the RM x′ is updated and the policy
π is improved using the last experience (〈o, x〉, a, r, 〈o′, x′〉, done). Note that when done is true, the
environment and RM are reset (Lines 17–18).

Lines 11–16 involve relearning the RM when there is evidence that the current RM might not be
the best one. Recall that the RMR was selected using the cardinality of its prediction sets N , LRM.
Hence, if the current abstract observation l′ is not in Nx,l, then adding the current trace to T will
increase the size of Nx,l forR. As such, the cost ofR will increase and it may no longer be the best
RM. Thus, if l′ 6∈ Nx,l, we add the current trace to T and use Tabu search to find a new RM. Note,
our method only uses the new RM if its cost is lower than that ofR (Lines 14–16). However, when
the RM is updated, a new policy is learned from scratch (Line 16).

10

Algorithm 1 Learning an RM and a Policy

1: Input: P , L, A, umax, tw
2: T ← collect_traces(tw)
3: R, N ← learn_rm(P , L, T , umax)
4: o, x, l← env_get_initial_state(), u0, L(∅, ∅, o)
5: π ← initialize_policy()
6: for t = 1 to ttrain do
7: a← select_action(π, o, x)
8: o′, r, done← env_execute_action(a)
9: x′, l′ ← δu(x, L(o, a, o

′)), L(o, a, o′)
10: π ← improve(π, o, x, l, a, r, o′, x′, l′, done, N)
11: if l′ 6∈ Nx,l then
12: T ← T ∪ get_current_trace()
13: R′, N ← relearn_rm(R, P , L, T , umax)
14: ifR 6= R′ then
15: R, done← R′, true
16: π ← initialize_policy()
17: end if
18: end if
19: if done then
20: o′, x′, l′ ← env_get_initial_state(), u0, L(∅, ∅, o)
21: end if
22: o, x, l← o′, x′, l′

23: end for
24: return π

D Experimental Evaluation

D.1 Domains

(a) Cookie domain.

♣
♠
�

♣
♠
�

♣

(b) Symbol domain.

K

¤ ¤

(c) 2-keys domain.

Figure 4: Partially observable environments where the agent can only see what is in the current room.

We tested our approach on three partially observable grid domains (Figure 4). The agent can move
in the four cardinal directions and can only see what is in the current room. These are stochastic
domains where the outcome of an action randomly changes with a 5% probability.

The first environment is the cookie domain (Figure 4a) described in §3. Each episode is 5, 000 steps
long, during which the agent should attempt to get as many cookies as possible.

The second environment is the symbol domain (Figure 4b). It has three symbols ♣, ♠, and � in the
red and blue rooms. One symbol from {♣,♠,�} and possibly a right or left arrow are randomly
placed at the yellow room. Intuitively, that symbol and arrow tell the agent where to go, e.g., ♣ and
→ tell the agent to go to ♣ in the east room. If there is no arrow, the agent can go to the target symbol
in either room. An episode ends when the agent reaches any symbol in the red or blue room, at which
point it receives a reward of +1 if it reached the correct symbol and −1 otherwise.

The third environment is the 2-keys domain (Figure 4c). The agent receives a reward of +1 when
it reaches the coffee (in the yellow room). To do so, it must open the two doors (shown in brown).
Each door requires a different key to open it, and the agent can only carry one key at a time. Initially,
the two keys are randomly located in either the blue room, the red room, or split between them.

11

D.2 Experimental Details

In all domains, we used umax = 10, tw = 200, 000, an epsilon greedy policy with ε = 0.1, and
a discount factor γ = 0.9. The size of the Tabu list and the number of steps that the Tabu search
performs before returning the best RM found is 100.

For LRM+DDQN and LRM+DQRM, the neural network used has 5 fully connected layers with 64
neurons per layer. On every step, we trained the network using 32 sampled experiences from a replay
buffer of size 100,000 using the Adam optimizer [14] and a learning rate of 5e-5. The target networks
were updated every 100 steps.

DDQN [26] uses the same parameters and network architecture than LRM+DDQN, but its input is
the concatenation of the last 10 observations, as commonly done by Atari playing agents. This gives
DDQN a limited memory to better handle partially observable domains. A3C, ACER, and PPO use
an LSTM to summarize the history. We followed the same testing methodology that was used in
their original publications. We ran each approach at least 30 times per domain, and on every run,
we randomly selected the number of hidden neurons for the LSTM from {64, 128, 256, 512} and a
learning rate from (1e-3, 1e-5). We also sampled δ from {0, 1, 2} for ACER and the clip range from
(0.1, 0.3) for PPO. Other parameters were fixed to their default values.

While interacting with the environment, the agents were given a “top-down" view of the world
represented as a set of binary matrices. One matrix had a 1 in the current location of the agent,
one had a 1 in only those locations that are currently observable, and the remaining matrices each
corresponded to an object in the environment and had a 1 at only those locations that were both
currently observable and contained that object (i.e., locations in other rooms are “blacked out"). The
agent also had access to features indicating if they were carrying a key, which colour room they were
in, and the current status (i.e., occurring or not occurring) of the events detected by the labelling
function.

D.3 Tabu Search

Figure 5 evaluates the quality of the RMs found by Tabu search by comparing them to the perfect
RM. In each plot, a dot compares the cost of a handcrafted perfect RM with that of an RMR that was
found by Tabu search while running our LRM approaches, where the costs are evaluated relative to the
training set used to findR. Being on or under the diagonal line (as in most of the points in the figure)
means that Tabu search is finding RMs whose values are at least as good as the handcrafted RM.
Hence, Tabu search is either finding perfect RMs or discovering that our training set is incomplete
and our agent will eventually fill those gaps.

Cookie domain Symbol domain 2-keys domains

103.7 103.8 103.9 104
103.7

103.8

103.9

104

Cost Perfect RM

C
os

tL
ea

rn
ed

R
M

103.7 103.8 103.9

103.7

103.8

103.9

Cost Perfect RM

C
os

tL
ea

rn
ed

R
M

103.8 104 104.2

103.8

104

104.2

Cost Perfect RM

C
os

tL
ea

rn
ed

R
M

Figure 5: Cost comparison between perfect RM and RM found by Tabu search.

E Q-Learning for Reward Machines under Partial Observability

When learning a policy for a given RM, one simple technique is to learn a policy π(o, u) that considers
the current observation o ∈ O and the current RM state u ∈ U using, for instance, Q-learning [29].
Q-learning is a well-known RL algorithm that uses samples of experience of the form (st, at, rt, st+1)
to estimate the optimal q-function q∗(s, a). Here, q∗(s, a) is the expected return of selecting action
a in state s and following an optimal policy π∗. Deep RL methods like DQN [18] and DDQN [26]

12

represent the q-function as q̃θ(s, a), where q̃θ is a neural network whose inputs are features of the
state and action, and whose weights θ are updated using stochastic gradient descent.

However, to exploit the problem structure exposed by the RM, we want to use the QRM algorithm.
Q-Learning for RMs (QRM) is another way to learn a policy by exploiting a given RM [25]. QRM
learns one q-function q̃u (i.e., policy) per RM state u ∈ U . Then, given any sample experience,
the RM can be used to emulate how much reward would have been received had the RM been in
any one of its states. Formally, experience e = (o, a, o′) can be transformed into a valid experience
(〈o, u〉, a, 〈o′, u′〉, r) used for updating q̃u for each u ∈ U , where u′ = δu(u, L(e)) and r =
δr(u, L(e)). Hence, any off-policy learning method can take advantage of these “synthetically"
generated experiences to update all subpolicies simultaneously. When tabular q-learning is used,
QRM is guaranteed to converge to an optimal policy on fully-observable problems [25]. However, in
a partially observable environment, an experience e might be more or less likely depending on the
RM state that the agent was in when the experience was collected. For example, experience e might
be possible in one RM state ui but not in RM state uj . Thus, updating the policy for uj using e as
QRM does, would introduce an unwanted bias to q̃uj

.

We partially address this issue by only updating q̃u using (o, a, o′) if and only if L(o, a, o′) ∈ Nu,l,
where l was the current abstract observation that generated the experience (o, a, o′). Hence, we do
not transfer experiences from ui to uj if the current RM does not believe that (o, a, o′) is possible in
uj . For example, consider the cookie domain and the perfect RM from Figure 2c. If some experience
consists of entering to the red room and seeing a cookie, then this experience will not be used by
states u0 and u3 as it is impossible to observe a cookie at the red room from those states. Note that
adding this rule may work in many cases, but it will not address the problem in all environments. We
consider addressing this problem as an interesting area for future work.

13

	Introduction
	Preliminaries
	Reward Machines for Partially Observable Environments
	Learning Reward Machines from Traces
	Perfect Reward Machines: Formal Definition and Properties
	Perfect Reward Machines: How to Learn Them
	Searching for a Perfect Reward Machine Using Tabu Search

	Simultaneously Learning a Reward Machine and a Policy
	Experimental Evaluation
	Related Work
	Concluding Remarks
	Theorems and Proof Sketches
	Mixed Integer Linear Programming Model for LRM
	Algorithm for Simultaneously Learning Reward Machines and a Policy
	Experimental Evaluation
	Domains
	Experimental Details
	Tabu Search

	Q-Learning for Reward Machines under Partial Observability

