
ALGAE: Policy Gradient from Arbitrary Experience

Ofir Nachum∗ Bo Dai∗ Ilya Kostrikov Dale Schuurmans
Google Research

{ofirnachum,bodai,kostrikov,schuurmans}@google.com

Abstract

In many real-world applications of reinforcement learning (RL), interactions with
the environment are limited due to cost or feasibility. This presents a challenge to
traditional RL algorithms since the max-return objective involves an expectation
over on-policy samples. We introduce a new formulation of max-return optimiza-
tion that allows the problem to be re-expressed by an expectation over an arbitrary
behavior-agnostic and off-policy data distribution. We first derive this result by con-
sidering a regularized version of the dual max-return objective before extending our
findings to unregularized objectives through the use of a Lagrangian formulation
of the linear programming characterization of Q-values. We show that, if auxiliary
dual variables of the objective are sufficiently optimized, then the gradient of the
off-policy objective is exactly the on-policy policy gradient, without any use of
importance weighting. In addition to revealing the appealing theoretical properties
of this approach, we also show that it can deliver good practical performance.

1 Introduction
The use of model-free reinforcement learning (RL) in conjunction with function approximation has
proliferated in recent years, demonstrating successful applications in the fields of robotics (Nachum
et al., 2019a) and game playing (Mnih et al., 2013). These demonstrations often rely on on-policy
access to the environment; i.e., during the learning process agents may collect new experience from
the environment, and these interactions are effectively unlimited. By contrast, in many real-world
applications of RL, interaction with the environment is costly, hence experience collection during
learning is limited, necessitating the use of off-policy RL methods. In the most restrictive case, direct
interaction with the environment is infeasible and learning is completely offline; that is, there is only
a fixed dataset of logged experience collected by potentially multiple and possibly unknown behavior
policies. This scenario is also known as batch RL (Lange et al., 2012) with behavior-agnostic data.

The off-policy nature of many practical applications presents a challenge for RL algorithms. For
example, policy gradient methods (Sutton et al., 2000) require samples from the on-policy distribution
to estimate the direction of maximum increase in expected return. The most straightforward way to
reconcile policy gradient with off-policy settings is via importance weighting (Sutton et al., 2016).
However, this approach is prone to high variance and instability without appropriate damping (Wang
et al., 2016; Schulman et al., 2017). Sometimes the easiest solution to a problem is to just ignore it,
which is exactly what has been proposed for off-policy policy gradient (Silver et al., 2014; Degris
et al., 2012): the suggestion being to simply compute the objective and its gradients with respect to
samples from the off-policy data, ignoring any distribution shift. The justification for this approach is
that the maximum return policy will be optimal regardless of the state. However, such a justification
is unsound in function approximation settings, where models have limited expressiveness, with
potentially disastrous consequences on optimization and convergence (Lu et al., 2018).

Value-based methods provide an alternative that may be more promising for the off-policy setting. In
these methods, a value function is learned either as a critic to a learned policy (as in actor-critic) or
as the maximum return value function itself (as in Q-learning). This approach is based on dynamic
programming in tabular settings, which is inherently off-policy and independent of any underlying
data distribution. Nevertheless, when using function approximation, the objective is traditionally
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expressed as an expectation over single-step Bellman errors, which re-raises the question, “What
should the expectation be?” Theoretical work suggests that the ideal expectation is in fact the on-
policy expectation (Sutton et al., 2000; Nachum et al., 2018b; Silver et al., 2014). In practice, this
problem is usually ignored, with the same justification as that made for policy gradient methods. It is
telling that actor-critic or Q-learning algorithms advertised as off-policy still require large amounts of
online interaction with the environment (Haarnoja et al., 2018b; Hessel et al., 2018).

In this work, we present an ALgorithm for policy Gradient from Arbitrary Experience (ALGAE) as
an alternative to policy gradient and value-based methods. We start with the dual formulation of the
maximum return objective, which is expressed in terms of normalized state-action occupancies rather
than a policy or value function. Traditionally, this objective is considered unattractive, since access
to the occupancies either requires an on-policy expectation (similar to policy gradient methods) or
learning a function approximator to satisfy single-step constraints (similar to value-based methods).
We demonstrate how these problems can be remedied by adding convex regularization and applying
a carefully chosen change-of-variables, obtaining a joint objective over a policy and an auxiliary
dual function (that can be interpreted as a critic). Crucially, this objective relies only on access to
samples from an arbitrary off-policy data distribution, collected by potentially multiple and possibly
unknown behavior policies. Unlike traditional actor-critic methods, which use a separate objective
for actor and critic, this formulation trains the policy (actor) and dual function (critic) to maximize
the same objective. Further illuminating the connection to policy gradient methods, we show that
if the dual function is sufficiently optimized, the gradient of the proposed objective with respect to
the policy parameters is exactly the on-policy policy gradient. Our approach avoids any explicit use
of importance weights and naturally avoids issues of distribution mismatch. Finally, we provide an
alternative derivation, based on a primal-dual form of the max-return RL problem, that extends the
previous results to both undiscounted γ = 1 settings and unregularized max-return objectives.

2 Background
We consider the RL problem presented as a Markov Decision Process (MDP) (Puterman, 1994),
which is specified by a tupleM = 〈S,A, r, T, µ0〉 consisting of a state space, an action space, a
reward function, a transition probability function, and an initial state distribution. A policy π interacts
with the environment by starting at an initial state s0 ∼ µ0, and iteratively producing a sequence of
distributions π(·|st) over A, at steps t = 0, 1, ..., from which actions at are sampled and successively
applied to the environment. The environment produces a scalar reward rt = r(st, at) and a next state
st+1 ∼ T (st, at). In RL, one wishes to learn a max-return policy; i.e., one wishes to optimize

maxπ JP(π) := (1− γ) Es0∼µ0,a0∼π(s0) [Qπ(s0, a0)] , (1)
where Qπ describes the future rewards accumulated by π from any state-action pair (s, a),

Qπ(s, a) = E
[ ∞∑
t=0

γtr(st, at)

∣∣∣∣ s0 = s, a0 = a, st ∼ T (st−1, at−1), at ∼ π(st) for t ≥ 1

]
, (2)

and 0 ≤ γ < 1 is a discount factor. This objective may be equivalently written in its dual form (Wang
et al., 2008) in terms of the policy’s normalized state visitation distribution as

maxπ JD(π) := E(s,a)∼dπ [r(s, a)] , (3)
where
dπ(s, a)=(1− γ)

∞∑
t=0

γtPr [st = s, at = s| s0 ∼ µ0, at ∼ π(st), st+1 ∼ T (st, at) for t ≥ 0] . (4)

As discussed in Section 4 and Appendix A, these objectives are the primal and dual of the same
linear programming (LP) problem. It is common to regularize the max-return objective to encourage
either conservative behavior (e.g., relative entropy penalty (Nachum et al., 2017b)), or exploratory
behavior (e.g., causal entropy regularization (Nachum et al., 2017a)); for example, by re-expressing
the problem with a modified reward r̃(s, a) = r(s, a)− α log π(a|s) in the latter case.

In function approximation settings, optimizing π requires access to gradients. The policy gradient
theorem (Sutton et al., 2000) provides the gradient of JP(π) as

∂
∂πJP(π) = E(s,a)∼dπ [Qπ(s, a)∇ log π(a|s)] . (5)

To properly estimate this gradient one requires access to on-policy samples from dπ and access to
estimates of the Q-value function Qπ(s, a). The first requirement means that every gradient estimate
of JP necessitates interaction with the environment, which limits applicability of this method in
settings where interaction with the environment is expensive or infeasible. The second requirement
means that one must maintain estimates of theQ-function to learn π. This leads to the family of actor-
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critic algorithms that alternate between updates to π (the actor) and updates to a Q-approximator Qθ
(the critic). The critic is learned by encouraging it to satisfy single-step Bellman consistencies,

Qπ(s, a) = BπQπ(s, a) := r(s, a) + γ · Es′∼T (s,a),a′∼π(s′) [Qπ(s
′, a′)] , (6)

where Bπ is the expected Bellman operator with respect to π. Thus, the critic is learned according to
minQθ Jcritic(Qθ) :=

1
2E(s,a)∼β

[
(BπQθ −Qθ)(s, a)2

]
, (7)

for some distribution β. Although the use of an arbitrary β suggests the critic may be learned
off-policy, to achieve satisfactory performance, actor-critic algorithms generally rely on augmenting
a replay buffer with new on-policy experience. Theoretical work has suggested that the ‘ideal’ β is,
in fact, the on-policy distribution dπ (Sutton et al., 2000; Nachum et al., 2018b; Silver et al., 2014).

In this work, we focus on the off-policy setting directly. Specifically, we assume we are given a
dataset D = {(sk, ak, rk, s′k)}Nk=1, where rk = r(sk, ak); s′k ∼ T (sk, ak); and ak has been sampled
given sk according to an unknown policy. We let dD denote the unknown state-action distribution,
and additionally assume access to a finite sample U = {s0,k}Nk=1 such that s0,k ∼ µ0.

3 ALGAE Derived via State-Action Density Regularization
We begin by presenting an informal derivation of our method, motivated as a regularization of the dual
max-return objective in (3). In Section 4 we will present our results more formally as a consequence
of the Lagrangian of a linear programming formulation of the max-return objective.

3.1 A Regularized Off-Policy Max-Return Objective
Traditionally, optimizing the max-return objective requires access to on-policy samples from dπ . To
introduce an off-policy distribution dD to the objective, we add a regularizer:

max
π

JD,f (π) := E(s,a)∼dπ [r(s, a)]− αDf (d
π‖dD), (8)

where α > 0, f is some convex function, and Df denotes the f -divergence:
Df (d

π‖dD) = E(s,a)∼dD
[
f
(
wπ/D(s, a)

)]
, (9)

such that wπ/D(s, a) := dπ(s,a)
dD(s,a)

. This form of regularization encourages conservative behavior,
compelling the state-action occupancies of π to remain close to the off-policy distribution, although
by appropriately choosing α and f , the strength of the regularization can be controlled. Later we
show that many of our results also hold for exploratory regularization (α < 0) and even for no
regularization at all (α = 0).

At first glance, the regularization seems to complicate things. Not only do we still require on-policy
samples from dπ, but we also have to compute Df (d

π‖dD), which in general can be difficult. To
make this objective more approachable, we transform the f -divergence to its variational form by use
of a dual function x : S ×A→ R:
max
π

min
x:S×A→R

JD,f (π, x) := E(s,a)∼dπ [r(s, a)] + α · E(s,a)∼dD [f∗(x(s, a))]− α · E(s,a)∼dπ [x(s, a)]

= E(s,a)∼dπ [r(s, a)− α · x(s, a)] + α · Es,a∼dD [f∗(x(s, a))], (10)
where f∗ is the convex (or Fenchel) conjugate of f . With the objective in (10), we are finally ready to
eliminate the expectation over on-policy samples from dπ . To do so, we make a change of variables,
inspired by the DualDICE trick (Nachum et al., 2019b). Define ν : S ×A→ R as,

ν(s, a) := −α · x(s, a) + Bπν(s, a). (11)
Applying this change of variables to 10 (after some telescoping, see Nachum et al. (2019b)) yields

max
π

min
ν:S×A→R

JD,f (π, ν) := (1−γ)Ea0∼π(s0)
s0∼µ0

[ν(s0, a0)]+α·E(s,a)∼dD [f∗((Bπν−ν)(s, a)/α)]. (12)

The resulting objective is now completely off-policy, relying only on access to samples from the
initial state distribution µ0 and the off-policy dataset dD. Thus, we have our first theorem, providing
an off-policy formulation of the max-return objective:
Theorem 1 (Primal ALGAE) Under mild conditions on dD, α, f , the regularized max-return ob-
jective may be expressed as a max-min optimization:

max
π

E(s,a)∼dπ [r(s, a)]− αDf (d
π‖dD) ≡

max
π

min
ν:S×A→R

(1− γ)Ea0∼π(s0),s0∼µ0
[ν(s0, a0)] + α · E(s,a)∼dD [f∗((Bπν − ν)(s, a)/α)]. (13)

Remark (Fenchel ALGAE) The appearance of Bπ inside f∗ in the second term of (13) presents
a challenge in practice, since Bπ involves an expectation over the transition function T , whereas
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one typically only has access to a single empirical sample from T . To handle this issue, one can
apply the dual embedding technique (Dai et al., 2016, 2017). Specifically, the dual representation of
f∗, f∗((Bπν − ν)(s, a)/α) = maxζ

1
α (Bπν − ν)(s, a) · ζ − f(ζ), can be substituted into (13), to

achieve the max-min-max optimization:

max
π

E(s,a)∼dπ [r(s, a)]−αDf (d
π‖dD) ≡ max

π
min

ν:S×A→R
max

ζ:S×A→R
(1−γ)Ea0∼π(s0)

s0∼µ0

[ν(s0, a0)]+

E(s,a)∼dD,s′∼T (s,a),a′∼π(s′)[(γν(s
′, a′)− ν(s, a)) · ζ(s, a)− α · f(ζ(s, a))]. (14)

As we will see in Section 4, under mild conditions, strong duality holds in the inner min-max of (14),
hence one can switch the minν and maxζ to reduce to a more convenient max-max-min form.

Remark (Donsker-Varadhan regularization) We note that the use of an f -divergence regulariza-
tion can be replaced with other regularizations that possess a variational form with a linear expectation
E(s,a)∼dπ [x(s, a)]. One particularly interesting intantiation of this is given by the Donsker-Varadhan
representation of the KL-divergence (Donsker and Varadhan, 1983):

−DKL(d
π||dD) = min

xS×A→R
logE(s,a)∼dD [exp{x(s, a)}]− E(s,a)∼dπ [x(s, a)]. (15)

This form of regularization can be applied to analogous derivations to yield a variant of ALGAE with
a log-average-exp term.

3.2 On-Policy Policy Gradient using Off-Policy Data
The equivalence between the objective in (12) and the on-policy max-return objective can be high-
lighted by considering the gradient of this objective with respect to π. First, consider the optimal
x∗π := argminx JD,f (π, x) for (10). By taking the gradient of JD,f with respect to x and setting this
to 0, one finds that x∗π satisfies

f ′∗(x
∗
π(s, a)) = wπ/D(s, a). (16)

Accordingly, for any π, the optimal ν∗π := argminν JD,f (π, ν) for (12) satisfies
f ′∗((Bπν∗π − ν∗π)(s, a)/α) = wπ/D(s, a). (17)

Thus, we may express the gradient of JD,f (π, ν∗π) with respect to π as
∂

∂π
JD,f (π, ν

∗
π) = (1− γ) ∂

∂π
Ea0∼π(s0)

s0∼µ0

[ν∗π(s0, a0)] + E(s,a)∼dD

[
wπ/D(s, a)

∂

∂π
(Bπν∗π − ν∗π)(s, a)

]
= (1− γ) ∂

∂π
Ea0∼π(s0)

s0∼µ0

[ν∗π(s0, a0)] + γ · E(s,a)∼dπ,
s′∼T (s,a)

[
∂

∂π
Ea′∼π(s′)[ν∗π(s′, a′)]

]
= E(s,a)∼dπ [ν

∗
π(s, a)∇ log π(a|s)] ,

where the second equality comes from Danskin’s theorem (Bertsekas, 1999). This means that, if the
dual function ν is sufficiently optimized, the gradient of the off-policy objective JD,f (ν, π) is exactly
the on-policy policy gradient, with Q-value function given by ν∗π .

To characterize this Q-value function, note that from (11), ν∗π is a Q-value function with respect
to augmented reward r̃(s, a) := r(s, a) − α · x∗π(s, a). Recalling the expression for x∗π in (16)
and the fact that, for any convex f , the derivatives f ′ and f ′∗ are inverses of each other, we have,
r̃(s, a) = r(s, a)− α · f ′(wπ/D(s, a)). This derivation leads to our second theorem:

Theorem 2 If the dual function ν is sufficiently optimized, the gradient of the off-policy objective
JD,f (π, ν) with respect to π is exactly the (regularized) on-policy policy gradient:

∂

∂π
min
ν
JD,f (π, ν) = E(s,a)∼dπ

[
Q̃π(s, a)∇ log π(a|s)

]
, (18)

where, Q̃π(s, a) is the Q-value function of π with respect to rewards r̃(s, a) := r(s, a) − α ·
f ′(wπ/D(s, a)).

Remark We note that Theorem 2 also holds when using the more sophisticated objective in (14),
since the optimal ζ∗π is equal to wπ/D, regardless of π.

3.3 Connection to Actor-Critic
The relationship between the proposed off-policy objective and the classical policy gradient becomes
more profound when we consider the form of the objective under specific choices of convex function
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f . If we take f(x) = 1
2x

2, then f∗(x) = 1
2x

2 and the proposed objective is reminiscent of actor-critic:

max
π

min
ν:S×A→R

JD,f (π, ν) := (1−γ)Es0∼µ0,a0∼π(s0)[ν(s0, a0)]+
1

2α
·E(s,a)∼dD [((Bπν−ν)(s, a))2].

The second term alone is an instantiation of the off-policy critic objective in actor-critic. However,
in actor-critic, the use of an off-policy objective for the critic is difficult to theoretically motivate.
Moreover, in practice, critic and actor learning can both suffer from the mismatch between the off-
policy distribution dD and the on-policy dπ. By contrast, our derivations show that the introduction
of the first term to the objective transforms the off-policy actor-critic algorithm to an on-policy
actor-critic, without any explicit use of importance weights. Moreover, while standard actor-critic
has two separate objectives for value and policy, our proposed objective is a single, unified objective.
Both the policy and value functions are trained with respect to the same off-policy objective.

4 A Lagrangian View of ALGAE
We now show how ALGAE can be alternatively derived from the Lagrangian of a linear program-
ming (LP) formulation of the Qπ-function. Please refer to Appendix A for details. We begin by
formalizing an LP characterization of the Qπ-function, with its dual form:

Theorem 3 Given a policy π, the average return of π may be expressed in primal and dual forms as

min
ν:S×A→R

JP(π, ν) := (1− γ)Eµ0π [ν (s0, a0)]

s.t. ν (s, a) ≥ Bπν(s, a), (19)
∀ (s, a) ∈ S ×A,

and,
max

ρ:S×A→R+

JD(π, ρ) := Eρ [r (s, a)]

s.t. ρ (s, a) = BTπ ρ(s, a), (20)
∀ (s, a) ∈ S ×A,

respectively, where BTπ ρ(s, a) := (1 − γ)µ0(s)π(a|s) + γ
∑
s̃,ã π(ã|s̃)T (s|s̃, ã)ρ(s̃, ã) is the

transpose Bellman operator. The optimal primal ν∗π is Qπ and the optimal dual ρ∗π is dπ .

Consider the Lagrangian of JP, which would typically be expressed with a sum (or integral) of
constraints weighted by ρ. Under the assumption that dD covers the support of optimal dual variables
dπ , we can reparametrize the dual variable as ζ (s, a) = ρ(s,a)

dD(s,a)
to express the Lagrangian as,

min
ν:S×A→R

max
ζ:S×A→R+

(1− γ)Es0∼µ0,a0∼π(s0) [ν (s0, a0)] + E(s,a)∼dD [ζ (s, a) (Bπν − ν) (s, a)] . (21)

The optimal ζ∗π of this Lagrangian is wπ/D. In practice, the linear structure in (21) can induce
numerical instability. Therefore, inspired by the augmented Lagrangian method, we introduce
regularization. By adding a special regularizer α · EdD [f (ζ (s, a))] using a convex f , we obtain

min
ν

max
ζ
L (ν, ζ;π) := (1− γ)Es0∼µ0,a0∼π(s0) [ν (s0, a0)] +

E(s,a)∼dD [ζ (s, a) (Bπν − ν) (s, a)]− α · E(s,a)∼dD [f (ζ (s, a))] . (22)
We now characterize the optimizers ν∗π and ζ∗π and the optimum value L(ν∗π, ζ

∗
π;π) of this objective.

Theorem 4 If wπ/D is bounded and the convex (Fenchel) conjugate f∗ of f is closed and strongly
convex, then the solution to (22) is given by,

ν∗π (s, a) = −αf ′
(
wπ/D (s, a)

)
+ Bπν∗π(s, a), and ζ∗π (s, a) = wπ/D (s, a) .

The optimal value is L (ν∗π, ζ
∗
π;π) = Edπ [r(s, a)]− αDf (d

π‖dD).

Thus, we have recovered the Fenchel ALGAE objective for π in the remark following Theorem 1
(Equation 14). To recover the result of Theorem 1 exactly (Primal ALGAE, Equation 13), one simply
undoes the application of Fenchel duality to recover f∗((Bπν − ν)(s, a)/α) = maxζ

1
α (Bπν −

ν)(s, a) · ζ − f(ζ).
The derivation of this same result from the LP perspective allows us to exploit strong duality.
Specifically, under the assumption that wπ/D(s, a) and r (s, a) are bounded, then (ν∗π, ζ

∗
π) does not

change if we optimize L (ν, ζ;π) over a bounded spaceH×F , provided (ν∗π, ζ
∗
π) ∈ H ×F . In this

case strong duality holds by Proposition 2.1 in Ekeland and Temam (1999), and we obtain
min
ν∈H

max
ζ∈F

L (ν, ζ;π) = max
ζ∈F

min
ν∈H

L (ν, ζ;π) .

This implies that, for computational efficiency, we can optimize the policy via
max
π∈P

` (π) := max
ζ∈F

min
∈H

(1− γ)Eµ0π [ν (s, a)]+EdD [ζ (s, a) (Bπν − ν) (s, a)]−αEdD [f (ζ (s, a))] .

(23)
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Remark (extensions to γ = 1 or α ≤ 0): Although ALGAE is originally derived with γ ∈ (0, 1)
and α > 0 in Section 3, the Lagrangian view of the LP formulation of Qπ can be used to generalize
the algorithm to γ = 1 and α = 0. In particular, for α = 0, one can directly use the original
Lagrangian for the LP. For the case γ = 1, the problem reduces to the Lagrangian of the LP for
an undiscounted Qπ-function, as proved in Appendix A. Lastly, one may extend these results to
α < 0 (exploratory regularization) by simply changing the regularization from −αf(ζ) to αf(ζ) and
changing the optimization over ζ from a max to a min.

5 Related Work

Adding regularization to MDPs (Neu et al., 2017) has been investigated for many different purposes
in the literature, including exploration (de Farias and Van Roy, 2000; Haarnoja et al., 2017, 2018a),
smoothing (Dai et al., 2017), avoiding premature convergence (Nachum et al., 2017a), ensuring
tractability (Todorov, 2006), and mitigating observation noise (Rubin et al., 2012; Fox et al., 2016).
Plenty of classical RL algorithms have also been extended to consider such entropy-regularized
MDPs, including SARSA (Asadi and Littman, 2017), Q-learning (Fox et al., 2016; Haarnoja et al.,
2017), and actor-critic (Haarnoja et al., 2018a; Nachum et al., 2017a). We note that the regularization
employed by ALGAE as a divergence over state-action densities is markedly different from these
previous works, which mostly regularize the action distributions of a policy conditioned on state.
Moreover, the various off-policy policy improvement algorithms that have been recently introduced
for entropy-regularized MDPs (Nachum et al., 2017a, 2018a; Dai et al., 2017; Haarnoja et al., 2018a)
ignore the bias induced by the distribution shift between the collected off-policy data and the state-
action occupancy distribution of the current policy. Because of this mismatch, these algorithms
still require a large amount of online interaction to achieve success in practice. By contrast, the
proposed ALGAE approach relies on the variational form of an f -divergence regularization, which
allows us to automatically compensate for this distribution shift.

Algorithmically, our proposed method follows a Lagrangian primal-dual view of the LP characteri-
zation of the Q-function, which leads to a saddle-point problem. Several recent works (Chen and
Wang, 2016; Wang, 2017; Dai et al., 2017, 2018; Chen et al., 2018; Lee and He, 2018) have also
considered saddle-point formulations for policy improvement, but these formulations are derived
from fundamentally different perspectives. In particular, Dai et al. (2018) exploits a saddle-point
formulation for the path-consistency conditions, while Chen and Wang (2016); Wang (2017); Dai
et al. (2017); Chen et al. (2018) consider the (augmented) Lagrangian of the LP characterization of
Bellman optimality for the optimal V -function, and Lee and He (2018) introduces auxiliary Q into
the vanilla LP for the optimal V -function. By contrast, ALGAE is derived by expressing the novel
LP characterization of the Q-function in an off-policy form, which allows us to achieve an unbiased
policy gradient formulation from behavior-agnostic and off-policy data.

6 Experiments
Online Offline

Figure 1: ALGAE on Pendulum.

We evaluate our algorithm in the online regime –
environment steps are alternated with policy up-
dates – and the offline regime – a fixed dataset
of 5k transitions collected by an optimal pol-
icy is used. We compare the performance of
ALGAE on the Pendulum compared to SAC in
these settings (Figure 1). We find that ALGAE
can achieve good performance on this task.

7 Conclusion

We have introduced an ALgorithm for policy Gradient from Arbitrary Experience (ALGAE) to
address the behavior-agnostic off-policy policy improvement task in reinforcement learning. Based
on a novel linear programming characterization of the Q-function, we derived the new approach from
a Lagrangian saddle-point formulation. The resulting algorithm, ALGAE, automatically compensates
for the distribution shift in collected off-policy data, and achieves an estimate of the on-policy policy
gradient using this off-policy data.
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Appendix
A Proof Details

We follow the notations in main text. For convenience, we will use
∑

and
∫

interchangeably.

Theorem 3 Given a policy π, the average return of π may be expressed in primal and dual forms
as,

min
ν:S×A→R

JP(π, ν) := (1− γ)Eµ0π [ν (s0, a0)]

s.t. ν (s, a) ≥ Bπν(s, a), (24)
∀ (s, a) ∈ S ×A,

and,
max

ρ:S×A→R+

JD(π, ρ) := Eρ [r (s, a)]

s.t. ρ (s, a) = BTπ ρ(s, a), (25)
∀ (s, a) ∈ S ×A,

respectively, where BTπ ρ(s, a) := (1 − γ)µ0(s)π(a|s) + γ
∑
s̃,ã π(ã|s̃)T (s|s̃, ã)ρ(s̃, ã) is the

transpose Bellman operator. The optimal primal ν∗π is Qπ and the optimal dual ρ∗π is dπ .

Proof Recall we have Bπ is monotonic, i.e., if ν ≥ Bπν ⇒ Bπν ≥ (Bπ)2 ν and Qπ = (Bπ)∞ ν

for arbitrary ν, we have for ∀ν feasible, ν ≥ (Bπ) ν ≥ (Bπ)2 ν ≥ (Bπ)3 ν ≥ . . . ≥ (Bπ)∞ ν = Qπ ,
which achieves the first claim.

The duality of the linear program (19) can be easily obtained as
max

ρ:S×A→R+

Eρ [R (s, a)] ,

s.t. ρ (s′, a′)− γ
∑
s,a

π (a′|s′)T (s′|s, a) ρ (s, a) = (1− γ)µ0 (s
′)π (a′|s′) , (26)

∀ (s′, a′) ∈ S ×A.
Notice that there are |S| × |A| equality constraints, the only solution to (26) can be obtained by
solving linear system formed by the constraints, leading to

ρ∗ = (1− γ)
(
I − γ (Pπ)>

)−1
(µπ) , (27)

where Pπ (s
′, a′|s, a) = π (a′|s′)T (s′|s, a). Recall that when γ ∈ (0, 1), we can rewrite(

I − γ (Pπ)>
)−1

=
∑∞
t=0 γ

t (Pπ)
t, we have ρ∗ = (1− γ)

∑∞
t=0 γ

t (Pπ)
t
(µπ) = dπ, which is

the stationary occupancy of π.

Remark (γ = 1 undiscounted MDP): for γ = 1, (19) is no longer valid. However, the dual
problem (26) may be modified by simply adding a constraint

∑
s,a ρ (s, a) = 1 to achieve the same

result. Therefore, one can derive the analogous Lagrangian for γ = 1 as,
max
ζ∈Z

min
ν:S×A→R

L (ζ, ν;π) := EdD,π [ζ (s, a) ν (s′, a′)] + EdD [ζ (s, a) (ν (s, a)− r (s, a))]

s.t. ζ ∈ Z := {ζ ≥ 0,EdD [ζ (s, a)] = 1} . (28)
By the KKT condition, the optimal value of the Lagrangian is Edπ [r (s, a)], which is the policy value
of π.

Therefore, for both γ ∈ (0, 1) and γ = 1, we can improve the policy by maximizing π in the
(regularized) Lagrangian.

Theorem 4 If wπ/D is bounded and the convex (Fenchel) conjugate f∗ of f is closed and strongly
convex, then the solution to (22) is given by,

ν∗π (s, a) = −αf ′
(
wπ/D (s, a)

)
+ Bπν∗π(s, a), and ζ∗π (s, a) = wπ/D (s, a) .

The optimal value is L (ν∗π, ζ
∗
π;π) = Edπ [r(s, a)]− αDf (d

π‖dD).
Proof

By Fenchel duality, we have

max
ζ:S×A→R+

EdD [ζ (s, a) (Bπν − ν) (s, a)]−αEdD [f (ζ (s, a))] = αEdD
[
f∗

(
1

α
(Bπν − ν) (s, a)

)]
,
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where f∗ (·) denotes the conjugate function of f (·) over R+. Plugging this into the optimization, we
have,

L(ν, ζ∗π;π) = min
ν:S×A→R

(1− γ)Eµ0π [ν (s0, a0)] + αEdD
[
f∗

(
1

α
(Bπ − I) ◦ ν (s, a)

)]
. (29)

To investigate the optimality, we apply the change-of-variable, i.e., x (s, a) = 1
α (Bπ − I) ◦ ν (s, a).

Let βt (s) = P
(
s = st|s0 ∼ µ0, {ai}ti=0 ∼ π

)
. Then, the first expectation in (29) may be expressed

as,
(1− γ)Eµ0π[ν(s0, a0)]

= (1− γ)
∞∑
t=0

γtEs∼βt,a∼π(s)[ν(s, a)]− (1− γ)
∞∑
t=0

γt+1Es′∼βt+1,a′∼π(s′)[ν(s
′, a′)]

= E(s,a)∼dπ [ν(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s
′, a′)]]

= E(s,a)∼dπ [r(s, a)] + E(s,a)∼dπ [ν(s, a)− r(s, a)− γEs′∼T (s,a),a′∼π(s′)[ν(s
′, a′)]]

= E(s,a)∼dπ [r(s, a)]− αE(s,a)∼dπ [x(s, a)].

Let C denote the set of functions x in the image of (Bπ − I) ◦ ν for ν : S ×A→ R. Therefore, the
change of variables yields the following re-formulation of L:

L(ν∗π, ζ
∗
π;π) = min

x∈C
E(s,a)∼dπ [r (s, a)]− αE(s,a)∼dπ [x (s, a)] + αEdD [f∗ (x (s, a))]

= E(s,a)∼dπ [r(s, a)]− α
(
max
x∈C

Edπ [x(s, a)]− EdD [f∗ (x (x, a))]

)
Note that, ignoring the restriction of x to C, the optimal x∗π satisfies f ′∗(x(s, a)) = wπ/D(s, a). Under

the assumption that f∗ (·) is strongly convex, then
[
(f∗)

′]−1
(·) exists, and it is given by f ′(·). Thus,

we have x∗π(s, a) = f ′(wπ/D(s, a)) for all s, a. Due to the assumption that wπ/D is bounded, we
have that x∗π is bounded and thus x∗π ∈ C. Therefore, by definition of the f -divergence, we have,

L(ν∗π, ζ
∗
π;π) = E(s,a)∼dπ [r(s, a)]− αDf (d

π||dD), (30)
as desired.

To characterize ν∗π , we note,
x∗ (s, a) = f ′(wπ/D(s, a))⇒ ν∗π (s, a) = Bπν∗π(s, a)− αf ′(wπ/D(s, a)). (31)

On the other hand, for the optimal dual ζ∗π (s, a), we have
ζ∗π (s, a) = argmin

ζ
ζ · x∗π(s, a)− f(ζ) = f ′∗(x

∗
π(s, a)) = wπ/D(s, a)

where the second equality comes from the fact that f ′(ζ∗π(s, a)) = x∗π(s, a) ⇒ ζ∗π(s, a) =
f ′∗(x

∗
π(s, a)).

B Experiment Details

For ALGAE we used a primal version with log-average-exp representation of KL. We perform
mini-batch training with Adam with batch size 256. For both SAC and ALGAE, we used learning
rate 10−3 and 10−4 for the policy networks and the critic/ν networks respectively. For every policy
update we performed 2 critic/ν updates (as in TD3). We set SAC temperature to 1, while ALGAE α
to 1. We performed deterministic evaluation of the algorithm by taking mode actions.
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