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Abstract

Actor-critic algorithm and their extensions have made great achievements in real-
world decision-making problems. In contrast to its empirical success, theoretical
understanding of actor-critic seems unsatisfactory. Most existing results only show
asymptotic convergence, which were developed mainly based on approximating
the dynamic system of the actor and critic using ordinary differential equations.
However, the finite-time convergence analysis of actor-critic algorithm remains to
be explored. The main challenges lie in the nonconvexity of parameterized policies,
the coupling of the updates for actor and critic, and the data sampling dependency
in online settings. In this paper, we provide a finite-time convergence analysis for
an online actor-critic algorithm under the infinite-horizon average reward setting. In
critic step, we give a theoretical analysis of TD(0) algorithm for the average reward
with dependent data in online settings. Besides, we show that the sequence of actor
iterates converges in sublinear rate to a stationary point up to some irremovable
bias due to the value function approximation by linear functions. To the best of our
knowledge, our work seems to provide the first finite-time convergence analysis
for online actor-critic algorithm under the infinite-horizon average reward setting.

1 Introduction

When combined with deep neural networks [Goodfellow et al., 2016], actor-critic algorithm [Konda
and Tsitsiklis, 2000] and their extensions [Schulman et al., 2015, 2017] have made astonishing
achievements in complicated real-world decision-making problems [Silver et al., 2016, 2017, OpenAI,
2018, Vinyals et al., 2019]. Here the actor corresponds to the policy and the critic estimates the
value function associated with the actor. In each iteration of the algorithm, the actor performs policy
gradient [Sutton et al., 2000] updates using the value function provided by the critic, and the critic
simultaneously updates its parameter using policy evaluation algorithms such as temporal difference
(TD) learning [Sutton, 1988]. Thus, actor-critic inherit the advantages of both policy- and value-based
reinforcement learning methods – it can be readily applicable to continuous action spaces [Silver
et al., 2014, Lillicrap et al., 2016] and enjoys small variance by incorporating TD learning.

In contrast to the huge empirical success, theoretical understanding of actor-critic seems unsatisfactory,
with most existing results showing asymptotic convergence with linear value functions. These proofs
mainly depend on approximating the dynamic system of the actor and critic using ordinary differential
equations (ODE) [Borkar, 2008, Borkar and Meyn, 2000, Kushner and Yin, 2003]. Such a distinct
separation between theory and practice exists mainly due to the following two challenges. First,
policy optimization for the family of parametrized policies is in general nonconvex. Thus, even
finding a local minimum via gradient-based updates can be NP-hard in the worst case [Murty and
Kabadi, 1987]. Second, the actor and critic have different optimization objectives and their updates
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are coupled together, which makes it challenging to analyze their dynamics. Moreover, as we will see
in §3, the optimization problems faced by the actor and critic can be unified into the framework of
bilevel optimization, which is a class of NP-hard problems [Hansen et al., 1992] with mostly heuristic
solution strategies [Colson et al., 2007, Sinha et al., 2017]. Third, in online reinforcement learning
settings, data is no longer sampled independently, which brings further bias the learning process.

Despite these difficulties, under the infinite-horizon average reward setting, we study the finite-time
convergence of online actor-critic algorithm with linear function approximation. In contrast to the
existing asymptotic analysis based on ODE approximation, we decouple the actor and critic updates
by appropriately choosing the stepsizes such that their analysis can be carried out alternatively. We
establish finite-time convergence of the TD(0) used by the critic with a trajectory of dependent data.
More importantly, due to the error incurred by the critic, we show that the actor essentially performs
policy gradient updates with bias and also establish its convergence rate in expectation.

Main Contribution. Our contribution is listed as follows: (1) After decoupling the actor and critic
updates, for policy evaluation, we provide a finite-time convergence analysis for TD(0) algorithm
with dependent data under the average reward setting. (2) We show that the sequence of actor iterates
converge in sublinear rate to a stationary point up to some irremovable bias due to approximating
the value function using linear functions. (3) We seem to provide the first finite-time convergence
analysis for online actor-critic algorithm under the infinite-horizon average reward setting. Our
analysis framework is general and can be extended to other variations of actor-critic algorithms.

2 Background

The infinite-horizon average reward reinforcement learning problem is modeled as an average reward
Markov Decision Process (MDP). Suppose that S and A are the finite state space and finite action
space respectively. The policy π is defined as a function that π : A× S 7→ [0, 1] such that π(a | s) is
the probability of choosing action a ∈ A at state s ∈ S . From a practical perspective, the policy π is
usually parameterized by θ ∈ Θ in a nonconvex form and then we denote the parameterized policy
by πθ. An agent takes action a ∼ πθ(· | s) at state s. Letting P(s′ | a, s) be the probability of an agent
moving from state s to state s′ with an action a, we can have a Markov transition probability induced
by πθ as Pπθ (s′ | s) =

∑
a∈A P(s′ | a, s)πθ(a | s) be the probability of moving from state s to state s′.

At each time τ , we use a tuple (sτ , aτ , s
′
τ , rτ+1) to denote that an agent at state sτ chooses an action

at and transit to a new state s′τ with a reward rτ+1 := r(sτ , aτ , s
′
τ ), where r : S ×A× S 7→ R is a

reward mapping. We make the following assumption on the policy πθ and the probability P(s′ | a, s).
Assumption 2.1. The policy πθ and P(s′ | a, s) guarantee that the Markov chain decided by
Pπθ (s′ | s) for any θ ∈ Θ is irreducible and aperiodic. Thus, there always exists a unique stationary
distribution for any θ ∈ Θ, which is denoted by dπθ (s),∀s ∈ S.

Assumption 2.1 is a common assumption for actor-critic algorithms [Konda and Tsitsiklis, 2000,
Bhatnagar et al., 2009]. It essentially implies that the state transition probability Pπθ (s′ | s) with any
parameter θ ∈ Θ is associated with irreducible aperiodic Markov chain.

The goal of the agent is to find a policy πθ such that the nonconvex infinite-horizon average reward
function J(πθ) is maximized:

maximize
θ∈Θ

J(πθ) = lim
T→∞

E

[
1

T

T−1∑
t=0

rt+1

∣∣∣πθ] = E(s,a,s′)∼Υθ [r(s, a, s
′)], (1)

where E(s,a,s′)∼Υθ is short for Es∼dπθ (·),a∼πθ(· | s),s′∼P(· | s,a) and Υθ is a joint distribution of s, a, s′.
Specifically, in this paper, we consider the case that Θ = Rm where m is the dimension of θ.

The action-value function Qπθ and state-value function V πθ are defined as

Qπθ (s, a) = lim
T→∞

T−1∑
t=0

E[rt+1 − J(πθ) | s0 = s, a0 = a, πθ], V πθ (s) = Ea∼πθ(· | s)[Q
πθ (s, a)].

3 Actor-Critic Algorithm

In this section, we first present the policy gradient theorem, which plays a critical role in updating θ
via policy gradient. Then, we show that the actor-critic algorithm essentially solves a certain bilevel
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optimization problem. Following this point of view, we further present the actor step and the critic
step respectively in detail.
Theorem 3.1 (Policy Gradient Theorem). The gradient of J(πθ) can be written as follows

∇θJ(πθ) = Es∼dπθ (·),a∼πθ(· | s),s′∼P(· | a,s)[δ
πθ · ∇ log πθ(a | s)], (2)

where we define the temporal difference (TD) error by δπθ := r(s, a, s′)−J(πθ)+V πθ (s′)−V πθ (s).

Please refer to Supplementary Material §B for detailed proof which is based on Sutton et al. [2000].

To approximate V πθ in Theorem 3.1, one typical approach is to parameterize the state-value function
by a parameter ω ∈ Ω. Here we denote by Vω the parameterized state-value function, which can be in
a linear form that for all s ∈ S,

Vω(s) = φ(s)>ω, (3)

where ω ∈ Rn and φ : S 7→ Rn is a basis function to generate n-dimensional features for any state s.

Given the above settings, we unify the optimization problem faced by the actor and critic from the
perspective of bilevel optimization in the following proposition.
Proposition 3.2. The actor-critic algorithm for average reward reinforcement learning can be
interpreted as a bilevel optimization problem in the following form

maximize
θ∈Rm

J(πθ) = µ∗(θ) (4)

subject to {ω∗(θ), µ∗(θ)} = argmin
ω∈Ω,µ∈R

h(ω, µ; θ), (5)

Specifically, the function h(ω, µ; θ) is defined as

h(ω, µ; θ) =
∥∥E(s,a,s′)∼Υθ{[r − µ+ V ′ω − Vω]φ}

∥∥2

C−1
θ

+
∥∥E(s,a,s′)∼Υθ (r)− µ

∥∥2

2
,

with Cθ = Es∼dπθ (φφ>), r = r(s, a, s′), φ = φ(s), V ′ω = Vω(s′), and Vω = Vω(s) for abbreviation.

In this proposition, the upper-level problem (4) aims to maximize the infinite-horizon average reward
J(πθ), while the lower-level problem (5) is associated with policy evaluation, whose objective is close
to mean-squared Projected Bellman error (MSPBE) [Maei, 2011]. Note that Cθ is an invertible matrix,
which can be guaranteed by our Assumption 2.1. As we can see, the upper-level and lower-level
problems are coupled with each other. The upper-level problem aims to find maximal value of µ∗(θ),
which is a function of θ as well as the minimizer to lower-level problem under policy πθ.

However, bilevel programming is NP-hard [Hansen et al., 1992]. Thus, we can rely on approximating
the solution instead of an exact one. The actor-critic algorithm is an online stochastic approximation
scheme to alternately solve the above bilevel optimization problem. Specifically, the actor step
performs an online gradient ascent to update θ once given current ω and µ, which is associated with
the upper-level optimization problem. The critic step is to estimate ω and µ by policy evaluation
algorithms once given current πθ, which is associated with the lower level optimization problem. With
given πθ, TD(0) [Sutton, 1988] is widely-adopted to solve the minimization problem in the lower
level. In this paper, our analysis of critic step is focused on TD(0) algorithm with linear state-value
function approximation under the infinite-horizon average reward setting.

The actor-critic algorithm is summarized in Algorithm 1 with TD(0) algorithm for critic step demon-
strated in Algorithm 2. As shown in Algorithm 1, at step t, the critic step generate an inexact solution
{µ̂t, ω̂t} as an estimation of the true solution {µ∗t := µ∗(θt), ω

∗
t := ω∗(θt)} to lower-level problem

under the current policy πθt , and then the actor step updates θ with {µ̂t, ω̂t}.

3.1 Actor Step

The actor step aims to update the parameter θ of the policy πθ via solving upper level problem (4) by
gradient ascent. Thus, it requires to approximate the policy gradient, i.e.,∇θJ(πθ).

The policy gradient theorem (Theorem 3.1) provides the formulation of ∇θJ(πθ). As shown in
Equation (2), the true gradient of J(πθ) is an expectation over all samples on the stationary distribution
dπθ and policy πθ under the parameter θ. In online setting, the data sample (s, a, s′, r) is usually
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Algorithm 1 Actor-Critic Algorithm for Infinite-Horizon Average Reward
1: Input: Parameterized policy πθ.
2: Initialize: Randomly initialize θ0 .
3: for t = 0, ..., T − 1 do
4: Critic Step: Obtain (ω̂t, µ̂t) as an estimation of (ω∗t , µ

∗
t ) by policy evaluation algorithm.

5: Actor Step: Restart sampling (st, at, s
′
t) and update the policy parameter θ as follows

δt = rt+1 − µ̂t + φ′t
>ω̂t − φ>t ω̂t,

θt+1 = θt + βθ,t · δt · ∇θ log πθt(at | st).

6: end for
7: Return: θT , ω̂T , µ̂T .

observed one by one. Thus, we need to make a stochastic approximation of the true gradient with one
sample (s, a, s′, r) in each step, which computed by δt∇θ log πθt(at|st) in line 5 of Algorithm 1.

However, this stochastic gradient is biased mainly due to: (1) the estimation error of the average
reward µ̂∗t = J(πθt) by µ̂t; (2) the estimation error of the parameter ω∗t by ω̂t; (3) the approximation
error of the true state value V πθt by linear parameterization. In the section of theoretical analysis, we
characterize these biases and reveal how they affect the convergence of the actor-critic algorithm.

We assume that for all θ ∈ Θ, there exists Eapprox ≥ 0 such that

‖V πθ − Φω∗(θ)‖22 ≤ Eapprox,

where we define Φ := [φ(s(1)), φ(s(2)), ...]> ∈ R|S|×n and s(i) represents the i-th state, and ω∗(θ) is
the optimal solution to problem (5) under policy πθ. Note that Eapprox can be an arbitrary non-negative
scalar. Smaller Eapprox indicates better approximation by the linear function.

In the actor step of Algorithm 1, the restarting sampling operation exists only for theoretical analysis to
decouple the dependency of data sampled under different policy πθt . In practice, this is not necessary
since the dependency will be quite little if the iteration number is large in the policy evaluation
algorithm.

3.2 Critic Step

The critic step can provide stochastic approximation to the solution of the lower-level problem in
Equation (5) once given a policy πθ. Specifically, at time t of Algorithm 1, given current θt, the critic
step aims to solve the following problem

minimize
ω∈Ω,µ∈R

∥∥E(s,a,s′)∼Υθt
{[r − µ+ V ′ω − Vω]φ(s)]}

∥∥2

C−1
θt

+
∥∥E(s,a,s′)∼Υθt

(r)− µ
∥∥2

2
, (6)

where Υθt is the joint distribution of s, a, and s′ under the policy πθt , and Cθt := Es∼πθt [φφ
>].

To solve the problem (6), we apply TD(0) algorithm shown in Algorithm 2. As TD(0) is an online
algorithm, in each iteration, we only sample one data for updating. Note that we do not need to make
an assumption of independent data sampling for TD(0) algorithm.

To understand the existence and uniqueness of the solution to Equation (6), similar to Tsitsiklis and
Van Roy [1999], we make the following assumptions
Assumption 3.3. The basis function φ : S 7→ Rn where ‖φ(·)‖2 ≤ 1 satisfies the following
two assumptions: (1) The basis functions φ(s) for all s ∈ S are linearly independent, i.e., Φ =
[φ(s(1)), φ(s(2)), ...]> ∈ Rn×|S| is of full rank where n < |S|; (2) For any ω, we have Φω 6= 1.

In addition, we define a square matrix Aθ := Es∼dπθ (·),s′∼Pπθ (· | s){φ(s)[φ(s) − φ(s′)]>}. With
Assumptions 2.1 and 3.3, ω>Aθω > 0 holds for any ω, as proved in Tsitsiklis and Van Roy [1999].
Thus, this implies: (1) the matrix Aθ is invertible; (2) we have λmin(Aθ + A>θ ) > 0 (where λmin

denotes the smallest eigenvalue) due to ω>Aθω + ω>A>θ ω > 0. We further assume that there exists
a lower bound λ > 0, such that λmin(Aθ +Aθ

>) ≥ λ holds for all θ. Then, we have the following
proposition showing the existence and uniqueness of the solution to Equation (6). The detailed proof
of this proposition can be found in Tsitsiklis and Van Roy [1999].
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Algorithm 2 TD(0) Algorithm for Policy Evaluation
1: Input: Current policy πθ.
2: Initialize: µ0 = 0, ω0 = 0.
3: for ` = 0, . . . , L− 1 do
4: Sample state s`, action a`, next state s′`, and r`+1 = r(s`, a`, s

′
`).

5: Update µ by µ`+1 = µ` + βµ,l · (r`+1 − µ`).
6: end for
7: Let µL =

∑L
`=1 µ`/L.

8: for k = 0, . . . ,K − 1 do
9: Sample state sk, action ak, next state s′k, and rk+1 = r(sk, ak, s

′
k).

10: Compute φ′k := φ(s′k) and φk := φ(sk) .
11: Compute TD error: δk = rk+1 − µL + φ′k

>ωk − φ>k ωk.
12: Update ω by ωk+1 = ΠΩ(ωk + βω,k · δk · φk).
13: end for
14: Let ωK =

∑K
k=1 ωk/K.

15: Return: µL, ωK .

Proposition 3.4 (Existence and Uniqueness of Solution). For the optimization problem in Equation
(6), under the Assumption 2.1 and Assumption 3.3, there exists a unique solution {ω∗t , µ∗t }, where
µ∗t = J(πθt) = E(s,a,s′)∼Υθt

(r) and ω∗t = A−1
θt
· E(s,a,s′)∼Υθt

[φ(r − µ∗t )].

In Algorithm 2, the projection operator ΠΩ can restrict each iterate of ω in a convex set Ω. The
projection exists only for rigorous theoretical analysis, which is common in the analysis of stochastic
approximation. In practice, this operation may not be necessary. We define the convex set Ω in the
following proposition. Detailed proof is shown in Supplementary Material §C.
Proposition 3.5 (Radius of Projection Region). In Algorithm 2, the set Ω is a ball with radiusRproj,
where the radius isRproj = 4rmax/λ, by which we can the feasible set as Ω = {ω | ‖ω‖2 ≤ Rproj}.

4 Theoretical Results

One challenge in studying the online actor-critic algorithm is to analyze the gradient bias induced by
the state mixing in the Markov chain. Here we make the following geometrically mixing assumption.
Assumption 4.1 (Geometrically Mixing). There are constants Cmix and α ∈ (0, 1) such that
sups∈S,θ∈Θ dTV (Pπθ (st = · | s0 = s), dπθ (·)) ≤ Cmixα

t, where dTV (P,Q) is total variation
distance for two distributions P and Q.

Geometrically mixing depicts the data sampling dependency in policy evaluation given a policy πθ.
Based on the notion of geometrically mixing, we can provide the convergence for TD(0).
Lemma 4.2 (Convergence of updating µ in TD(0)). Let βµ,l = 1/(`+ 1) for all ` = 0, 1, . . . , L− 1.
Then, under policy πθ for any given θ ∈ Θ, supposing µ∗(θ) is the solution to (5), under the
Assumptions 2.1, 3.3, and 4.1, the convergence of the µ updating step in Algorithm 2 is

E(µL − µ∗(θ))2 .
r2
max

L
+
r2
max log2 L

L
.

Please refer to the Supplementary Material §D for the detailed proof. As we can see, the geometrically
mixing can only introduce a logarithm term log2 L to the upper bound.
Theorem 4.3 (Convergence of TD(0) Algorithm). Assume that E(µL − µ∗(θ))2 ≤ εµ. Let βω,k =
1/(`+ 1) for all ` = 0, 1, . . . , L− 1 and µ0 = 0. Then, for any given θ ∈ Θ, supposing ω∗(θ) is the
solution to (5), under the Assumptions 2.1, 3.3, and 4.1, the convergence of Algorithm 2 is

E‖VωK − Vω∗(θ)‖2D ≤ E‖ωK − ω∗(θ)‖22 .κ2r2
max

1

K
+ κ4r2

max

log2K

K
+ κ2rmax

√
εµ,

where we define κ := max{2/λ, 1}.

Please refer to the Supplementary Material §E for the detailed proof. We can interpret the convergence
of TD(0) as follows:
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• Error terms: The upper bound is composed of the learning errors of µ, ω. Particularly, if K is
sufficiently large, then the upper bound in Theorem 4.3 is dominated by√εµ.

• Influence of geometrically mixing:The geometrically mixing of the Markov chain only introduces
log2(K) term in the upper bound, which does not hurt the convergence too much.

• Convergence rate: The convergence of Vω and ω is Õ1(K−1) +
√
εµ. If we let the iteration

number be correlated with K, namely L = O(K), the convergence of Vω and ω is dominated by
Õ(K−1/2). If we let L = O(K2), the convergence of Vω and ω is Õ(K−1).

Corollary 4.4. At the t-th step of Algorithm 1, the estimation error of µ and ω can be interpreted as

E(µ̂t − µ∗t )2 . εµ =
r2
max

L
+
r2
max log2 L

L
,

E‖Vω̂t − Vω∗t ‖
2
D ≤ E‖ω̂t − ω∗t ‖22 . κ2r2

max

1

K
+ κ4r2

max

log2K

K
+ κ2rmax

√
εµ.

This corollary can be obtained by setting the values of (µ̂t, ω̂t) to be the output of Algorithm 2.

Next, we will show the convergence of the overall actor-critic algorithm. Before presenting the
convergence of Algorithm 1, we make several proper assumptions that will be used in our analysis
and proof for the following Theorem 4.6.
Assumption 4.5. To show the convergence rate, we make the following assumptions: (1) There
exists an optimal value J∗ := J(π∗) such that π∗ = argmaxπ J(π) and J∗ ≤ +∞;(2)
Bounded score function: ‖∇ log πθ(a | s)‖2 ≤ Gπ,∀θ,∀s,∀a; (3) ρ-Lipschitz gradient of J(πθ):
‖∇θJ(πθ1) − ∇θJ(πθ2)‖2 ≤ ρ‖θ1 − θ2‖2 for ∀θ1,∀θ2; (4) Uniformly bounded variance:
E(s,a,s′)∼Υθ‖gθ(θ; s, a, s′)−∇θJ(πθ)‖22 ≤ σ2,∀θ.

Based on the above assumptions, we eventually have the following convergence rate for Algorithm 1.
Theorem 4.6 (Convergence of Actor-Critic Algorithm). Suppose that estimation errors of the critic
step in Algorithm 1 satisfies E(µ̂t − µ∗t )2 ≤ εµ and E‖ω̂t − ω∗t ‖22 ≤ εω . Under the Assumptions 2.1,
3.3, 4.1 and 4.5, letting βθ,t = 1/(6ρ

√
t+ 1), the convergence rate of Algorithm 1 is

1

T

T−1∑
t=0

E‖∇J(πθt)‖22 .
ρ[J(π∗)− J(πθ0)] + σ2

√
T

+G2
πεµ +G2

πεω +G2
πEapprox.

Please refer to the Supplementary Material §F for the detailed proof.

In this paper, we assume that J(πθ) is in a general nonconvex form w.r.t. the parameter θ. Therefore,
under some additional proper assumptions in Assumption 4.5, the goal of Theorem 4.6 is to show
how the iterates {θt}t≥0 converges to some stationary point of J(πθ) with some irremovable error.
By Theorem 4.6, we have the following results:

• Error terms: The upper bound is basically composed of the learning errors of µ, ω, and θ, and the
value function approximation error Eapprox. This approximation error is irremovable due to the
inherent nonlinearity of the value function.

• Convergence rate: If the learning error of TD(0) algorithm in Algorithm 2 is εω and εµ respectively
for µ and ω, the convergence of Algorithm 1 is O(T−1/2) + εω + εµ + Eapprox. If we let iteration
numbers in Algorithm 2 be correlated with T in Algorithm 1 such that L = K = O(T ), the
convergence of Algorithm 1 is Õ(T−1/2) + Eapprox with εω = Õ(T−1/2) and εµ = Õ(T−1).

• Domination of Eapprox: If T is sufficiently large and εµ, εω are sufficiently small, the policy
gradient will converge up to the irremovable error of value function approximation Eapprox, namely
1/T

∑T−1
t=0 E‖∇J(πθt)‖22 . Eapprox with T & E−2

approx, εµ . Eapprox, and εω . Eapprox.
• Special case Eapprox = 0: Consider special case that the state-value function is intrinsically

in a linear form with the basis function φ(s). Under this setting, the approximation error
Eapprox will be 0. With similar discussion on the convergence rate above, we can show that
the actor-critic algorithm will converge to the stationary point in the sense of expectation, namely
1/T

∑T−1
t=0 E‖∇J(πθt)‖22 . Õ(T−1/2) if letting L = K = O(T ) such that εω = Õ(T−1/2) and

εµ = Õ(T−1).
1We use Õ to hide the dependency on logarithm terms.
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