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Abstract

We study discrete-time mean-field Markov games with infinite numbers of agents
where each agent aims to minimize its ergodic cost. We consider the setting where
the agents have identical linear state transitions and quadratic cost functions, while
the aggregated effect of the agents is captured by the population mean of their
states, namely, the mean-field state. For such a game, based on the Nash certainty
equivalence principle, we provide sufficient conditions for the existence and unique-
ness of its Nash equilibrium. Moreover, to find the Nash equilibrium, we propose a
mean-field actor-critic algorithm with linear function approximation, which does
not require knowing the model of dynamics. Specifically, at each iteration of our
algorithm, we use the single-agent actor-critic algorithm to approximately obtain
the optimal policy of the each agent given the current mean-field state, and then
update the mean-field state. In particular, we prove that our algorithm converges
to the Nash equilibrium at a linear rate. To the best of our knowledge, this is the
first success of applying model-free reinforcement learning with function approxi-
mation to discrete-time mean-field Markov games with provable non-asymptotic
global convergence guarantees.

1 Introduction

In reinforcement learning (RL) [99], an agent learns to make decisions that minimize its expected
total cost through sequential interactions with the environment. Multi-agent reinforcement learning
(MARL) [95, 96, 21] aims to extend RL to sequential decision-making problems involving multiple
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agents. In a non-cooperative game, we are interested in the Nash equilibrium [82], which is a joint
policy of all the agents such that each agent cannot decrease its expected total cost by unilaterally
deviating from its Nash policy. The Nash equilibrium plays a critical role in understanding the
social dynamics of self-interested agents [4, 5] and constructing the optimal policy of a particular
agent via fictitious self-play [17, 37]. With the recent development in deep learning [64], MARL
with function approximation achieves tremendous empirical successes in applications, including
Go [97, 98], Poker [43, 81], Star Craft [108], Dota [83], autonomous driving [94], multi-robotic
systems [115], and solving social dilemmas [29, 65, 54]. However, since the capacity of the joint
state and action spaces grows exponentially in the number of agents, such MARL approaches become
computationally intractable when the number of agents is large, which is common in real-world
applications [93, 23, 111].

Mean-field game is proposed by [50, 52, 61–63] with the idea of utilizing mean-field approximation
to model the strategic interactions within a large population. In a mean-field game, each agent has
the same cost function and state transition, which depend on the other agents only through their
aggregated effect. As a result, the optimal policy of each agent depends solely on its own state
and the aggregated effect of the population, and such an optimal policy is symmetric across all the
agents. Moreover, if the aggregated effect of the population corresponds to the Nash equilibrium,
then the optimal policy of each agent jointly constitutes a Nash equilibrium. Although such a Nash
equilibrium corresponds to an infinite number of agents, it well approximates the Nash equilibrium
for a sufficiently large number of agents [11]. Also, as the aggregated effect of the population
abstracts away the strategic interactions between individual agents, it circumvents the computational
intractability of the MARL approaches that do not exploit symmetry.

However, most existing work on mean-field games focuses on characterizing the existence and
uniqueness of the Nash equilibrium rather than designing provably efficient algorithms. In particular,
most existing work considers the continuous-time setting, which requires solving a pair of Hamilton-
Jacobi-Bellman (HJB) and Fokker-Planck (FP) equations, whereas the discrete-time setting is more
common in practice, e.g., in the aforementioned applications. Moreover, most existing approaches,
including the ones based on solving the HJB and FP equations, require knowing the model of dynamics
[7], or having the access to a simulator, which generates the next state given any state-action pair and
aggregated effect of the population [41], which is often unavailable in practice.

To address these challenges, we develop an efficient model-free RL approach to mean-field game,
which provably attains the Nash equilibrium. In particular, we focus on discrete-time mean-field
games with linear state transitions and quadratic cost functions, where the aggregated effect of the
population is quantified by the mean-field state. Such games capture the fundamental difficulties
of general mean-field games and well approximates a variety of real-world systems such as power
grids [78], swarm robots [35, 3, 33], and financial systems [121, 47]. In detail, based on the Nash
certainty equivalence (NCE) principle [52, 51], we propose a mean-field actor-critic algorithm
which, at each iteration, given the mean-field state µ, approximately attains the optimal policy π∗µ
of each agent, and then updates the mean-field state µ assuming that all the agents follow π∗µ. We
parametrize the actor and critic by linear and quadratic functions, respectively, and prove that such a
parameterization encompasses the optimal policy of each agent. Specifically, we update the actor
parameter using natural policy gradient [13, 56, 88] and update the critic parameter using primal-dual
gradient temporal difference [100, 101]. In particular, we prove that given the mean-field state µ, the
sequence of policies generated by the actor converges linearly to the optimal policy π∗µ. Moreover,
when alternatingly update the policy and mean-field state, we prove that the sequence of policies
and its corresponding sequence of mean-field states converge to the unique Nash equilibrium at
a linear rate. Our approach can be interpreted from both “passive” and “active” perspectives: (i)
Assuming that each self-interested agent employs the single-agent actor-critic algorithm, the policy
of each agent converges to the unique Nash policy, which characterizes the social dynamics of a large
population of model-free RL agents. (ii) For a particular agent, our approach serves as a fictitious
self-play method for it to find its Nash policy, assuming the other agents give their best responses.
To the best of our knowledge, our work establishes the first efficient model-free RL approach with
function approximation that provably attains the Nash equilibrium of a discrete-time mean-field
game. As a byproduct, we also show that the sequence of policies generated by the single-agent
actor-critic algorithm converges at a linear rate to the optimal policy of a linear-quadratic regulator
(LQR) problem in the presence of drift, which may be of independent interest.
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Related Work. Mean-field game is first introduced in [50, 52, 61–63]. In the last decade, there is
growing interest in understanding continuous-time mean-field games. See, e.g., [40, 10, 39, 24, 25]
and the references therein. Due to their simple structures, continuous-time linear-quadratic mean-field
games are extensively studied under various model assumptions. See [68, 6, 110, 7, 48, 49, 11,
9, 22, 46, 80, 53] for examples of this line of work. Meanwhile, the literature on discrete-time
linear-quadratic mean-field games remains relatively scarce. Most of this line of work focuses on
characterizing the existence of a Nash equilibrium and the behavior of such a Nash equilibrium
when the number of agents goes to infinity [38, 104, 79, 14, 90–92]. See also [116], which applies
maximum entropy inverse RL [122] to infer the cost function and social dynamics of discrete-time
mean-field games with finite state and action spaces. Our work is most related to [41], where they
propose a mean-field Q-learning algorithm [113] for discrete-time mean-field games with finite
state and action spaces. Such an algorithm requires the access to a simulator, which, given any
state-action pair and mean-field state, outputs the next state. In contrast, both our state and action
spaces are infinite, and we do not require such a simulator but only observations of trajectories.
Correspondingly, we study the mean-field actor-critic algorithm with linear function approximation,
whereas their algorithm is tailored to the tabular setting. Also, our work is closely related to [77],
which focuses on a more restrictive setting where the state transition does not involve the mean-field
state. In such a setting, mean-field games are potential games, which is, however, not true in more
general settings [67, 20]. In comparison, we allow the state transition to depend on the mean-field
state. Meanwhile, they propose a fictitious self-play method based on the single-agent actor-critic
algorithm and establishes its asymptotic convergence. However, their proof of convergence relies on
the assumption that the single-agent actor-critic algorithm converges to the optimal policy, which
is unverified therein. In addition, our work is related to [55], where the proposed algorithm is only
shown to converge asymptotically to a stationary point of the mean-field game.

Our work also extends the line of work on finding the Nash equilibria of Markov games using MARL.
Due to the computational intractability introduced by the large number of agents, such a line of work
focuses on finite-agent Markov games [70, 71, 44, 16, 60, 45, 28, 87, 86, 84, 85, 114, 120, 123, 26].
See also [95, 96, 21, 69] for detailed surveys. Our work is related to [117], where they combine the
mean-field approximation of actions (rather than states) and Nash Q-learning [45] to study general-
sum Markov games with a large number of agents. However, the Nash Q-learning algorithm is only
applicable to finite state and action spaces, and its convergence is established under rather strong
assumptions. Also, when the number of agents goes to infinity, their approach yields a variant of
tabular Q-learning, which is different from our mean-field actor-critic algorithm.

Finally, our work extends the line of work that studies model-free RL for LQR. For example, [18, 19]
show that policy iteration converges to the optimal policy, [106, 31] study the sample complexity of
least-squares temporal-difference for policy evaluation. More recently, [36, 76, 107] show that the
policy gradient algorithm converges at a linear rate to the optimal policy. See as also [42, 32] for more
in this line of work. Our work is also closely related to [118], where they show that the sequence
of policies generated by the natural actor-critic algorithm enjoys a linear rate of convergence to the
optimal policy. Compared with this work, when fixing the mean-field state, we use the actor-critic
algorithm to study LQR in the presence of drift, which introduces significant difficulties in the
analysis. As we show in §3, the drift causes the optimal policy to have an additional intercept, which
makes the state- and action-value functions more complicated.

Notations. We denote by ‖M‖∗ the spectral norm, ρ(M) the spectral radius, σmin(M) the minimum
singular value, and σmax(M) the maximum singular value of a matrix M . We use ‖α‖2 the `2-norm
of a vector α, and (α)ji to denote the sub-vector (αi, αi+1, . . . , αj)

>, where αk is the k-th entry of
the vector α. For a1, . . . , an, we denote by poly(a1, . . . , an) the polynomial of a1, . . . , an, and this
polynomial may vary from line to line. We use [n] to denote the set {1, 2, . . . , n} for any n ∈ N.

2 Linear-Quadratic Mean-Field Game

A linear-quadratic mean-field Na-player game involves Na ∈ N agents. Their state transitions are
given by

xit+1 = Axit +Buit +A · 1

Na

Na∑
j=1

xjt + di + ωit, ∀t ≥ 0, i ∈ [Na],
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where xit ∈ Rm and uit ∈ Rk are the state and action vectors of agent i, respectively, the vector
di ∈ Rm is a drift term, and ωit ∈ Rm is an independent random noise term following the Gaussian
distribution N (0,Ψω). The agents are coupled through the mean-field state 1/Na ·

∑Na
j=1 x

j
t . In the

linear-quadratic mean-field game, the cost of agent i ∈ [Na] at time t ≥ 0 is given by

cit = (xit)
>Qxit + (uit)

>Ruit +

(
1

Na

Na∑
j=1

xjt

)>
Q

(
1

Na

Na∑
j=1

xjt

)
,

where uit follows πi, i.e., the policy of agent i. To measure the performance of agent i following its
policy πi under the influence of the other agents, we define the expected total cost of agent i as

J i(π1, π2, . . . , πNa) = lim
T→∞

E

(
1

T

T∑
t=0

cit

)
.

We are interested in finding a Nash equilibrium (π1, π2, . . . , πNa), which is defined by

J i(π1, . . . , πi−1, πi, πi+1, . . . , πNa) ≤ J i(π1, . . . , πi−1, π̃i, πi+1, . . . , πNa), ∀π̃i, i ∈ [Na].

That is, agent i cannot further decrease its expected total cost by unilaterally deviating from its Nash
policy.

For the simplicity of discussion, we assume that the drift term di is identical for each agent. By the
symmetry of the agents in terms of their state transitions and cost functions, we focus on a fixed
agent and drop the superscript i hereafter. Further taking the limit Na →∞ leads to the following
definition of linear-quadratic mean-field game (LQ-MFG).
Problem 2.1 (LQ-MFG). We consider the following formulation

xt+1 = Axt +But +AEx∗t + d+ ωt,

c(xt, ut) = x>t Qxt + u>t Rut + (Ex∗t )>Q(Ex∗t ),

J(π) = lim
T→∞

E

[
1

T

T∑
t=0

c(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π, {x∗t }t≥0 is
the trajectory generated by a Nash policy π∗ (assuming it exists), ωt ∈ Rm is an independent random
noise term following the Gaussian distribution N (0,Ψω), and d ∈ Rm is a drift term. Here the
expectation Ex∗t is taken over the identical agents. We aim to find π∗ such that J(π∗) = infπ∈Π J(π).

The formulation in Problem 2.1 is studied by [63, 11, 90, 91]. We propose a more general formulation
in Problem C.1 (see §C of the appendix for details), where an additional interaction term between
the state vector xt and the mean-field state Ex∗t is included in the cost function. According to our
analysis in §C, up to minor modification, the results in the following sections also carry over to
Problem C.1. Therefore, for the sake of simplicity, we focus on Problem 2.1 in the sequel.

Note that the mean-field state Ex∗t converges to a constant vector µ∗ as t → ∞, which serves as
a fixed mean-field state, since the Markov chain of states generated by the Nash policy π∗ admits
a stationary distribution. As we consider the ergodic setting, it suffices to study Problem 2.1 with
t→∞, which motivates the following drifted LQR (D-LQR) problem, where the mean-field state
acts as another drift term.
Problem 2.2 (D-LQR). Given a mean-field state µ ∈ Rm, we consider the following formulation

xt+1 = Axt +But +Aµ+ d+ ωt,

cµ(xt, ut) = x>t Qxt + u>t Rut + µ>Qµ,

Jµ(π) = lim
T→∞

E

[
1

T

T∑
t=0

cµ(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π, ωt ∈ Rm
is an independent random noise term following the Gaussian distributionN (0,Ψω), and d ∈ Rm is a
drift term. We aim to find an optimal policy π∗µ such that Jµ(π∗µ) = infπ∈Π Jµ(π).
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For the mean-field state µ = µ∗, which corresponds to the Nash equilibrium, solving Problem 2.2
gives π∗µ∗ , which coincides with the Nash policy π∗ defined in Problem 2.1. Compared with the most
studied LQR problem [66], both the state transition and the cost function in Problem 2.2 have drift
terms, which act as the mean-field “force” that drives the states away from zero. Such a mean-field
“force” introduces additional challenges when solving Problem 2.2 in the model-free setting (see
§B.1 for details). On the other hand, the unique optimal policy π∗µ of Problem 2.2 admits a linear
form π∗µ(xt) = −Kπ∗µ

xt + bπ∗µ [2], where the matrix Kπ∗µ
∈ Rk×m and the vector bπ∗µ ∈ Rk are

the parameters of π∗µ. Motivated by such a linear form of the optimal policy, we define the class of
linear-Gaussian policies as

Π = {π(x) = −Kx+ b+ σ · η : K ∈ Rk×m, b ∈ Rk}, (2.1)

where the standard Gaussian term η ∈ Rk is included to encourage exploration. To solve Problem
2.2, it then suffices to find the optimal policy within Π.

Now, we introduce the definition of the Nash equilibrium pair [90, 91]. The Nash equilibrium pair is
characterized by the NCE principle, which states that it suffices to find a pair of π∗ and µ∗, such that
the policy π∗ is optimal for each agent when the mean-field state is µ∗, and all the agents following
the policy π∗ generate the mean-field state µ∗ as t→∞. To present its formal definition, we define
Λ1(µ) as the optimal policy in Π given the mean-field state µ, and Λ2(µ, π) as the mean-field state
generated by the policy π given the current mean-field state µ as t→∞.

Definition 2.3 (Nash Equilibrium Pair). The pair (µ∗, π∗) ∈ Rm×Π constitutes a Nash equilibrium
pair of Problem 2.1 if it satisfies π∗ = Λ1(µ∗) and µ∗ = Λ2(µ∗, π∗). Here µ∗ is the Nash mean-field
state and π∗ is the Nash policy.

3 Mean-Field Actor-Critic

We first characterize the existence and uniqueness of the Nash equilibrium pair of Problem 2.1 under
mild regularity conditions, and then propose a mean-field actor-critic algorithm for such a Nash
equilibrium. As a building block of the mean-field actor-critic algortihm, we propose a natural
actor-critic algorithm to solve Problem 2.2.

3.1 Existence and Uniqueness of Nash Equilibrium Pair

We now establish the existence and uniqueness of the Nash equilibrium pair defined in Definition 2.3.
We impose the following regularity conditions.

Assumption 3.1. We assume that the following statements hold:

(i) The algebraic Riccati equationX = A>XA+Q−A>XB(B>XB+R)−1B>XA admits
a unique positive definite solution X∗;

(ii) It holds that L0 := L1L3 + L2 < 1, where

L1 = ‖[(I −A)Q−1(I −A)> +BR−1B>]−1A‖∗ · ‖[K∗Q−1(I −A)> −R−1B>]‖∗,
L2 = [1− ρ(A−BK∗)]−1‖A‖∗, L3 = [1− ρ(A−BK∗)]−1‖B‖∗.

Here K∗ = −(B>X∗B +R)−1B>X∗A.

The first assumption is implied by mild regularity conditions on the matrices A, B, Q, and R. See
Theorem 3.2 in [30] for details. The second assumption is standard in the literature [11, 91], which
ensures the stability of the mean-field game. In the following proposition, we show that Problem 2.1
admits a unique Nash equilibrium pair.

Proposition 3.2 (Existence and Uniqueness of Nash Equilibrium Pair). Under Assumption 3.1, the
operator Λ(·) = Λ2(·,Λ1(·)) is L0-Lipschitz, where L0 is given in Assumption 3.1. Moreover, there
exists a unique Nash equilibrium pair (µ∗, π∗) of Problem 2.1.

Proof. See §E.1 for a detailed proof.
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3.2 Mean-Field Actor-Critic for LQ-MFG

The NCE principle motivates a fixed-point approach to solve Problem 2.1, which generates a sequence
of policies {πs}s≥0 and mean-field states {µs}s≥0 satisfying the following two conditions: (i) Given
the mean-field state µs, the policy πs is optimal. (ii) The mean-field state becomes µs+1 if all the
agents follow πs under the current mean-field state µs. Here (i) requires solving Problem 2.2 given
the mean-field state µs, while (ii) requires simulating the agents following the policy πs given the
current mean-field µs. Based on such properties, we propose the mean-field actor-critic algorithm in
Algorithm 1.

Algorithm 1 Mean-Field Actor-Critic Algorithm for solving LQ-MFG.
1: Input:
• Initial mean-field state µ0 and Initial policy π0 with parameters K0 and b0.
• Numbers of iterations S, {Ns}s∈[S], {Hs}s∈[S], {T̃s,n, Ts,n}s∈[S],n∈[Ns],
{T̃ bs,h, T bs,h}s∈[S],h∈[Hs].

• Stepsizes {γs}s∈[S], {γbs}s∈[S], {γs,n,t}s∈[S],n∈[Ns],t∈[Ts,n], {γbs,h,t}s∈[S],h∈[Hs],t∈[T bs,h].
2: for s = 0, 1, 2, . . . , S − 1 do
3: Policy Update: Solve for the optimal policy πs+1 with parameters Ks+1 and bs+1 of

Problem 2.2 via Algorithm 2 with µs, πs, Ns, Hs, {T̃s,n, Ts,n}n∈[Ns], {T̃ bs,h, T bs,h}h∈[Hs], γs,
γbs , {γs,n,t}n∈[Ns],t∈[Ts,n], and {γbs,h,t}h∈[Hs],t∈[T bs,h], which gives the estimated mean-field
state µ̂Ks+1,bs+1 .

4: Mean-Field State Update: Update the mean-field state via µs+1 ← µ̂Ks+1,bs+1 .
5: end for
6: Output: Pair (πS , µS).

Algorithm 1 requires solving Problem 2.2 at each iteration to obtain πs = Λ1(µs) and µs+1 =
Λ2(µs, πs). To this end, we introduce an actor-critic algorithm in Algorithm 2 that solves Problem
2.2. See §B.1 of the appendix for details.

4 Global Convergence Results

Theorem 4.1 (Convergence of Algorithm 1). For a sufficiently small tolerance ε > 0, we set the
number of iterations S in Algorithm 1 such that

S >
log
(
‖µ0 − µ∗‖2 · ε−1

)
log(1/L0)

. (4.1)

We define

εs = min

{[
1− ρ(A−BK∗)

]4(‖B‖∗ + ‖A‖∗
)−4(‖µs‖−2

2 + ‖d‖−2
2

)
· σmin(Ψε) · σmin(R) · ε2,

νK∗ ·
[
1− ρ(A−BK0)

]2 · ‖B‖−2
∗ · ε2, ε

}
· 2−s−10, s ∈ [S], (4.2)

where νK∗ is defined in Proposition B.1. In the s-th policy update step in Line 3 of Algorithm 1, we
set the inputs via Theorem B.6 such that Jµs(πs+1)− Jµs(π∗µs) < εs, where the expected total cost
Jµs(·) is defined in Problem 2.2, and π∗µs = Λ1(µs) is the optimal policy under the mean-field state
µs. Then it holds that ‖µS − µ∗‖2 ≤ ε with probability at least 1 − ε5, where µS is the output of
Algorithm 1 and µ∗ is the Nash mean-field state of Problem 2.1.

Proof. See §D.1 for a detailed proof.

Here, we highlight that if the inputs of Algorithm 1 satisfy certain conditions, Jµs(πs+1) −
Jµs(π

∗
µs) < εs holds at the s-th iteration for any s ∈ [S]. See Theorem B.6 in §B.2 of the ap-

pendix for details. By Theorem 4.1, Algorithm 1 converges linearly to the unique Nash equilibrium
pair (µ∗, π∗) of Problem 2.1.
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A Notations in the Proofs

In the proof, for convenience, for any invertible matrix M , we denote by M−> = (M−1)> =
(M>)−1 and ‖M‖F the Frobenius norm. We also denote by svec(M) the symmetric vectorization of
the symmetric matrix M , which is the vectorization of the upper triangular matrix of the symmetric
matrix M , with off-diagonal entries scaled by

√
2. Also, we denote by smat(·) the inverse operation.

For notational simplicity, we write z = [x>, u>]> as the combination of the state vector x and the
action vector u. Also, we write Eπ[·] to emphasize that the expectation is taken following the policy
π.

B Auxiliary Algorithms and Analysis

B.1 Natural Actor-Critic for D-LQR

Now we focus on solving Problem 2.2 for a fixed mean-field state µ, we thus drop the subscript
µ hereafter. We write πK,b(x) = −Kx + b + ση to emphasize the dependence on K and b, and
J(K, b) = J(πK,b) consequently. Now, we proceed to propose a natural actor-critic algorithm to
solve Problem 2.2.

For any policy πK,b ∈ Π, by the state transition in Problem 2.2, we have

xt+1 = (A−BK)xt + (Bb+Aµ+ d) + εt, εt ∼ N (0,Ψε), (B.1)

where Ψε = σBB> + Ψω. It is known that if ρ(A − BK) < 1, then the Markov chain {xt}t≥0

induced by (B.1) has a unique stationary distribution ρK,b = N (µK,b,ΦK) [2], where the mean-field
state µK,b and the covariance ΦK satisfy that

µK,b = (I −A+BK)−1(Bb+Aµ+ d), (B.2)

ΦK = (A−BK)ΦK(A−BK)> + Ψε. (B.3)

Meanwhile, the Bellman equation for Problem 2.2 takes the following form

PK = (Q+K>RK) + (A−BK)>PK(A−BK). (B.4)

Then by calculation (see Proposition B.4 in §B.2 of the appendix for details), it holds that the expected
total cost J(K, b) is decomposed as

J(K, b) = J1(K) + J2(K, b) + σ2 · Tr(R) + µ>Qµ, (B.5)

where J1(K) and J2(K, b) are defined as

J1(K) = Tr
[
(Q+K>RK)ΦK

]
= Tr(PKΨε),

J2(K, b) =

(
µK,b
b

)>(
Q+K>RK −K>R
−RK R

)(
µK,b
b

)
. (B.6)

Here J1(K) is the expected total cost in the most studied LQR problems [118, 36], where the state
transition does not have drift terms. Meanwhile, J2(K, b) corresponds to the expected cost induced
by the drift terms. The following two propositions characterize the properties of J2(K, b).

First, we show that J2(K, b) is strongly convex in b.

Proposition B.1. Given any K, the function J2(K, b) is νK-strongly convex in b. Here νK =
σmin(Y >1,KY1,K + Y >2,KY2,K), where Y1,K = R1/2K(I − A + BK)−1B − R1/2 and Y2,K =

Q1/2(I − A + BK)−1B. Also, J2(K, b) has ιK-Lipschitz continuous gradient in b, where ιK is
upper bounded such that ιK ≤ [1− ρ(A−BK)]−2 · (‖B‖2∗ · ‖K‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗).

Proof. See §E.4 for a detailed proof.

Second, we show that minb J2(K, b) is independent of K.
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Proposition B.2. We define bK = argminb J2(K, b), where J2(K, b) is defined in (B.6). It holds
that

bK =
[
KQ−1(I −A)> −R−1B>

]
·
[
(I −A)Q−1(I −A)> +BR−1B>

]−1 · (Aµ+ d).

Moreover, J2(K, bK) takes the form

J2(K, bK) = (Aµ+ d)>
[
(I −A)Q−1(I −A)> +BR−1B>

]−1
(Aµ+ d),

which is independent of K.

Proof. See §E.2 for a detailed proof.

Since minb J2(K, b) is independent of K by Proposition B.2, it holds that the optimal K∗ is the
same as argminK J1(K). This motivates us to minimize J(K, b) by first updating K following the
gradient direction ∇KJ1(K) to the optimal K∗, then updating b following the gradient direction
∇bJ2(K∗, b). We now design our algorithm based on this idea.

We define ΥK , pK,b, and qK,b as

ΥK =

(
Q+A>PKA A>PKB
B>PKA R+B>PKB

)
=

(
Υ11
K Υ12

K
Υ21
K Υ22

K

)
,

pK,b = A>
[
PK · (Aµ+ d) + fK,b

]
, qK,b = B>

[
PK · (Aµ+ d) + fK,b

]
, (B.7)

where fK,b = (I − A + BK)−>[(A − BK)>PK(Bb + Aµ + d) −K>Rb]. By calculation (see
Proposition B.5 in §B.2 of the appendix for details), the gradients of J1(K) and J2(K, b) take the
following forms:

∇KJ1(K) = 2(Υ22
KK −Υ21

K ) · ΦK , ∇bJ2(K, b) = Υ22
K (−KµK,b + b) + Υ21

KµK,b + qK,b.

Our algorithm follows the natural actor-critic method [13] and actor-critic method [57]. Specifically,
to obtain the optimal K∗, in the critic update step, we estimate the matrix ΥK by Υ̂K via a policy
evaluation algorithm, e.g., Algorithm 3 or Algorithm 4 (see §B.3 and §B.4 of the appendix for detail).
In the actor update step, we update K via K ← K−γ · (Υ̂22

KK− Υ̂21
K ), where the term Υ̂22

KK− Υ̂21
K

is the estimated natural gradient. To obtain the optimal b∗ given K∗, in the critic update step, we
estimate ΥK∗ , qK∗,b, and µK∗,b by Υ̂K , q̂K,b, and µ̂K,b via a policy evaluation algorithm. In the
actor update step, we update b via b ← b − γ · ∇̃bJ2(K∗, b), where ∇bJ2(K∗, b) is the estimated
gradient. Combining the above procedure, we obtain the mixed actor-critic algorithm for Problem
2.2, which is stated in Algorithm 2.

B.2 Results in D-LQR

In this section, we provide auxiliary results in analyzing Problem 2.2. First, we introduce the value
functions of the Markov decision process (MDP) induced by Problem 2.2. We define the state-value
function VK,b(x) as follows

VK,b(x) =

∞∑
t=0

{
E
[
c(xt, ut) |x0 = x, ut = −Kxt + b+ σηt

]
− J(K, b)

}
, (B.8)

and the action-value function QK,b(x, u) as follows

QK,b(x, u) = c(x, u)− J(K, b) + E
[
VK,b(x

′) |x, u
]
, (B.9)

where the x′ is the state generated by the state transition after the state-action pair (x, u). We establish
the close forms of these value functions in the following proposition.

Proposition B.3. The state-value function VK,b(x) takes the form

VK,b(x) = x>PKx− Tr(PKΦK) + 2f>K,b(x− µK,b)− (µK,b)
>PKµK,b, (B.10)
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Algorithm 2 Mixed Actor-Critic Algorithm for D-LQR.
1: Input:
• Mean-field state µ and initial policy πK0,b0 .
• Numbers of iterations N , H , {T̃n, Tn}n∈[N ], {T̃ bh, T bh}h∈[H].
• Stepsizes γ, γb, {γn,t}n∈[N ],t∈[Tn], {γbh,t}h∈[H],t∈[T bh].

2: for n = 0, 1, 2, . . . , N − 1 do
3: Critic Update: Compute Υ̂Kn via Algorithm 3 with πKn,b0 , µ, T̃n,Tn, {γn,t}t∈[Tn], K0, and

b0 as inputs.
4: Actor Update: Update the parameter via

Kn+1 ← Kn − γ · (Υ̂22
KnKn − Υ̂21

Kn).

5: end for
6: for h = 0, 1, 2, . . . ,H − 1 do
7: Critic Update: Compute µ̂KN ,bh , Υ̂KN , q̂KN ,bh via Algorithm 3 with πKN ,bh , µ, T̃ bh, T bh,

{γbh,t}t∈[T bh], K0, and b0.
8: Actor Update: Update the parameter via

bh+1 ← bh − γb ·
[
Υ̂22
KN (−KN µ̂K,bh + bh) + Υ̂21

KN µ̂KN ,bh + q̂KN ,bh
]
.

9: end for
10: Output: Policy πK,b = πKN ,bH , estimated mean-field state µ̂K,b = µ̂KN ,bH .

and the action-value function QK,b(x, u) takes the form

QK,b(x, u) =

(
x
u

)>
ΥK

(
x
u

)
+ 2

(
pK,b
qK,b

)>(
x
u

)
− Tr(PKΦK)− σ2 · Tr(R+ PKBB

>)− b>Rb

+ 2b>RKµK,b − (µK,b)
>(Q+K>RK + PK)µK,b + 2f>K,b

[
(Aµ+ d)− µK,b

]
+ (Aµ+ d)>PK(Aµ+ d), (B.11)

where the matrix ΥK and the vectors pK,b, qK,b are given in (B.7).

Proof. See §E.6 for a detailed proof.

By Proposition B.3, we know that VK,b(x) is quadratic in x, while QK,b(x, u) is quadratic in x and
u. Now, we show that J(K, b) is decomposed as (B.5).
Proposition B.4. The expected total cost J(K, b) defined in Problem 2.2 is decomposed as

J(K, b) = J1(K) + J2(K, b) + σ2 · Tr(R) + µ>Qµ,

where J1(K) and J2(K, b) take the following forms

J1(K) = Tr
[
(Q+K>RK)ΦK

]
= Tr(PKΨε),

J2(K, b) =

(
µK,b
b

)>(
Q+K>RK −K>R
−RK R

)(
µK,b
b

)
.

Here µK,b is given in (B.2), ΦK is given in (B.3), and PK is given in (B.4).

Proof. See §E.3 for a detailed proof.

We establish the gradients of J(K, b) in the following proposition.
Proposition B.5. The gradient of J1(K) and the gradient of J2(K, b) with respect to b take the
forms

∇KJ1(K) = 2(Υ22
KK −Υ21

K ) · ΦK , ∇bJ2(K, b) = 2
[
Υ22
K (−KµK,b + b) + Υ21

KµK,b + qK,b
]
,

where the matrix ΥK and the vector qK,b are given in (B.7).
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Proof. See §E.5 for a detailed proof.

Equipped with above results, the following theorem establishes the convergence of Algorithm 2.

Theorem B.6 (Convergence of Algorithm 2). Let the initial policy πK0,b0 be stable. In Algorithm 2,
for a sufficiently small tolerance ε > 0, we set

γ ≤ [‖R‖∗ + ‖B‖2∗ · J(K0, b0) · σ−1
min(Ψε)]

−1

N ≥ C · ‖ΦK∗‖∗ · γ−1 · log
{

4
[
J(K0, b0)− J(K∗, b∗)

]
· ε−1

}
,

where C is a positive absolute constant. Let {Kn}n∈[N ] and {bh}h∈[H] be the sequences of pa-
rameters generated by Algorithm 2. In the n-th critic update step in Line 3 of Algorithm 2, we
set

Tn ≥ poly
(
‖Kn‖F, ‖b0‖2, ‖µ‖2, J(K0, b0)

)
· λ−4

Kn
·
[
1− ρ(A−BKn)

]−9 · ε−5,

T̃n ≥ poly
(
‖Kn‖F, ‖b0‖2, ‖µ‖2, J(K0, b0)

)
· λ−2

Kn
·
[
1− ρ(A−BKn)

]−12 · ε−12,

γn,t = γ0 · t−1/2,

where γ0 is some positive constant, and λKn is specified in Proposition B.8. Also, after obtaining
KN from Algorithm 2, we set

γb ≤ min{1− ρ(A−BKN ), [1− ρ(A−BKN )]−2 · (‖B‖2∗ · ‖KN‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗)},

H ≥ C0 · ν−1
KN
· (γb)−1 · log

{
4
[
J(KN , b0)− J(KN , b

KN )
]
· ε−1

}
,

where C0 is some positive absolute constant and the number νKN is specified in Proposition B.1. In
the h-th critic update step in Line 7 of Algorithm 2, we set

T bh ≥ poly
(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
· λ−4

KN
· ν−4
KN
·
[
1− ρ(A−BKN )

]−10 · ε−5,

T̃ bh ≥ poly
(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(Kn, b0)

)
· λ−4

KN
· ν−2
KN
·
[
1− ρ(A−BKN )

]−16 · ε−8,

γbh,t = γ0 · t−1/2,

where νKN is specified in Proposition B.1. Then with probability at least 1 − ε10, it holds that
J(KN , bH) − J(K∗, b∗) < ε, ‖KN − K∗‖F ≤ [σ−1

min(Ψε) · σ−1
min(R) · ε]1/2, and ‖bH − b∗‖2 ≤

(2ε/νK∗)
1/2.

Proof. See §D.2 for a detailed proof.

By this theorem, given any mean-field state µ, we show that Algorithm 2 converges linearly to the
optimal policy π∗µ of Problem 2.2. In the proof of Theorem B.6, we use the convergence results of
Algorithm 3, which is provided in §B.3 of the appendix.

B.3 Primal-Dual Policy Evaluation Algorithm

Note that critic update steps in Algorithm 2 need estimators of the matrix ΥK and the vector qK,b.
We now derive a policy evaluation algorithm to estimate these quantities, based on gradient temporal
difference algorithm [100].

For notational convenience, we denote by the feature vector

ψ(x, u) =

(
ϕ(x, u)
x− µK,b

u− (−KµK,b + b)

)
, (B.12)

where

ϕ(x, u) = svec

[(
x− µK,b

u− (−KµK,b + b)

)(
x− µK,b

u− (−KµK,b + b)

)>]
.
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Recall svec(M) gives the symmetric vectorization of the symmetric matrix M . We also denote by
the vector

αK,b =

 svec(ΥK)

ΥK

(
µK,b

−KµK,b + b

)
+

(
pK,b
qK,b

) , (B.13)

where the matrix ΥK and vectors pK,b and qK,b are given in (B.7). Note that to estimate ΥK and
qK,b, we only need to estimate αK,b. We also define the following matrix

ΘK,b = EπK,b
{
ψ(x, u)

[
ψ(x, u)− ψ(x′, u′)

]>}
, (B.14)

where (x′, u′) is the state-action pair after (x, u) following the policy πK,b and the state transition.
The matrix ΘK,b defined in (B.14) connects with the vector αK,b by the following proposition.
Proposition B.7. The following equation holds:(

1 0
EπK,b

[
ψ(x, u)

]
ΘK,b

)(
J(K, b)
αK,b

)
=

(
J(K, b)

EπK,b
[
c(x, u)ψ(x, u)

]) ,
where the vector αK,b is given in (B.13), the matrix ΘK,b is given in (B.14), and the feature vector
ψ(x, u) is defined in (B.12).

Proof. See §E.7 for a detailed proof.

Motivated by Proposition B.7, to obtain the vector αK,b, we only need to solve the following linear
system in ζ = (ζ1, ζ

>
2 )>

Θ̃K,b · ζ =

(
J(K, b)

EπK,b
[
c(x, u)ψ(x, u)

]) , (B.15)

where the matrix Θ̃K,b takes the form

Θ̃K,b =

(
1 0

EπK,b
[
ψ(x, u)

]
ΘK,b

)
.

Note that in the above linear system (B.15), if the matrix ΘK,b is invertible, then the whole linear
system admits the unique solution ζK,b = (J(K, b), α>K,b)

>. Under mild condition, the following
proposition verifies the invertibility of ΘK,b.
Proposition B.8. If ρ(A − BK) < 1, then the matrix ΘK,b is invertible, and its spectral norm is
upper bounded by 4(1 + ‖K‖2F)2 · ‖ΦK‖2∗. Moreover, σmin(Θ̃K,b) is lower bounded by a positive
constant λK , where λK only depends on σ, σmin(Ψω) and ρ(A−BK).

Proof. See §E.8 for a detailed proof.

Hereafter, for notational convenience, we denote by ψ̂t the estimated feature vector ψ̂(xt, ut). Now,
we present the primal-dual gradient temporal difference algorithm in Algorithm 3.

Primal-Dual Gradient Method. In Algorithm 3, instead of solving the linear system (B.15) directly,
we minimize the following loss function[

ζ1 − J(K, b)
]2

+
∥∥∥EπK,b[ψ(x, u)

]
ζ1 + ΘK,bζ

2 − EπK,b
[
c(x, u)ψ(x, u)

]∥∥∥2

2
.

Further, by Fenchel’s duality, we convert the above problem to the following primal-dual min-max
problem

min
ζ∈Vζ

max
ξ∈Vξ

F (ζ, ξ) =
{
EπK,b

[
ψ(x, u)

]
ζ1 + ΘK,bζ

2 − EπK,b
[
c(x, u)ψ(x, u)

]}>
ξ2

+
[
ζ1 − J(K, b)

]
· ξ1 − 1/2 · ‖ξ‖22, (B.16)
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Algorithm 3 Primal-Dual Gradient Temporal Difference Algorithm.

1: Input: Policy πK,b, mean-field state µ, numbers of iteration T̃ and T , stepsizes {γt}t∈[T ],
parameters K0 and b0.

2: Define the sets Vζ and Vξ via Condition B.9 with K0 and b0.
3: Initialize the parameters by ζ0 ∈ Vζ and ξ0 ∈ Vξ.
4: Sample x̃0 from the the stationary distribution N (µK,b,ΦK).
5: for t = 0, . . . , T̃ − 1 do
6: Given the mean-field state µ, take action ũt following πK,b and generate the next state x̃t+1.
7: end for
8: Set µ̂K,b ← 1/T̃ ·

∑T̃
t=1 x̃t and compute the estimated feature vector ψ̂ via (B.17).

9: Sample x0 from the the stationary distribution N (µK,b,ΦK).
10: for t = 0, . . . , T − 1 do
11: Given the mean-field state µ, take action ut following πK,b, observe the cost ct, and generate

the next state xt+1.
12: Set δt+1 ← ζ1

t + (ψ̂t − ψ̂t+1)>ζ2
t − ct.

13: Update parameters via

ζ1
t+1 ← ζ1

t − γt+1 · (ξ1
t + ψ̂>t ξ

2
t ), ζ2

t+1 ← ζ2
t − γt+1 · ψ̂t(ψ̂t − ψ̂t+1)>ξ2

t ,

ξ1
t+1 ← (1− γt+1) · ξ1

t + γt+1 · (ζ1
t − ct), ξ2

t+1 ← (1− γt+1) · ξ2
t + γt+1 · δt+1 · ψ̂t.

14: Project ζt+1 and ξt+1 to Vζ and Vξ, respectively.
15: end for
16: Set α̂K,b ← (

∑T
t=1 γt)

−1 · (
∑T
t=1 γt · ζ2

t ), and

Υ̂K ← smat(α̂K,b,1),

(
p̂K,b
q̂K,b

)
← α̂K,b,2 − Υ̂K

(
µ̂K,b

−Kµ̂K,b + b

)
,

where α̂K,b,1 = (α̂K,b)
(k+d+1)(k+d)/2
1 and α̂K,b,2 = (α̂K,b)

(k+d+3)(k+d)/2
(k+d+1)(k+d)/2+1.

17: Output: Estimators µ̂K,b, Υ̂K , and q̂K,b.

where we restrict the primal variable ζ in some compact set Vζ and the dual variable ξ in some
compact set Vξ, which are detailedly specified in Condition B.9. By taking the gradient of the
objective in (B.16) with respect to ζ and ξ, we obtain the following gradients

∇ζ1F = ξ1 + EπK,b
[
ψ(x, u)

]>
ξ2, ∇ζ2F = Θ>K,bξ

2,

∇ξ1F = ζ1 − J(K, b)− ξ1, ∇ξ2F = EπK,b
[
ψ(x, u)

]
ζ1 + ΘK,bζ

2 − EπK,b
[
c(x, u)ψ(x, u)

]
− ξ2.

This gives a primal-dual gradient method to solve the min-max problem (B.16).

Estimate of Mean State µK,b. Note that in the definition of the feature vector in (B.12), we need
the mean µK,b of the state to evaluate the feature vector ψ(x, u). Therefore, prior to the main body
of Algorithm 3, we obtain the estimator µ̂K,b by simulating the MDP under the policy πK,b for T̃
iterations, and compute the estimated feature vector ψ̂ via

ψ̂(x, u) =

(
ϕ̂(x, u)
x− µ̂K,b

u− (−Kµ̂K,b + b)

)
, (B.17)

where ϕ̂(x, u) takes the following form

ϕ̂(x, u) = svec

[(
x− µ̂K,b

u− (−Kµ̂K,b + b)

)(
x− µ̂K,b

u− (−Kµ̂K,b + b)

)>]
.

Before stating the convergence result of Algorithm 3, we specify the sets Vζ and Vξ.
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Condition B.9 . Given K0 and b0 such that ρ(A − BK0) < 1. We define the sets Vζ and Vξ in
(B.16) as

Vζ =
{
ζ : 0 ≤ ζ1 ≤ J(K0, b0), ‖ζ2‖2 ≤Mζ,1 +Mζ,2 · (1 + ‖K‖F) ·

[
1− ρ(A−BK)

]−1
}
,

Vξ =
{
ξ : |ξ1| ≤ J(K0, b0), ‖ξ2‖2 ≤Mξ ·

(
1 + ‖K‖2F

)3 · [1− ρ(A−BK)
]−1
}
.

Here Mζ,1, Mζ,2 and Mξ are constants independent of K and b, which take the following forms

Mζ,1 =
[(
‖Q‖F + ‖R‖F

)
+
(
‖A‖2F + ‖B‖2F

)
·
√
d · J(K0, b0)/σmin(Ψω)

]
+
[(
‖Q‖∗ + ‖R‖∗

)
+
(
‖A‖∗ + ‖B‖∗

)2 · J(K0, b0)/σmin(Ψω)
]

·
[
J(K0, b0)/σmin(Q) + J(K0, b0)/σmin(R)

]
+
(
‖A‖∗ + ‖B‖∗

)
· J(K0, b0)2 · σ−1

min(Ψω) · σ−1
min(Q),

Mζ,2 =
(
‖A‖∗ + ‖B‖∗

)
· (κQ + κR), Mξ = C · (Mζ,1 +Mζ,2) · J(K0, b0)2/σ2

min(Q),

where C is a positive absolute constant, and κQ and κR are condition numbers of the matrices Q and
R, respectively.

We now characterize the convergence of Algorithm 3.

Theorem B.10 (Convergence of Algorithm 3). GivenK0, b0,K and b such that ρ(A−BK0) < 1 and
J(K, b) ≤ J(K0, b0), we define the sets Vζ and Vξ through Condition B.9. Given the stepsize γt =

γ0 · t−1/2 for some constant γ0 > 0, then for any ρ such that ρ(A−BK) < ρ < 1, when the number
of iterations T̃ and T are sufficiently large such that T̃ ≤ poly0(‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)) · (1−
ρ)−6, with probability at least 1− T−4 − T̃−6, the output α̂K,b satisfies that

‖α̂K,b − αK,b‖22 ≤ λ−2
K · poly

(
‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
·
[

log6 T

T 1/2 · (1− ρ)4
+

log T̃

T̃ 1/4 · (1− ρ)2

]
,

where λK is specified in Proposition B.8. Same bounds for ‖Υ̂K − ΥK‖F, ‖p̂K,b − pK,b‖2 and
‖q̂K,b − qK,b‖2 hold. Also, with probability at least 1− T̃−6, it holds that

‖µ̂K,b − µK,b‖2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
.

Proof. See §D.3 for a detailed proof.

The policy evaluation algorithm is used in the critic update steps in Algorithm 2. Therefore, the above
theorem is crucial in the proof of the corresponding convergence result stated in Theorem B.6.

B.4 Temporal Difference Policy Evaluation Algorithm

We also apply TD(0) method [99] to evaluate the policy, which is presented in Algorithm 4.

Note that in related literature [12, 58], non-asymptotic convergence analysis of TD(0) method with
linear function approximation is only applied to discounted MDP; as for our ergodic setting, the
convergence of TD(0) method is only shown asymptotically [15, 59] using ordinary differential
equation method. Therefore, in the convergence theorem proposed in §3, we only focus on the primal-
dual gradient temporal difference method (Algorithm 3) to establish non-asymptotic convergence
result. However, in practice, we still use TD(0) algorithm.

C General Formulation

Compared with Problem 2.1, a more general formulation includes an additional term x>t PEx∗t in the
cost function. For the completeness of this paper, we define this general formulation here.
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Algorithm 4 Temporal Difference Policy Evaluation Algorithm.

1: Input: Policy πK,b, number of iteration T̃ and T , stepsizes {γt}t∈[T ].
2: Sample x̃0 from the stationary distribution N (µK,b,ΦK).
3: for t = 0, . . . , T̃ − 1 do
4: Take action ũt under the policy πK,b and generate the next state x̃t+1.
5: end for
6: Set µ̂K,b ← 1/T̃ ·

∑T̃
t=1 x̃t.

7: Sample x0 from the the stationary distribution N (µK,b,ΦK).
8: for t = 0, . . . , T do
9: Given the mean-field state µ, take action ũt following πK,b and generate the next state x̃t+1.

10: Set δt+1 ← ζ1
t + (ψ̂t − ψ̂t+1)>ζ2

t − ct.
11: Update parameters via ζ1

t+1 ← (1− γt+1) · ζ1
t + γt+1 · ct and ζ2

t+1 ← ζ2
t − γt+1 · δt+1 · ψ̂t.

12: Project ζt to some compact set V ′ζ .
13: end for
14: Set α̂K,b ← (

∑T
t=1 γt)

−1 · (
∑T
t=1 γt · ζ2

t ), and

Υ̂K ← smat(α̂K,b,1),

(
p̂K,b
q̂K,b

)
← α̂K,b,2 − Υ̂K

(
µ̂K,b

−Kµ̂K,b + b

)
,

where α̂K,b,1 = (α̂K,b)
(k+d+1)(k+d)/2
1 and α̂K,b,2 = (α̂K,b)

(k+d+3)(k+d)/2
(k+d+1)(k+d)/2+1.

15: Output: Estimators µ̂K,b, Υ̂K , and q̂K,b.

Problem C.1 (General LQ-MFG). We consider the following formulation

xt+1 = Axt +But +AEx∗t + d+ ωt,

c̃(xt, ut) = x>t Qxt + u>t Rut + (Ex∗t )>Q(Ex∗t ) + 2x>t P (Ex∗t ),

J̃(π) = lim
T→∞

E

[
1

T

T∑
t=0

c̃(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π, {x∗t }t≥0

is the trajectory generated by a Nash policy π∗ (assuming it exists), ωt ∈ Rm is an independent
random noise term following the Gaussian distribution N (0,Ψω), and d ∈ Rm is a drift term. Here
the expectation in Ex∗t is taken over the identical agents. We aim to find π∗ such that J̃(π∗) =

infπ∈Π J̃(π).

Following similar discussion as in §2, it suffices to study Problem C.1 with t→∞, which motivates
the following general drifted LQR (general D-LQR) problem.
Problem C.2 (General D-LQR). For any given mean-field state µ ∈ Rm, consider the following
formulation

xt+1 = Axt +But +Aµ+ d+ ωt,

c̃µ(xt, ut) = x>t Qxt + u>t Rut + µ>Qµ+ 2x>t Pµ,

J̃µ(π) = lim
T→∞

E

[
1

T

T∑
t=0

c̃µ(xt, ut)

]
,

where xt ∈ Rm is the state vector, ut ∈ Rk is the action vector generated by the policy π, ωt ∈ Rm
is an independent random noise term following the Gaussian distributionN (0,Ψω), and d ∈ Rm is a
drift term. We aim to find an optimal policy π∗µ such that J̃µ(π∗µ) = infπ∈Π J̃µ(π).

In Problem C.2, the unique optimal policy π∗µ(·) still admits a linear form π∗µ(xt) = −Kπ∗µ
xt + bπ∗µ

[2], where the matrix Kπ∗µ
∈ Rk×m and the vector bπ∗µ ∈ Rk are the parameters of the policy π. It

then suffices to find the optimal policy in the class Π introduced in (2.1). Similar to §B.1, we drop
the subscript µ when we focus on Problem C.2 for a fixed µ. We write πK,b(x) = −Kx+ b+ ση to
emphasize the dependence on K and b, and J̃(K, b) = J̃(πK,b) consequently. We derive an explicit
form of the expected total cost J̃(K, b) in the following proposition.
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Proposition C.3. The expected total cost J̃(K, b) in Problem C.2 is decomposed as

J̃(K, b) = J̃1(K) + J̃2(K, b) + σ2 · Tr(R) + µ>Qµ,

where J̃1(K) and J̃2(K, b) take the following forms

J̃1(K) = Tr
[
(Q+K>RK)ΦK

]
= Tr(PKΨε),

J̃2(K, b) =

(
µK,b
b

)>(
Q+K>RK −K>R
−RK R

)(
µK,b
b

)
+ 2µ>PµK,b.

Here µK,b is given in (B.2), ΦK is given in (B.3), and PK is given in (B.4).

Proof. The proof is similar to the one of Proposition B.4. Thus we omit it here.

Compared with the form of J(K, b) given in (B.5), we see that the only difference is that J̃(K, b)

contains an extra term 2µ>PµK,b in J̃2(K, b), which is only a linear term in b (recall that µK,b is
linear in b by (B.2)). Thus, J̃2(K, b) is still strongly convex in b, as shown in the proposition below.

Proposition C.4. Given any K, the function J̃2(K, b) is νK-strongly convex in b, here νK =
σmin(Y >1,KY1,K + Y >2,KY2,K), where Y1,K = R1/2K(I − A + BK)−1B − R1/2 and Y2,K =

Q1/2(I − A + BK)−1B. Also, J̃2(K, b) has ιK-Lipschitz continuous gradient in b, where ιK is
upper bounded such that ιK ≤ [1− ρ(A−BK)]−2 · (‖B‖2∗ · ‖K‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗).

Proof. The proof is similar to the one of Proposition B.1. Thus we omit it here.

Parallel to Proposition B.2, we derive a similar proposition in the sequel.

Proposition C.5. Denote by b̃K = argminb J̃2(K, b), then J̃2(K, b̃K) takes the form

J̃2(K, b̃K) =

(
Aµ+ d
P>µ

)>(
S S(I −A)Q−1

Q−1(I −A)>S 3Q−1(I −A)>S(I −A)Q−1 −Q−1

)(
Aµ+ d
P>µ

)
,

which is independent of K. Here S = [(I − A)Q−1(I − A)> + BR−1B>]−1. And b̃K takes the
form

b̃K =
[
KQ−1(I −A)> −R−1B>

]
· S ·

[
(Aµ+ d) + (I −A)Q−1P>µ

]
−KQ−1P>µ.

Proof. The proof is similar to the one of Proposition B.2. Thus we omit it here.

Similar to Problem 2.2, we define the state- and action-value functions as

ṼK,b(x) =

∞∑
t=0

{
E
[
c̃(xt, ut) |x0 = x, ut = −Kxt + b+ σηt

]
− J̃(K, b)

}
,

Q̃K,b(x, u) = c̃(x, u)− J̃(K, b) + E
[
ṼK,b(x

′) |x, u
]
,

where the x′ is the state generated by the state transition after the state-action pair (x, u). A slight
modification of Proposition B.3 gives the proposition below.

Proposition C.6. For Problem C.2, the state-value function ṼK,b(x) takes the form

ṼK,b(x) = x>PKx− Tr(PKΦK) + 2f̃>K,b(x− µK,b)− (µK,b)
>PKµK,b,

and the action-value function Q̃K,b(x, u) takes the form

Q̃K,b(x, u) =

(
x
u

)>
ΥK

(
x
u

)
+ 2

(
p̃K,b
q̃K,b

)>(
x
u

)
− Tr(PKΦK)− σ2 · Tr(R+ PKBB

>)− b>Rb

+ 2b>RKµK,b − (µK,b)
>(Q+K>RK + PK)µK,b + 2f̃>K,b

[
(Aµ+ d)− µK,b

]
+ (Aµ+ d)>PK(Aµ+ d)− 2µ>PµK,b.
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Here the matrix ΥK is given in (B.7), and the vectors p̃K,b, q̃K,b are given as(
p̃K,b
q̃K,b

)
=

(
A>
[
PK · (Aµ+ d) + f̃K,b

]
+ Pµ

B>
[
PK · (Aµ+ d) + f̃K,b

] )
, (C.1)

where the vector f̃K,b = (I −A+BK)−>[(A−BK)>PK(Bb+Aµ+ d)−K>Rb+ Pµ].

Proof. The proof is similar to the one of Proposition B.3. Thus we omit it here.

Now we establish the gradients of J̃(K, b) for Problem C.2.

Proposition C.7. The gradient of J̃1(K) and the gradient of J̃2(K, b) w.r.t. b takes the form

∇K J̃1(K) = 2(Υ22
KK −Υ21

K ) · ΦK , ∇bJ̃2(K, b) = 2
[
Υ22
K (−KµK,b + b) + Υ21

KµK,b + q̃K,b
]
,

where the matrix ΥK is given in (B.7), and the vector q̃K,b is given in (C.1).

Proof. The proof is similar to the one of Proposition B.5. Thus we omit it here.

Equipped with above results, parallel to the analysis in §3, it is clear that by slight modification
of Algorithms 1, 2, and 3, we derive similar actor-critic algorithms to solve both Problem C.1 and
Problem C.2, where all the non-asymptotic convergence results hold. We omit the algorithms and the
convergence results here.

D Proofs of Theorems

D.1 Proof of Theorem 4.1

We denote by µ∗s+1 = Λ(µs), which is the mean-field state generated by the optimal policy
πK∗,b∗(µs) = Λ1(µs) under the current mean-field state µs (note that for any mean-field state
µ, the optimal K∗(µ) is independent of µ by Proposition B.2; therefore, we write K∗ here for
convenience). By (B.2), we know that

µ∗s+1 = (I −A+BK∗)−1 ·
[
Bb∗(µs) +Aµs + d

]
.

Also, we denote by

µ̃s+1 = (I −A+BKs)
−1(Bbs +Aµs + d),

which is the mean-field state generated by the policy πKs,bs under the current mean-field state µs.
According to Algorithm 1, it is obvious that the output µs+1 is an estimator of µ̃s+1. By triangular
inequality, we have

‖µs+1 − µ∗‖2 ≤ ‖µs+1 − µ̃s+1‖2︸ ︷︷ ︸
E1

+ ‖µ̃s+1 − µ∗s+1‖2︸ ︷︷ ︸
E2

+ ‖µ∗s+1 − µ∗‖2︸ ︷︷ ︸
E3

. (D.1)

We bound E1, E2 and E3 in the sequel.

Bound on E1: Note that from Theorem B.10 and the choice of the inputs in Algorithm 3 stated in
Theorem B.6, it holds that

E1 = ‖µs+1 − µ̃s+1‖2 < εs ≤ ε/8 · 2−s (D.2)

with probability at least 1− ε10, where εs is given in (4.2).
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Bound on E2: Note that by definition, combining with triangular inequality, we have

E2 =
∥∥∥(I −A+BKs)

−1(Bbs +Aµs + d)− (I −A+BK∗)−1 ·
[
Bb∗(µs) +Aµs + d

]∥∥∥
2

≤
∥∥Bb∗(µs) +Aµs + d

∥∥
2
·
∥∥∥[I −A+BK∗ +B(Ks −K∗)

]−1 − (I −A+BK∗)−1
∥∥∥
∗

+
∥∥(I −A+BKs)

−1
∥∥
∗ · ‖B‖∗ ·

∥∥bs − b∗(µs)∥∥2

≤ 2
∥∥Bb∗(µs) +Aµs + d

∥∥
2
·
∥∥(I −A+BK∗)−1B(Ks −K∗)(I −A+BK∗)−1

∥∥
∗

+
∥∥(I −A+BKs)

−1
∥∥
∗ · ‖B‖∗ ·

∥∥bs − b∗(µs)∥∥2

≤ 2
∥∥Bb∗(µs) +Aµs + d

∥∥
2
·
[
1− ρ(A−BK∗)

]−2 · ‖B‖∗ · ‖Ks −K∗‖∗
+
[
1− ρ(A−BK0)

]−1 · ‖B‖∗ ·
∥∥bs − b∗(µs)∥∥2

. (D.3)

For the term ‖Bb∗(µs) +Aµs + d‖2, combining Proposition B.2, it holds that∥∥Bb∗(µs) +Aµs + d
∥∥

2
≤ L1 · ‖B‖∗ · ‖µs‖2 + ‖A‖∗ · ‖µs‖2 + ‖d‖2
≤
(
L1 · ‖B‖∗ + ‖A‖∗

)
· ‖µs‖2 + ‖d‖2, (D.4)

where the scalar L1 is given in Assumption 3.1. Moreover, from Theorem B.6, by the choice of Ns,
it holds with probability at least 1− ε10 that

‖Ks −K∗‖F ≤
√
σ−1

min(Ψε) · σ−1
min(R) · εs,

∥∥bs − b∗(µs)∥∥2
≤
√

2ν−1
K∗ · εs. (D.5)

Combining (D.3), (D.4), (D.5) and the choice of εs in (4.2), we deduce that

E2 ≤ ε/8 · 2−s (D.6)

holds with probability at least 1− ε10.

Bound on E3: We have

E3 = ‖µ∗s+1 − µ∗‖2 =
∥∥Λ(µs)− Λ(µ∗)

∥∥
2
≤ L0 · ‖µs − µ∗‖2, (D.7)

where we use the fact that the operator Λ(·) has Lipschitz constant L0 = L1L3 + L2 according to
Proposition 3.2.

From (D.2), (D.6) and (D.7), combining (D.1), we know that

‖µs+1 − µ∗‖2 ≤ L0 · ‖µs − µ∗‖2 + ε · 2−s−2. (D.8)

By telescoping (D.8), we obtain that

‖µS − µ∗‖2 ≤ LS0 · ‖µ0 − µ∗‖2 + ε/2.

Moreover, by the choice of S in (4.1) and the definition of L0 in Assumption 3.1, we know that
‖µS − µ∗‖ < ε. This concludes the theorem.

D.2 Proof of Theorem B.6

Proof. We first show that J1(KN ) − J1(K∗) < ε/2 with a high probability, then show that
J2(KN , bH)− J2(K∗, b∗) < ε/2 with a high probability. Then we have

J(KN , bN )− J(K∗, b∗) = J1(KN ) + J2(KN , bH)− J1(K∗)− J2(K∗, b∗) < ε

with a high probability, which proves the theorem.

Part 1. We show that J1(KN ) − J1(K∗) < ε/2 with a high probability. We proceed our proof
by first showing that J1(K) is gradient dominant, and then by gradient dominance, we prove the
convergence of Algorithm 2 combining the convergence result of Algorithm 3 in Theorem B.10.

To show that J1(K) is gradient dominant, we first bound J1(K1)− J1(K2) for any K1 and K2. By
Proposition B.4, J1(K) takes the form

J1(K) = Tr(PKΨε) = Ey∼N (0,Ψε)(y
>PKy). (D.9)

We use the following cost difference lemma to bound y>PK1
y − y>PK2

y.
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Lemma D.1 (Cost Difference). Denote by K1 and K2 two parameters, which satisfy that ρ(A −
BK1) < 1 and ρ(A − BK2) < 1. Moreover, for any state vector y, we denote by {yt}t≥0 the
sequence generated by the transition yt+1 = (A−BK2)yt with initial state y0 = y. Then it satisfies
that

y>PK2
y − y>PK1

y =
∑
t≥0

DK1,K2(yt).

Here we denote by the function

DK1,K2
(y) = 2y>(K2 −K1)(Υ22

K1
K1 −Υ21

K1
)y + y>(K2 −K1)>Υ22

K1
(K2 −K1)y,

where the matrix ΥK is given in (B.7).

Proof. See §F.1 for a detailed proof.

Now, based on Lemma D.1, the following lemma shows that J1(K) is gradient dominant.
Lemma D.2 (Gradient Dominance). Let K∗ be the optimal parameter and K be a parameter such
that J1(K) is finite, then we have the following lower bound for J1(K)− J1(K∗)

J1(K)− J1(K∗) ≥ σmin(Ψω) · ‖Υ22
K ‖−1
∗ · Tr

[
(Υ22

KK −Υ21
K )>(Υ22

KK −Υ21
K )
]
,

and the following upper bound

J1(K)− J1(K∗) ≤ σ−1
min(R) · ‖ΦK∗‖∗ · Tr

[
(Υ22

KK −Υ21
K )>(Υ22

KK −Υ21
K )
]
.

Proof. See §F.2 for a detailed proof.

We now use the above results to show the convergence of Algorithm 2. Recall that according to
Algorithm 2, the parameter K is updated via

Kn+1 = Kn − γ · (Υ̂22
KnKn − Υ̂21

Kn), (D.10)

where Υ̂Kn is the output of Algorithm 3. We also define K̃n+1 as the exact update

K̃n+1 = Kn − γ · (Υ22
KnKn −Υ21

Kn), (D.11)

where ΥKn is given in (B.7).

We proceed to bound |J1(Kn+1) − J1(K∗)| in the sequel. First, we claim that J1(KN ) ≤
J1(KN−1) ≤ · · · ≤ J1(K0) with high probability. We prove the claim by mathematical induc-
tion. Suppose that J1(Kn) ≤ J1(Kn−1) ≤ · · · ≤ J1(K0) (this holds for n = 0). Recall the
definition of K̃n+1 in (D.11) and the definition of J1(K) given in (B.6), we have

J1(K̃n+1)− J1(Kn) = Ey∼N (0,Ψε)

[
y>(PK̃n+1

− PKn)y
]

= −2γ · Tr
[
ΦK̃n+1

· (Υ22
KnKn −Υ21

Kn)>(Υ22
KnKn −Υ21

Kn)
]

+ γ2 · Tr
[
ΦK̃n+1

· (Υ22
KnKn −Υ21

Kn)>Υ22
Kn(Υ22

KnKn −Υ21
Kn)

]
≤ −2γ · Tr

[
ΦK̃n+1

· (Υ22
KnKn −Υ21

Kn)>(Υ22
KnKn −Υ21

Kn)
]

+ γ2 · ‖Υ22
Kn‖∗ · Tr

[
ΦK̃n+1

· (Υ22
KnKn −Υ21

Kn)>(Υ22
KnKn −Υ21

Kn)
]
, (D.12)

where the first line comes from (D.9) and the second line comes from Lemma D.1. Note that by the
definition of ΥK in (B.7), the term ‖Υ22

Kn
‖∗ is upper bounded as

‖Υ22
Kn‖∗ ≤ ‖R‖∗ + ‖B‖2∗ · ‖PKn‖∗ ≤ ‖R‖∗ + ‖B‖2∗ · J1(Kn) · σ−1

min(Ψε)

≤ ‖R‖∗ + ‖B‖2∗ · J1(K0) · σ−1
min(Ψε).

Combining (D.12) and the choice of stepsize γ ≤ [‖R‖∗ + ‖B‖2∗ · J1(K0) · σ−1
min(Ψε)]

−1, it holds
that

J1(K̃n+1)− J1(Kn) ≤ −γ · Tr
[
ΦK̃n+1

· (Υ22
KnKn −Υ21

Kn)>(Υ22
KnKn −Υ21

Kn)
]

≤ −γ · σmin(Ψε) · Tr
[
(Υ22

KnKn −Υ21
Kn)>(Υ22

KnKn −Υ21
Kn)

]
≤ −γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1

∗ ·
[
J1(Kn)− J1(K∗)

]
, (D.13)
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where the last line comes from Lemma D.2. This also implies that J1(K̃n+1) ≤ J1(Kn).

Now, we use the following lemma to establish an upper bound of |J1(K̃n+1)− J1(Kn+1)|.
Lemma D.3. Suppose that J1(Kn) ≤ J1(K0). Under the conditions stated in Theorem B.6, with
probability at least 1− ε15, it holds that∣∣J1(K̃n+1)− J1(Kn+1)

∣∣ ≤ γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1
∗ · ε/4, (D.14)

where Kn+1 is given in (D.10) and K̃n+1 is given in (D.11).

Proof. See §F.10 for a detailed proof.

Now, by applying Lemma D.3, we know that if J1(Kn) − J1(K∗) ≥ ε/2, combining (D.13) and
(D.14), it holds with probability at least 1− ε15 that

J1(Kn+1)− J1(Kn) ≤ −γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1
∗ · ε/4 < 0. (D.15)

This shows that with probability at least 1− ε15, it holds that J1(Kn+1) ≤ J1(Kn) ≤ · · · ≤ J1(K0).
Finally, note that the total number of iterations N goes only with log(1/ε), we know that J1(KN ) ≤
J1(KN−1) ≤ · · · ≤ J1(K0) with probability at least 1− ε13, as long as J1(Kn)− J1(K∗) ≥ ε/2
for any n ≤ N . This finishes the proof of the claim.

Also, when J1(Kn) − J1(K∗) ≥ ε/2, by (D.13) and (D.15), with probability at least 1 − ε13, it
holds that

J1(Kn+1)− J1(K∗) ≤
[
1− γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1

∗
]
·
[
J1(Kn)− J1(K∗)

]
.

Again, combining the fact that N goes only with log(1/ε), we know that

J1(KN )− J1(K∗) ≤ ε/2

with probability at least 1− ε11.

Now we only need to give an error bound of ‖Kn −K∗‖F. We upper bound ‖K −K∗‖F using
J1(K)− J1(K∗) in the following lemma.
Lemma D.4. For any K, we have

‖K −K∗‖2F ≤ σ−1
min(Ψε) · σ−1

min(R) ·
[
J1(K)− J1(K∗)

]
.

Proof. See §F.3 for a detailed proof.

Combining Lemma D.4, we show the error bound ‖KN −K∗‖F.

Part 2. We show that J2(KN , bH) − J2(K∗, b∗) < ε/2 with a high probability. Following from
Proposition B.2, it holds that J2(K∗, b∗) = J2(KN , b

KN ). Therefore, to show that J2(KN , bH)−
J2(K∗, b∗) < ε/2, we only need to prove that J2(KN , bH)− J2(K∗, b∗) < ε/2.

First, we use mathematical induction to show that J2(KN , bH) ≤ J2(KN , bH−1) ≤ · · · ≤
J2(KN , b1) ≤ J2(KN , b0), as long as J2(KN , bh)− J2(KN , b

KN ) ≥ ε/2 for any h ≤ H . Suppose
that J2(KN , bh) ≤ J2(KN , bh−1) ≤ · · · ≤ J2(KN , b0) (this holds for h = 0). Recall that according
to Algorithm 2, the parameter b is updated by

bh+1 = bh − γb · ∇̂bJ2(KN , bh), (D.16)

where ∇̂bJ2(KN , bh) = Υ̂22
KN

(−KN µ̂KN ,bh +bh)+Υ̂21
KN

µ̂KN ,bh + q̂KN ,bh is the estimated gradient
at bh, and the matrix Υ̂KN and the vector q̂KN ,bh are the outputs of Algorithm 3. We define b̃h+1 as
an exact update

b̃h+1 = bh − γb · ∇bJ2(KN , bh), (D.17)

where∇bJ2(KN , bh) = Υ22
KN

(−KNµKN ,bh + bh) + Υ21
KN

µKN ,bh + qKN ,bh is the exact gradient at
bh, and ΥKN and qKN ,bh are given in (B.7). We proceed to bound J2(KN , bh+1)− J2(KN , b

KN )
in the sequel, where bKN = argminb J2(KN , b).
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Note that by the convexity and smoothness of J2(KN , b) in Proposition B.1, we have

J2(KN , b̃h+1)− J2(KN , bh) ≤ −γb/2 ·
∥∥∇bJ2(KN , bh)

∥∥2

2
≤ −νKN · γb ·

[
J2(KN , bh)− J2(KN , b

KN )
]

≤ −νKN · γb · ε < 0, (D.18)

where in the inequalities, we use the fact that J2(KN , b) has ιKN -Lipschitz continuous gradient
and is ιKN -strongly convex by Proposition B.1. Note that (D.18) also implies that J2(KN , b̃h+1) <

J2(KN , bh). Now, we only need to establish the error bound |J2(K̃N , bh+1)− J2(KN , bh+1)|. The
following lemma quantifies

∣∣J2(KN , bh+1)− J2(KN , b̃h+1)
∣∣.

Lemma D.5. Assume that J2(KN , bh) ≤ J2(KN , b0). Under the conditions stated in Theorem B.6,
with probability at least 1− ε15, we have∣∣J2(KN , bh+1)− J2(KN , b̃h+1)

∣∣ ≤ νKN · γb · ε/2, (D.19)

where ∇̂bJ2(KN , bh) is the approximate gradient given in (D.16), while ∇bJ2(KN , bh) is the exact
gradient given in (D.17).

Proof. See §F.4 for a detailed proof.

Now, by applying Lemma D.5, we know that if J2(KN , bh)− J2(KN , b
KN ) ≥ ε, combining (D.18),

it holds with probability at least 1− ε15 that

J2(KN , bh+1)− J2(KN , bh) ≤ −νKN · γb · ε/2 < 0.

This shows that with probability at least 1 − ε15, it holds that J2(KN , bh+1) ≤ J2(KN , bh) ≤
· · · ≤ J2(KN , b0). Note that the total number of iterations H only goes by log(1/ε). Therefore, we
know that as long as J2(KN , bh)− J2(KN , b

KN ) ≥ ε for any h ≤ H , it holds that J2(KN , bH) ≤
J2(KN , bH−1) ≤ · · · ≤ J2(KN , b0) with probability at least 1− ε13. By this, we finish the claim.

Then, if J2(KN , bh)− J2(KN , b
KN ) ≥ ε/2, by (D.18) and (D.19), with probability at least 1− ε13,

it holds that

J2(KN , bh+1)− J2(KN , b
KN ) ≤ (1− νKN · γb) ·

[
J2(KN , bh)− J2(KN , b

KN )
]
.

Again, combining the fact that H goes only with log(1/ε), we know that

J2(KN , bH)− J2(KN , b
KN ) ≤ ε/2

with probability at least 1− ε11. Moreover, combining the fact in Proposition B.1 that J2(KN , b) is
strongly convex in b, we concludes the theorem.

D.3 Proof of Theorem B.10

Proof. We follow the proof of Theorem 4.2 in [118], where the authors only consider LQR without
drift terms. Since our proof requires much more delicate analysis, we present it here.

Part 1. We proceed to show that (ζK,b, 0) is a saddle point of the problem (B.16). We first show that
ζK,b ∈ Vζ and ξ(ζ) ∈ Vξ for any ζ ∈ Vζ , where ξ(ζ) is defined as ξ(ζ) = argmaxξ F (ζ, ξ), by the
following lemma.
Lemma D.6. The vector ζK,b = (J(K, b), α>K,b)

> ∈ Vζ . Moreover, for any ζ ∈ Vζ , the vector ξ(ζ)

defined above satisfies that ξ(ζ) ∈ Vξ.

Proof. See §F.5 for detailed proof.

Note that ∇ζF (ζK,b, 0) = 0 and ∇ξF (ζK,b, 0) = 0, combining the above Lemma D.6, we know
that (ζK,b, 0) is a saddle point of the function F (ζ, ξ) defined in the problem (B.16). This finishes
the proof of our Part 1.

Part 2. We define the primal-dual gap of (B.16) as

gap(ζ̂, ξ̂) = max
ξ∈Vξ

F (ζ̂, ξ)− min
ζ∈Vζ

F (ζ, ξ̂), (D.20)
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which indeed captures the performance of (ζ̂, ξ̂). In the sequel, we proceed to relate (D.20) with the
estimation error ‖α̂K,b − αK,b‖2.

First, note that for the estimator ζ̂ returned by Algorithm 3, we have∥∥∥EπK,b[ψ(x, u)
]
ζ̂1 + ΘK,bζ̂

2 − EπK,b
[
c(x, u)ψ(x, u)

]∥∥∥2

2
+
∣∣ζ̂1 − J(K, b)

∣∣2
= F

[
ζ̂, ξ(ζ̂)

]
= max

ξ∈Vξ
F (ζ̂, ξ) = gap(ζ̂, ξ̂) + min

ζ∈Vζ
F (ζ, ξ̂), (D.21)

where the second line comes from (F.14) and the definition of ξ(ζ) in Part 1. Moreover, note that for
any ξ ∈ Vξ, the follows hold:

min
ζ∈Vζ

F (ζ, ξ) ≤ min
ζ∈Vζ

max
ξ∈Vξ

F (ζ, ξ) = min
ζ∈Vζ

F
[
ζ, ξ(ζ)

]
=

1

2
· min
ζ∈Vζ

{∥∥∥EπK,b[ψ(x, u)
]
ζ1 + ΘK,bζ

2 − EπK,b
[
c(x, u)ψ(x, u)

]∥∥∥2

2
+
∣∣ζ1 − J(K, b)

∣∣2}
= 0, (D.22)

where the first line comes from the definition of ξ(ζ) in Part 1, the second line comes from (F.14),
while the last equality holds by taking ζ = ζK,b ∈ Vζ . Further, we establish a lower for the LHS of
(D.21) as follows∥∥∥EπK,b[ψ(x, u)

]
ζ̂1 + ΘK,bζ̂

2 − EπK,b
[
c(x, u)ψ(x, u)

]∥∥∥2

2
+
∣∣ζ̂1 − J(K, b)

∣∣2
=
∥∥Θ̃K,b(ζ̂ − ζK,b)

∥∥2

2
≥ λ2

K · ‖ζ̂ − ζK,b‖22 ≥ λ2
K · ‖α̂K,b − αK,b‖22, (D.23)

where the matrix Θ̃K,b is given in (B.15) and the scalar λK is specified in Proposition B.8. Combining
(D.21), (D.22) and (D.23), we obtain the relation between gap(ζ̂, ξ̂) and ‖α̂K,b − αK,b‖2:

‖α̂K,b − αK,b‖22 ≤ λ−2
K · gap(ζ̂, ξ̂). (D.24)

Part 3. We now proceed to upper bound the primal-dual gap gap(ζ̂, ξ̂), then by (D.24) in Part 2, we
establish the upper bound of the estimation error ‖α̂K,b − αK,b‖2. Note that since the state x and
action u follow Gaussian distributions, therefore, they are unbounded. First we utilize Hansen-Wright
inequality (Lemma G.3) to pick up an event where these two random variables are bounded. Before
pick up such an event, the following Lemma D.7 characterize the distribution of µ̂z = 1/T̃ ·

∑T̃
t=1 z̃t,

where z̃t = [x̃>t , ũ
>
t ]> is the concatenation of the state x̃t and the action ũt. Then following transition

holds

z̃t+1 = Lz̃t + ν + δt,

where

ν =

(
Aµ+ d

−K(Aµ+ d) + b

)
, δt =

(
ωt

−Kωt + ση

)
, L =

(
A B
−KA −KB

)
.

Note that we have

L =

(
A B
−KA −KB

)
=

(
I
−K

)
(A B) .

Then by the property of spectral radius, it holds that

ρ(L) = ρ

(
(A B)

(
I
−K

))
= ρ(A−BK) < 1.

Thus, the Markov chain {z̃t}t≥0 generated by the transition admits a unique stationary distribution

N (µz,Σz). The following lemma characterizes the average µ̂z = 1/T̃ ·
∑T̃
t=1 z̃t.
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Lemma D.7. The average µ̂z = 1/T̃ ·
∑T̃
t=1 z̃t, where z̃t = [x̃>t , ũ

>
t ]>, satisfies that

µ̂z ∼ N
(
µz +

1

T̃
µT̃ ,

1

T̃
Σ̃T̃

)
,

where µT̃ and Σ̃T̃ are bounded such that there exist positive absolute constants Mµ and MΣ such
that ‖µT̃ ‖2 ≤Mµ · (1− ρ)−2 · ‖µz‖2 and ‖Σ̃T̃ ‖F ≤MΣ · (1− ρ)−1 · ‖Σz‖F. This gives that with
probability at least 1− T̃−6, it holds that

‖µ̂z − µz‖2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2

)
.

Proof. See §F.6 for a detailed proof.

The above lemma also gives the error bound ‖µ̂K,b − µK,b‖2.

Now, note that for any z ∼ N (µz,Σz), the random variable z − µ̂z + 1/T̃ · µT̃ follows N (0,Σz +

1/T̃ · Σ̃T̃ ). By Lemma G.3, there exists an absolute constant C0 > 0 such that

P
[∣∣‖z − µ̂z + 1/T̃ · µT̃ ‖

2
2 − Tr(Σ̃z)

∣∣ > τ
]
≤ 2 · exp

[
−C0 ·min

(
τ2‖Σ̃z‖−2

F , τ‖Σ̃z‖−1
∗
)]
,

where, for notational convenience, we write the matrix Σ̃z = Σz + 1/T̃ · Σ̃T̃ . By taking τ =

C1 · log T · ‖Σ̃z‖F for some sufficiently large positive absolute constant C1, the above inequality
takes the form

P
[∣∣‖z − µ̂z + 1/T̃ · µT̃ ‖

2
2 − Tr(Σ̃z)

∣∣ > C1 · log T · ‖Σ̃z‖F
]
≤ T−6. (D.25)

We define the following event for any t ∈ [T ]:

Et,1 =
{∣∣‖zt − µ̂z + 1/T̃ · µT̃ ‖

2
2 − Tr(Σ̃z)

∣∣ ≤ C1 · log T · ‖Σ̃z‖F
}
.

Then by (D.25), we know that P(Et,1) ≥ 1− T−6 for any t ∈ [T ]. Also, we define E1 = ∩t∈[T ]Et,1,
then we know that P(E1) ≥ 1− T−5 by union bound. Also, by the definition of E1, conditioning on
the event E1, it holds that

max
t∈[T ]

‖zt − µ̂z‖22 ≤ C1 · log T · ‖Σ̃z‖F + Tr(Σ̃z) + ‖1/T̃ · µT̃ ‖
2
2

≤ 2C̃1 ·
[
1 +MΣ(1− ρ)−1/T̃ 2

]
· log T · ‖Σz‖∗ +Mµ(1− ρ)−2/T̃ 2 · ‖µz‖22

≤ C2 · log T ·
(
1 + ‖K‖2F

)
· ‖ΦK‖∗ · (1− ρ)−1 + C3 ·

(
‖b‖22 + ‖µ‖22

)
· (1− ρ)−4 · T̃−2

≤ 2C2 · log T ·
(
1 + ‖K‖2F

)
· ‖ΦK‖∗ · (1− ρ)−1 (D.26)

for sufficiently large T̃ . Here C2 and C3 are positive absolute constants. Moreover, we define the
following event

E2 =
{
‖µ̂z − µz + 1/T̃ · µT̃ ‖2 ≤ C1

}
.

Then by Lemma D.7, we know that P(E2) ≥ 1− T̃−6 for sufficiently large T̃ . We define the event E
as the intersection of the event E1 and E2, then by union bound, we know that P(E) ≥ 1−T−5− T̃−6.

Now, we define the truncated feature vector ψ̃(x, u) as ψ̃(x, u) = ψ̂(x, u)1E , and also the truncated
objective function as

F̃ (ζ, ξ) =
{
E(ψ̃)ζ1 + E

[
(ψ̃ − ψ̃′)ψ̃>

]
ζ2 − E(c̃ψ̃)

}>
ξ2 +

[
ζ1 − E(c̃)

]
· ξ1 − 1/2 · ‖ξ‖22,

(D.27)

where we write ψ̃ = ψ̃(x, u) to simplify the notations, the function c̃ = c̃(x, u) is the truncated cost,
which is defined as c̃(x, u) = c(x, u)1E , and the expectation is taken over the trajectory generated
by the policy πK,b. The following lemma establishes the upper bound of |F (ζ, ξ)− F̃ (ζ, ξ)|, where
F (ζ, ξ) and F̃ (ζ, ξ) are given in (B.16) and (D.27) respectively.
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Lemma D.8. Given F (ζ, ξ) and F̃ (ζ, ξ) in (B.16) and (D.27), it holds that

|F (ζ, ξ)− F̃ (ζ, ξ)| ≤
[

1

2T
+

log T̃

T̃ 1/4

]
· (1− ρ)−2 · poly

(
‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
,

with probability at least 1− T̃−6.

Proof. See §F.7 for a detailed proof.

By Lemma D.8, we know that with probability at least 1− T̃−6, it holds that∣∣∣∣∣gap(ζ̂, ξ̂)−
[
max
ξ∈Vξ

F̃ (ζ̂, ξ)− min
ζ∈Vζ

F̃ (ζ, ξ̂)

]∣∣∣∣∣
≤
[

1

2T
+

log T̃

T̃ 1/4

]
· (1− ρ)−2 · poly

(
‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
. (D.28)

Therefore, to obtain the bound of gap(ζ, ξ), we only need to bound the term maxξ∈Vξ F̃ (ζ̂, ξ) −
minζ∈Vζ F̃ (ζ, ξ̂) in (D.28). We first use the following lemma to characterize the dependency of the
trajectories generated by the policy πK,b and the state transition in Problem 2.2.
Lemma D.9. Consider a linear system xt+1 = Dxt + d + εt, where {xt}t≥0 ⊂ Rm, the matrix
D ∈ Rm×m satisfying ρ(D) < 1, the vector d ∈ Rm, and εt ∼ N (0,Σ) is the Gaussians. We denote
by $t the marginal distribution of xt for each t ≥ 0. Besides, it is easy to verify that the stationary
distribution of this Markov chain is a Gaussian distribution N ((I −D)−1d,Σ∞), where Σ∞ is the
covariance matrix. We define the β-mixing coefficients for any n ≥ 1 as follows

β(n) = sup
t≥0

Ex∼$t
[∥∥Pxn(· |x0 = x)− PN ((I−D)−1d,Σ∞)(·)

∥∥
TV

]
.

Then, for any ρ ∈ (ρ(D), 1), the mixing coefficients satisfy that

β(n) ≤ Cρ,D ·
[
Tr(Σ∞) +m · (1− ρ)−2

]1/2 · ρn,
where the scalar Cρ,D,d is a constant which only depends on ρ, D and d. We say that the sequence
{xt}t≥0 is β-mixing with parameter ρ.

Proof. See Proposition 3.1 in [106] for a detailed proof.

Note that under the state transition in Problem 2.2, the sequence {xt}t≥0 follows (B.1), where the
matrix A−BK satisfies that ρ(A−BK) < 1. Therefore, according to Lemma D.9, we know that
the sequence {zt = (x>t , u

>
t )>}t≥0 is β-mixing with parameter ρ ∈ (ρ(A − BK), 1). Now the

following lemma helps us to establish the primal-dual gap for a convex-concave problem.
Lemma D.10. Let X and Y be two compact and convex sets such that ‖x − x′‖2 ≤ M and
‖y − y′‖2 ≤M for any x, x′ ∈ X and y, y′ ∈ Y . We consider solving the following problem

min
x∈X

max
y∈Y

F (x, y) = Eε∼$ε
[
G(x, y; ε)

]
,

where the objective function F (x, y) is convex in x and concave in y. In addition, we assume that the
distribution $ε is the stationary distribution induced by a Markov chain {εt}t≥0, which is β-mixing
with β(n) ≤ Cε · ρn, where Cε is a constant. Moreover, we assume that it holds almost surely that
G(x, y; ε) is L̃0-Lipschitz in both x and y, the gradient ∇xG(x, y; ε) is L̃1-Lipschitz in x for any
y ∈ Y , the gradient∇yG(x, y; ε) is L̃1-Lipschitz in y for any x ∈ X , where for simplicity we assume
that Cε, L̃0, L̃1 > 1. Each step of our gradient-based method takes the following form:

xt+1 = ΓX
[
xt − γt+1 · ∇xG(xt, yt; εt)

]
, yt+1 = ΓY

[
yt − γt+1 · ∇yG(xt, yt; εt)

]
,

where the operators ΓX and ΓY projects the variables back to X and Y , respectively, and the stepsizes
take the form γt = γ0 · t−1/2 for some constant γ0 > 0. Moreover, let x̂ = (

∑T
t=1 γt)

−1(
∑T
t=1 γtxt)

and ŷ = (
∑T
t=1 γt)

−1(
∑T
t=1 γtyt) be the final output of the gradient method after T iterations, then
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there exists an absolute constant C > 0, such that for any δ ∈ (0, 1), the primal-dual gap to the
minimax optimization problem satisfies that

max
x∈X

F (x̂, y)−min
y∈Y

F (x, ŷ) ≤ C · (M2 + L̃2
0 + L̃0L̃1M)

log(1/ρ)
· log2 T + log(1/δ)√

T
+
C · CεL̃0M

T

with probability at least 1− δ.

Proof. See Theorem 5.4 in [118] for a detailed proof.

To use Lemma D.10, we define the function G(ζ, ξ; ψ̃, ψ̃′) as

G(ζ, ξ; ψ̃, ψ̃′) =
[
ψ̃ζ1 + (ψ̃ − ψ̃′)ψ̃>ζ2 − c̃ψ̃

]>
ξ2 + (ζ1 − c̃) · ξ1 − 1/2 · ‖ξ‖22,

where recall that ψ̃ = ψ̃(x, u) and ψ̃′ = ψ̃(x′, u′). Note that its gradients take the form

∇ζG(ζ, ξ; ψ̃, ψ̃′) =

(
ψ̃>ξ2 + ξ1

ψ̃(ψ̃ − ψ̃′)>ξ2

)
, ∇ξG(ζ, ξ; ψ̃, ψ̃′) =

(
ζ1 − c̃− ξ1

ψ̃ζ1 + (ψ̃ − ψ̃′)ψ̃>ζ2 − c̃ψ̃ − ξ2

)
.

By Condition B.9 and Lemma D.6, we know that∥∥∇ζG(ζ, ξ; ψ̃, ψ̃′)
∥∥

2
≤ poly

(
‖K‖F, J(K0, b0)

)
· log2 T · (1− ρ)−2,∥∥∇ξG(ζ, ξ; ψ̃, ψ̃′)

∥∥
2
≤ poly

(
‖K‖F, ‖µ‖2, J(K0, b0)

)
· log2 T · (1− ρ)−2. (D.29)

This gives the Lipschitz constant L̃0 in Lemma D.10 for G(ζ, ξ; ψ̃, ψ̃′). Also, the Hessians take the
forms

∇2
ζζG(ζ, ξ; ψ̃, ψ̃′) = 0, ∇2

ξξG(ζ, ξ; ψ̃, ψ̃′) = −I,

which follows that ∥∥∇2
ζζG(ζ, ξ; ψ̃, ψ̃′)

∥∥
2

= 0,
∥∥∇2

ξξG(ζ, ξ; ψ̃, ψ̃′)
∥∥

2
= 1. (D.30)

This gives the Lipschitz constant L̃1 in Lemma D.10 for ∇ζG(ζ, ξ; ψ̃, ψ̃′) and ∇ξG(ζ, ξ; ψ̃, ψ̃′).
Moreover, note that (D.26) provides an upper bound of M , combining (D.29), (D.30) and Lemma
D.10, we know that

max
ξ∈Vξ

F̃ (ζ̂, ξ)− min
ζ∈Vζ

F̃ (ζ, ξ̂) ≤
poly

(
‖K‖F, ‖µ‖2, J(K0, b0)

)
· log6 T

(1− ρ)4 ·
√
T

holds with probability at least 1−T−5. Combining (D.24) and (D.28), we conclude the theorem.

E Proofs of Propositions

E.1 Proof of Proposition 3.2

Proof. We follow a similar argument as shown in the proof of Theorem 1.1 in [103] and Theorem
3.2 in [11]. Note that for any policy πK,b ∈ Π, the matrix K and the vector b uniquely determine the
policy. This motivates us to define the metric on Π as follows.
Definition E.1. For any πK1,b1 , πK2,b2 ∈ Π, we define the metric on the set of policies Π as

‖πK1,b1 − πK2,b2‖2 = c1 · ‖K1 −K2‖∗ + c2 · ‖b1 − b2‖2,

where c1 and c2 are positive constants.

One can easily verify that the above definition satisfies the requirement of a metric. We first evaluate
the forms of the operators Λ1(·) and Λ2(·, ·).

Forms of the operators Λ1(·) and Λ2(·, ·). It is obvious that

Λ1(µ) = π∗µ,
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where π∗µ solves Problem 2.2. We now turn to Λ2(µ, π), which gives the new mean-field state
generated by the policy π under the old mean-field state µ. Note that in Problem 2.2, the sequence
of states {xt}t≥0 constitutes a Markov chain, which has a stationary distribution. Thus, by taking
the expectation of the state transition in Problem 2.2 and using the linear-Gaussian policy π(x) =
−Kπx+ bπ + ση, we have µnew = (A−BKπ)µnew + (Bbπ +Aµ+ d). By solving the equation, it
holds that

Λ2(µ, π) = µnew = (I −A+BKπ)−1(Bbπ +Aµ+ d).

This gives the form of Λ2(·, ·).

Next, we compute the Lipschitz constants for both operators Λ1(·) and Λ2(·, ·).

Lipschitz constant for Λ1(·). Note that by Proposition B.2, for any µ1, µ2 ∈ Rm, the optimal
parameter policy K∗ is fixed for Problem 2.2. Therefore, by the form of the optimal bK given in
Proposition B.2, it holds that∥∥Λ1(µ1)− Λ1(µ2)

∥∥
2
≤ c2 ·

∥∥∥[(I −A)Q−1(I −A)> +BR−1B>
]−1

A
∥∥∥
∗

·
∥∥∥[K∗Q−1(I −A)> −R−1B>

]∥∥∥
∗
· ‖µ1 − µ2‖2

= c2 · L1 · ‖µ1 − µ2‖2. (E.1)

Lipschitz constants for Λ2(·, ·). Note that by Proposition B.2, for any µ1, µ2 ∈ Rm, the induced
optimal parameter policy K∗ is fixed for Problem 2.2. We thus have for any π ∈ Π such that π is an
optimal policy under some µ ∈ Rm, it holds that∥∥Λ2(µ1, π)− Λ2(µ2, π)

∥∥
2

=
∥∥(I −A+BKπ)−1 ·A · (µ1 − µ2)

∥∥
2

≤
[
1− ρ(A−BK∗)

]−1‖A‖∗ · ‖µ1 − µ2‖2
= L2 · ‖µ1 − µ2‖2. (E.2)

Moreover, for any π1, π2 ∈ Π such that there exists µ1, µ2 ∈ Rm such that π1, π2 are optimal under
µ1, µ2, and for any population mean µ ∈ Rm, we have∥∥Λ2(µ, π1)− Λ2(µ, π2)

∥∥
2

=
∥∥(I −A+BK∗)−1B · (bµ1

− bµ2
)
∥∥

2

≤
[
1− ρ(A−BK∗)

]−1‖B‖∗ · ‖bµ1 − bµ2‖2
= c−1

2 · L3 · ‖π1 − π2‖2. (E.3)

Now we proceed to show that the operator is a contraction. For any µ1, µ2 ∈ Rm, the following
inequality holds:∥∥Λ(µ1)− Λ(µ2)

∥∥
2

=
∥∥∥Λ2

(
µ1,Λ1(µ1)

)
− Λ2

(
µ2,Λ1(µ2)

)∥∥∥
2

≤
∥∥∥Λ2

(
µ1,Λ1(µ1)

)
− Λ2

(
µ1,Λ1(µ2)

)∥∥∥
2
+
∥∥∥Λ2

(
µ1,Λ1(µ2)

)
− Λ2

(
µ2,Λ1(µ2)

)∥∥∥
2

≤ c−1
2 · L3·

∥∥Λ1(µ1)− Λ1(µ2)
∥∥

2
+ L2 · ‖µ1 − µ2‖2

≤ c−1
2 · L3 · c2 · L1 · ‖µ1 − µ2‖2 + L2 · ‖µ1 − µ2‖2 = (L1L3 + L2) · ‖µ1 − µ2‖2,

where in the second line, we use triangular inequality; in the third line, we use (E.2) and (E.3); in the
last line, we use (E.1). By Assumption 3.1, we know that L0 = L1L3 + L2 < 1, which shows that
the operator Λ(·) is a contraction. Therefore, by Banach fixed-point theorem, we conclude that Λ(·)
has a unique fixed point, which gives the equilibrium pair of Problem 2.1.

E.2 Proof of Proposition B.2

Proof. Note that by the definition of J2(K, b) in (B.6) and the definition of µK,b in (B.2), the problem
minb J2(K, b) is a constrained optimization program

min
µK,b,b

(
µK,b
b

)>(
Q+K>RK −K>R
−RK R

)(
µK,b
b

)
s.t. (I −A+BK)µK,b − (Bb+Aµ+ d) = 0. (E.4)
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Consider the KKT conditions of (E.4), the minimizer satisfies that

2MK

(
µK,bK
bK

)
+NKλ = 0, N>K

(
µK,bK
bK

)
+Aµ+ d = 0, (E.5)

where we that

MK =

(
Q+K>RK −K>R
−RK R

)
, NK =

(
−(I −A+BK)>

B>

)
.

By solving (E.5), we obtain the minimizer to the program as follows(
µK,bK
bK

)
= −M−1

K NK(N>KM
−1
K NK)−1(Aµ+ d). (E.6)

By substituting (E.6) into the definition of J2(K, b) in (B.6), we have

J2(K, bK) = (Aµ+ d)>(N>KM
−1
K NK)−1(Aµ+ d). (E.7)

Moreover, by algebra, we have

M−1
K =

(
Q−1 Q−1K>

KQ−1 KQ−1K> +R−1

)
.

Therefore, the term N>KM
−1
K NK in (E.7) takes the following form

N>KM
−1
K NK = (I −A)Q−1(I −A>) +BR−1B>.

Combining (E.7), we have

J2(K, bK) = (Aµ+ d)>
[
(I −A)Q−1(I −A>) +BR−1B>

]−1
(Aµ+ d).

Also, combining (E.6), we have(
µK,bK
bK

)
=

(
Q−1(I −A)>

KQ−1(I −A)> −R−1B>

)[
(I −A)Q−1(I −A)> +BR−1B>

]−1
(Aµ+ d).

Then we finish the proof of the proposition.

E.3 Proof of Proposition B.4

Proof. By the definition of the cost function c(x, u) in Problem 2.2, we have

Ect = E(x>t Qxt + u>t Rut + µ>Qµ)

= E(x>t Qxt + x>t K
>RKxt − 2b>RKxt + b>Rb+ σ2η>t Rηt + µ>Qµ)

= E
[
x>t (Q+K>RK)xt − 2b>RKxt

]
+ b>Rb+ σ2 · Tr(R) + µ>Qµ, (E.8)

where in the second line we use the form of the linear policy. Therefore, combining (E.8) and the
definition of J(K, b) in Problem 2.2, we have

J(K, b) = lim
T→∞

1

T

T∑
t=0

{
E
[
x>t (Q+K>RK)xt − 2b>RKxt

]
+ b>Rb+ µ>Qµ

}
= Ex∼N (µK,b,ΦK)

[
x>(Q+K>RK)x− 2b>RKx

]
+ b>Rb+ σ2 · Tr(R) + µ>Qµ

= Tr
[
(Q+K>RK)ΦK

]
+ (µK,b)

>(Q+K>RK)µK,b − 2b>RKµK,b + b>Rb+ σ2 · Tr(R) + µ>Qµ.

Now, by applying (B.3) and (B.4) repeatedly, we have

Tr
[
(Q+K>RK)ΦK

]
= Tr(PKΨε),

where PK is given in (B.4). This finishes the proof of the proposition.
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E.4 Proof of Proposition B.1

Proof. By calculating the Hessian matrix of J2(K, b) directly, we have

∇2
bbJ2(K, b) =B>(I −A+BK)−>(Q+K>RK)(I −A+BK)−1B

−
[
RK(I −A+BK)−1B +B>(I −A+BK)−>K>R

]
+R

=
[√
RK(I −A+BK)−1B −

√
R
]>[√

RK(I −A+BK)−1B −
√
R
]

+B>(I −A+BK)−>Q(I −A+BK)−1B,

which is a positive constant matrix, whose minimum singular value is denoted by νK > 0. Moreover,
note that the spectral norm of∇2

bbJ2(K, b) is upper bounded as∥∥∇2
bbJ2(K, b)

∥∥
∗ ≤

[
1− ρ(A−BK)

]−2 ·
(
‖B‖2∗ · ‖K‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗

)
.

Therefore, we know that the maximum singular value ιK of ∇2
bbJ2(K, b) is upper bounded

ιK ≤
[
1− ρ(A−BK)

]−2 ·
(
‖B‖2∗ · ‖K‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗

)
.

This finishes the proof.

E.5 Proof of Proposition B.5

Proof. It holds that

∇K
[
Tr(PKΨε)

]
= 2
[
(R+B>PKB)K −B>PKA

]
ΦK ,

also, we have

∇K
[
(µK,b)

>(Q+K>RK)µK,b
]

= 2
[
RK −B>(I −A+BK)−>(Q+K>RK)

]
µK,b(µK,b)

>,

∇K(b>RKµK,b) =
[
R−B>(I −A+BK)−>K>R

]
b(µK,b)

>.

Combining the above equations, we obtain the form of∇KJ1(K). Moreover, the form of∇bJ2(K, b)
is obtained simply by taking gradient w.r.t. b, combining the definition of µK,b in (B.2) and the
Lyapunov equation (B.3). This concludes the theorem.

E.6 Proof of Proposition B.3

Proof. From the definition of VK,b(x) in (B.8) and the definition of the cost function c(x, u) in
Problem 2.2, it holds that

VK,b(x) =

∞∑
t=0

{
E
[
x>t (Q+K>RK)xt − 2b>RKxt

+ b>Rb+ σ2η>t Rηt + µ>Qµ |x0 = x
]
− J(K, b)

}
.

Combining (B.1), we see that VK,b(x) is indeed a quadratic function taking the form VK,b(x) =
x>Gx+r>x+h, whereG, r and h are functions ofK and b. Note that VK,b(x) satisfies the Bellman
equation, i.e.,

VK,b(x) = c(x,−Kx+ b)− J(K, b) + E
[
VK,b(x

′) |x
]
,

then by substituting the form of c(x,−Kx+ b) in Problem 2.2 and J(K, b) in (B.5), we obtain that

x>Gx+ r>x+ h =x>(Q+K>RK)x− 2b>RKx+ b>Rb+ µ>Qµ

−
[
Tr(PKΨε) + (µK,b)

>(Q+K>RK)µK,b − 2b>RKµK,b + µ>Qµ+ b>Rb
]

+
[
(A−BK)x+ (Bb+Aµ+ d)

]>
G
[
(A−BK)x+ (Bb+Aµ+ d)

]
+ Tr(GΨε) + r>

[
(A−BK)x+ (Bb+Aµ+ d)

]
+ h− σ2 · Tr(R).

(E.9)
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By comparing the quadratic terms and linear terms in (E.9), we obtain that

G = PK , r = 2fK,b.

Also, by the definition of VK,b(x) in (B.8), we know that E[VK,b(x)] = 0. Therefore, we have

h = −2fK,bµK,b − (µK,b)
>PKµK,b − Tr(PKΦK).

This finishes the proof of (B.10).

For the action-value function QK,b(x, u), by the definition in (B.9) and (B.10), we obtain (B.11).
This finishes the proof of the proposition.

E.7 Proof of Proposition B.7

Proof. By Proposition B.3, it holds that QK,b takes the following linear form

QK,b(x, u) = ψ(x, u)>αK,b + βK,b, (E.10)

where βK,b is a scalar independent of x and u. Given the ergodic cost, recall that the Bellman
equation takes the form

QK,b(x, u) = c(x, u)− J(K, b) + EπK,b
[
QK,b(x

′, u′) |x, u
]
, (E.11)

where (x′, u′) is the state-action pair after (x, u) following the policy πK,b and the state transition.
Combining (E.10) and (E.11), we obtain that

ψ(x, u)>αK,b = c(x, u)− J(K, b) + EπK,b
[
ψ(x′, u′) |x, u

]>
αK,b. (E.12)

By left multiplying ψ(x, u) to both sides of (E.12), and taking the total expectation, we have

EπK,b
{
ψ(x, u)

[
ψ(x, u)− ψ(x′, u′)

]>} · αK,b + EπK,b
[
ψ(x, u)

]
· J(K, b) = EπK,b

[
c(x, u)ψ(x, u)

]
.

Combining the definition of the matrix ΘK,b in (B.14), we conclude the proposition.

E.8 Proof of Proposition B.8

Proof. Invertibility and Upper Bound. We first introduce some notations. We define the vector
z = (x>, u>)>. Then following the state transition and the policy πK,b, the transition of z takes the
form

z′ = Lz + ν + δ, (E.13)

where the matrix L and vectors ν, δ are given as

ν =

(
Aµ+ d

−K(Aµ+ d) + b

)
, δ =

(
ω

−Kω + ση

)
, L =

(
A B
−KA −KB

)
.

Note that the matrix L also takes the form

L =

(
I
−K

)
(A B) .

Combining the fact that ρ(UV ) = ρ(V U) for any matrices U and V , we know that ρ(L) =
ρ(A−BK) < 1, which gives the stability of (E.13).

Note that by (E.13), we see that the mean µz and the covariance Σz satisfy the following equations

µz = Lµz + ν, Σz = LΣzL
> + Ψδ, (E.14)

where the matrix Ψδ is the covariance of the vector δ, which takes the form

Ψδ =

(
Ψω −ΨωK

>

−KΨω KΨωK
> + σ2I

)
.

Also, the covariance matrix Σz takes the following form

Σz =

(
ΦK −ΦKK

>

−KΦK KΦKK
> + σ2 · I

)
=

(
0 0
0 σ2 · I

)
+

(
I
−K

)
ΦK

(
I
−K

)>
. (E.15)

Now, we establish the following lemma.
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Lemma E.2. The matrix ΘK,b in (B.14) takes the following form

ΘK,b =

(
2(Σz ⊗s Σz)(I − L⊗s L)> 0

0 Σz(I − L)>

)
.

Proof. See §F.8 for a detailed proof.

Note that since ρ(L) < 1, both the matrices I − L⊗s L and I − L are positive definite. Therefore,
by Lemma E.2, the matrix ΘK,b is invertible. This finishes the proof of the invertibility of the matrix
ΘK,b. Moreover, from (E.15) and Lemma E.2, we upper bound the spectral norm of ΘK,b as

‖ΘK,b‖∗ ≤ 2 max
{
‖Σz‖2∗ ·

(
1 + ‖L‖2∗

)
, ‖Σz‖∗ ·

(
1 + ‖L‖∗

)}
≤ 4‖Σz‖2∗ ≤ 4

(
1 + ‖K‖2F

)2 · ‖ΦK‖2∗.
This proves the upper bound of the spectral norm.

Minimum singular value. To lower bound σmin(Θ̃K,b), we only need to upper bound σmax(Θ̃−1
K,b).

We first proceed to calculate Θ̃−1
K,b. Recall that the matrix Θ̃K,b in the linear system (B.15) takes the

following form

Θ̃K,b =

(
1 0

EπK,b
[
ψ(x, u)

]
ΘK,b

)
.

By the definition of the feature vector ψ(x, u), we know that the vector σ̃z = EπK,b [ψ(x, u)] takes
the form

σ̃z = EπK,b
[
ψ(x, u)

]
=

(
svec(Σz)
0k+m

)
, (E.16)

where 0k+m denotes the all-zero column vector with dimension k+m. Also, since ΘK,b is invertible,
the matrix Θ̃K,b is also invertible, whose inverse is given as

Θ̃−1
K,b =

(
1 0

−Θ−1
K,b · σ̃z Θ−1

K,b

)
.

The following lemma characterizes the spectral norm of the matrix Θ̃−1
K,b.

Lemma E.3. The spectral norm of the matrix Θ̃−1
K,b is upper bounded by some positive constant λ̃K ,

where λ̃K only depends on ρ(A−BK), σ and σmin(Ψω).

Proof. See §F.9 for a detailed proof.

By Lemma E.3, we know that minimum singular value of the matrix Θ̃K,b is lower bounded by a
positive constant λK = 1/λ̃K , which only depends on ρ(A−BK), σ and σmin(Ψω). This concludes
the proposition.

F Proofs of Lemmas

F.1 Proof of Lemma D.1

Proof. By the fact that PK2 satisfies the Bellman equation in (B.4), we have

y>PK2
y =

∑
t≥0

y>
[
(A−BK2)t

]>
(Q+K>2 RK2)(A−BK2)ty.

By the transition yt+1 = (A−BK2)yt, we know that yt = (A−BK2)ty. Therefore, it holds that

y>PK2
y =

∑
t≥0

y>t (Q+K>2 RK2)yt =
∑
t≥0

(y>t Qyt + y>t K
>
2 RK2yt).
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Then by telescoping, we have

y>PK2
y − y>PK1

y =
∑
t≥0

(y>t Qyt + y>t K
>
2 RK2yt + y>t+1PK1

yt+1 − y>t PK1
yt). (F.1)

Also, for any t ≥ 0, we have

y>t Qyt + y>t K
>
2 RK2yt + y>t+1PK1yt+1 − y>t PK1yt

= y>t
[
Q+ (K2 −K1 +K1)>R(K2 −K1 +K1)

]
yt

+ y>t
[
A−BK1 −B(K2 −K1)

]>
PK1

[
A−BK1 −B(K2 −K1)

]
yt − y>t PK1yt

= 2y>t (K2 −K1)>
[
(R+B>PK1

B)K1 −B>PK1
A
]
yt + y>t (K2 −K1)>(R+B>PK1

B)(K2 −K1)yt

= 2y>t (K2 −K1)>(Υ22
K1
K1 −Υ21

K1
)yt + y>t (K2 −K1)>Υ22

K1
(K2 −K1)yt. (F.2)

Combining (F.1) and (F.2), we finish the proof.

F.2 Proof of Lemma D.2

Proof. Upper Bound. From the definition of J1(K) in (B.6), we have

J1(K)− J1(K∗) = Tr(PKΨε − PK∗Ψε) = Ey∼N (0,Ψε)(y
>PKy − y>PK∗y)

= −Ey0∼N (0,Ψε)

[∑
t≥0

DK,K∗(yt)

]
, (F.3)

where in the last equality, we apply Lemma D.1 and {yt}t≥0 follows the transition yt+1 = (A −
BK∗)yt. Also, we write DK,K∗(y) as

DK,K∗(y) = 2y>(K∗ −K)(Υ22
KK −Υ21

K )y + y>(K∗ −K)>Υ22
K (K∗ −K)x

= y>
[
K∗ −K + (Υ22

K )−1(Υ22
KK −Υ21

K )
]>

Υ22
K

[
K∗ −K + (Υ22

K )−1(Υ22
KK −Υ21

K )
]
y

− y>(Υ22
KK −Υ21

K )>(Υ22
K )−1(Υ22

KK −Υ21
K )y. (F.4)

Note that the first term on the RHS of (F.4) is positive, due to the fact that it is a quadratic form of a
positive definite matrix, we therefore lower bound DK,K∗(y) as

DK,K∗(y) ≥ −y>(Υ22
KK −Υ21

K )>(Υ22
K )−1(Υ22

KK −Υ21
K )y. (F.5)

Therefore, combining (F.3) and (F.5), it holds that

J1(K)− J1(K∗) ≤

∥∥∥∥∥Ey0∼N (0,Ψε)

[∑
t≥0

yty
>
t

]∥∥∥∥∥
∗

· Tr
[
(Υ22

KK −Υ21
K )>(Υ22

K )−1(Υ22
KK −Υ21

K )
]

= ‖ΦK∗‖∗ · Tr
[
(Υ22

KK −Υ21
K )>(Υ22

K )−1(Υ22
KK −Υ21

K )
]

≤
∥∥(Υ22

K )−1
∥∥
∗ · ‖ΦK∗‖∗ · Tr

[
(Υ22

KK −Υ21
K )>(Υ22

KK −Υ21
K )
]

≤ σ−1
min(R) · ‖ΦK∗‖∗ · Tr

[
(Υ22

KK −Υ21
K )>(Υ22

KK −Υ21
K )
]
,

where the second line comes from direct computation, while the last line comes from the fact that
Υ22
K = R+B>KPB � R. This complete the proof of the upper bound.

Lower Bound. Note that for any K̃, it holds that

J(K)− J(K∗) ≥ J(K)− J(K̃) = −Ey0∼N (0,Ψε)

[∑
t≥0

DK,K̃(yt)

]
, (F.6)

where {yt}t≥0 follows the transition yt+1 = (A − BK̃)yt. Therefore, by choosing K̃ = K −
(Υ22

K )−1(Υ22
KK −Υ21

K ), by a similar calculation in (F.4), the function DK,K̃(y) takes the form

DK,K̃(y) = −y>(Υ22
KK −Υ21

K )>(Υ22
K )−1(Υ22

KK −Υ21
K )y. (F.7)

Combining (F.6) and (F.7), we obtain a lower bound as

J(K)− J(K∗) ≥ Tr
[
ΦK̃(Υ22

KK −Υ21
K )>(Υ22

K )−1(Υ22
KK −Υ21

K )
]

≥ σmin(Ψε) · ‖Υ22
K ‖−1
∗ · Tr

[
(Υ22

KK −Υ21
K )>(Υ22

KK −Υ21
K )
]
.

Here in the last line, we use the fact that ΦK̃ � Ψε. This finishes the proof of the lower bound.

37



F.3 Proof of Lemma D.4

Proof. Note that from Lemma D.1, it holds that

J1(K)− J1(K∗) = E

{∑
t≥0

[
2y>t (K −K∗)(Υ22

K∗K
∗ −Υ21

K∗)yt + y>t (K −K∗)>Υ21
K∗(K −K∗)yt

]}
= Tr

[
ΦK(K −K∗)>Υ21

K∗(K −K∗)
]

≥ ‖ΦK‖∗ · ‖Υ21
K∗‖∗ · Tr

[
(K −K∗)>(K −K∗)

]
≥ σmin(Ψε) · σmin(R) · ‖K −K∗‖2F,

where {yt}t≥0 follows the transition yt+1 = (A−BK)yt. Here in the second line, we use the fact that
Υ22
K∗K

∗−Υ21
K∗ is the natural gradient of J1(·) evaluated atK∗, which implies that Υ22

K∗K
∗−Υ21

K∗ =
0; while in the last line, we use the fact that ‖ΦK‖∗ ≥ σmin(Ψε) and ‖Υ21

K∗‖∗ ≥ σmin(R). This
concludes the lemma.

F.4 Proof of Lemma D.5

Proof. Note that by Proposition B.1, we have

J2(KN , bh+1)− J2(KN , b̃h+1) ≤ γb · ∇bJ2(KN , b̃h+1)>
[
∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

]
+ (γb)2 · νKN /2 ·

∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥2

2
,

J2(KN , b̃h+1)− J2(KN , bh+1) ≤ −γb · ∇bJ2(KN , b̃h+1)>
[
∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

]
− (γb)2 · ιKN /2 ·

∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥2

2
.

(F.8)

Also, we upper bound ‖∇bJ2(KN , b̃h+1)‖2 as∥∥∇bJ2(KN , b̃h+1)
∥∥

2
≤ poly1

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
·
[
1− ρ(A−BKN )

]−1
. (F.9)

Combining (F.8), (F.9) and the fact that νKN ≤ ιKN ≤ [1− ρ(A−BKN )]−2 · poly2(‖KN‖∗), we
know that∣∣J2(KN , bh+1)− J2(KN , b̃h+1)

∣∣
≤ γb · poly1

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
·
∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥
2
·
[
1− ρ(A−BKN )

]−1

+ (γb)2 · poly2

(
‖KN‖∗

)
·
∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥2

2
·
[
1− ρ(A−BKN )

]−2
.

Note that from the definition of∇bJ2(KN , bh) and ∇̂bJ2(KN , bh), we have∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)
∥∥

2

≤ ‖Υ̂22
KN −Υ22

KN ‖∗ · ‖KN‖∗ · ‖µ̂KN ,bh‖2 + ‖Υ22
KN ‖∗ · ‖KN‖∗ · ‖µ̂KN ,bh − µKN ,bh‖2 + ‖Υ̂22

KN −Υ22
KN ‖∗ · ‖bh‖2

+ ‖Υ̂21
KN −Υ21

KN ‖∗ · ‖µ̂KN ,bh‖2 + ‖Υ21
KN ‖∗ · ‖µ̂KN ,bh − µKN ,bh‖2 + ‖q̂KN ,bh − qKN ,bh‖2.

From Theorem B.10, combining the fact that J2(KN , bh) ≤ J2(KN , b0) and the fact that
‖µKN ,b‖2 ≤ J(KN , b0)/σmin(Q), we know that with probability at least 1− (T b)−4 − (T̃ b)−6, it
holds that∥∥∇bJ2(KN , bh)− ∇̂bJ2(KN , bh)

∥∥
2

≤ λ−1
KN
· poly3

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J2(KN , b0)

)
·
[

log3 T bn
(T bn)1/4(1− ρ)2

+
log1/2 T̃ bn

(T̃ bn)1/8 · (1− ρ)

]
.
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To show that (D.19) holds, we only need to pick γb, T bn and T̃ bn such that

γb · poly1

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
· λ−1

KN
· poly3

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J2(KN , b0)

)
·
[

log3 T bn
(T bn)1/4(1− ρ)2

+
log1/2 T̃ bn

(T̃ bn)1/8 · (1− ρ)

]
·
[
1− ρ(A−BKN )

]−1
+ (γb)2 · poly2

(
‖KN‖∗

)
· λ−1

KN

· poly3

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J2(KN , b0)

)
·
[

log6 T bn
(T bn)1/2(1− ρ)4

+
log T̃ bn

(T̃ bn)1/4 · (1− ρ)2

]
·
[
1− ρ(A−BKN )

]−2

≤ νKN · γb · ε/2,
in other words, we pick

γb ≤ min
{

1− ρ(A−BKN ),
[
1− ρ(A−BKN )

]−2 ·
(
‖B‖2∗ · ‖KN‖2∗ · ‖R‖∗ + ‖B‖2∗ · ‖Q‖∗

)}
,

T bn = poly4

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
· λ−4

KN
· ν−4
KN
· (1− ρ)−10 · ε−5,

T̃ bn = poly5

(
‖KN‖F, ‖bh‖2, ‖µ‖2, J(KN , b0)

)
· λ−2

KN
· ν−2
KN
· (1− ρ)−16 · ε−8,

then (D.19) holds with probability at least 1− ε15. This corresponds to the choices of parameters in
the statement of Theorem B.6. We then finish the proof.

F.5 Proof of Lemma D.6

Proof. Part 1. First we proceed to prove that ζK,b ∈ Vζ . Note that from Condition B.9, we know that
ζ1
K,b = J(K, b) satisfies that 0 ≤ ζ1

K,b ≤ J(K0, b0). It remains to show that ζ2
K,b = αK,b satisfies

that ‖ζ2
K,b‖2 ≤Mζ . By the definition of αK,b in (B.13), we know that

‖αK,b‖22 ≤ ‖ΥK‖2F + ‖ΥK‖2∗ ·
(
‖µK,b‖22 + ‖µuK,b‖22

)
+
(
‖A‖∗ + ‖B‖∗

)2 · (‖PK‖∗ · ‖Aµ+ d‖2 + ‖fK,b‖2
)2

(F.10)

where for notational simplicity, we denote by µuK,b the mean-field action, i.e., µuK,b = −KµK,b + b.
We only need to bound ΥK , µK,b, µuK,b, PK , and fK,b. Note that the expected total cost J(K, b)
takes the form

J(K, b) = Tr(PKΨε) + (µK,b)
>QµK,b + (µuK,b)

>RµuK,b + σ2 · Tr(R) + µ>Qµ.

Thus, we have

J(K0, b0) ≥ J(K, b) ≥ σmin(Ψω) · Tr(PK) ≥ σmin(Ψω) · ‖PK‖∗,
J(K0, b0) ≥ J(K, b) ≥ (µK,b)

>QµK,b ≥ σmin(Q) · ‖µK,b‖2,
J(K0, b0) ≥ J(K, b) ≥ (µuK,b)

>RµuK,b ≥ σmin(R) · ‖µuK,b‖2,
which imply that

‖PK‖∗ ≤ J(K0, b0)/σmin(Ψω), ‖µK,b‖2 ≤ J(K0, b0)/σmin(Q), ‖µuK,b‖2 ≤ J(K0, b0)/σmin(R).
(F.11)

For ΥK , note that we decompose the matrix in the following way:

ΥK =

(
Q

R

)
+

(
A>

B>

)
PK (A B) ,

which gives

‖ΥK‖F ≤ (‖Q‖F + ‖R‖F) +
(
‖A‖2F + ‖B‖2F

)
· ‖PK‖F,

‖ΥK‖∗ ≤ (‖Q‖∗ + ‖R‖∗) +
(
‖A‖∗ + ‖B‖∗

)2 · ‖PK‖∗.
Combining (F.11) and the fact that ‖U‖F ≤

√
m · ‖U‖∗ for any U ∈ Rm×m, we know that

‖ΥK‖F ≤ (‖Q‖F + ‖R‖F) +
(
‖A‖2F + ‖B‖2F

)
·
√
m · J(K0, b0)/σmin(Ψω),

‖ΥK‖∗ ≤ (‖Q‖∗ + ‖R‖∗) +
(
‖A‖∗ + ‖B‖∗

)2 · J(K0, b0)/σmin(Ψω). (F.12)
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Now we focus on the bound of the vector fK,b. Note that we write fK,b in the following way

fK,b = −PKµK,b + (I −A+BK)−T
[
QµK,b −K>RµuK,b

]
,

we therefore upper bound fK,b as

‖fK,b‖2 ≤ J(K0, b0)2 · σ−1
min(Ψω) · σ−1

min(Q) +
[
1− ρ(A−BK)

]−1 · (κQ + κR · ‖K‖F)
(F.13)

Combining (F.10), (F.11), (F.12) and (F.13), we know that ‖ζ2
K,bK‖2 = ‖αK,bK‖2 ≤Mζ,1 +Mζ,2 ·

(1 + ‖K‖F) · [1− ρ(A−BK)]−1. Therefore, we know that ζK,bK ∈ Vζ .

Part 2. Now we show that for any ζ ∈ Vζ , we have ξ(ζ) ∈ Vξ. Note that ξ(ζ) is given by

ξ1(ζ) = ζ1 − J(K, bK),

ξ2(ζ) = EπK,bK
[
ψ(x, u)

]
ζ1 + ΘK,bK ζ

2 − EπK,bK
[
c(x, u)ψ(x, u)

]
. (F.14)

Then we have ∣∣ξ1(ζ)
∣∣ =

∣∣ζ1 − J(K, bK)
∣∣ ≤ J(K0, b0) (F.15)

and also∥∥ξ2(ζ)
∥∥

2
≤
∥∥∥EπK,bK [ψ(x, u)

]
ζ1
∥∥∥

2︸ ︷︷ ︸
B1

+ ‖ΘK,bK‖∗ · ‖ζ2‖2︸ ︷︷ ︸
B2

+
∥∥∥EπK,bK [c(x, u)ψ(x, u)

]∥∥∥
2︸ ︷︷ ︸

B3

. (F.16)

Note that we upper bound B1 as

B1 ≤ J(K0, b0) ·
∥∥∥EπK,bK [ψ(x, u)

]∥∥∥
2
≤ J(K0, b0) · ‖Σz‖F, (F.17)

where Σz is given in (E.15). Also, by Proposition B.8, we bound B2 as

B2 ≤ 4(1 + ‖K‖2F)3 · ‖ΦK‖2∗ · (Mζ,1 +Mζ,2) ·
[
1− ρ(A−BK)

]−1
. (F.18)

As for the term B3 in (F.16), we utilize the following lemma to provide an upper bound.
Lemma F.1. The vector EπK,bK [c(x, u)ψ(x, u)] has the following form

EπK,bK [c(x, u)ψ(x, u)] =

2svec
[
Σzdiag(Q,R)Σz + 〈Σz,diag(Q,R)〉Σz

]
Σz

(
2QµK,b
2RµuK,b

) 
+ ((µK,b)

>QµK,b + (µuK,b)
>RµuK,b + µ>Qµ)

(svec(Σz)
0m
0k

)
.

Here the matrix Σz takes the form

Σz =

(
ΦK −ΦKK

>

−KΦK KΦKK
> + σ2 · I

)
.

Proof. See §F.11 for detailed proof.

From Lemma F.1 and (F.11), we obtain the upper bound for B3

B3 ≤ 3
[
‖Q‖F + ‖R‖F + J(K0, b0)‖Q‖∗/σmin(Q) + J(K0, b0)‖R‖∗/σmin(R)

]
· ‖Σz‖2∗.

(F.19)
Moreover, by the definition of Σz in (E.15), combining the triangular inequality, we have the following
bounds for the Frobenius norm and spectral norm of Σz , respectively:

‖Σz‖F ≤ 2(d+ ‖K‖2F) · ‖ΦK‖∗, ‖Σz‖∗ ≤ 2(1 + ‖K‖2F) · ‖ΦK‖∗. (F.20)
Also, by similar techniques we used in deriving (F.11), we have

J(K0, b0) ≥ J(K, bK) ≥ Tr
[
(Q+K>RK)ΦK

]
≥ ‖ΦK‖∗ · σmin(Q),

which gives the upper bound for ΦK as follows
‖ΦK‖∗ ≤ J(K0, b0)/σmin(Q). (F.21)

Therefore, combining (F.16), (F.17), (F.18), (F.19), (F.20) and (F.21), we know that∥∥ξ2(ζ)
∥∥

2
≤ C · (Mζ,1 +Mζ,2) · J(K0, b0)2/σ2

min(Q) ·
(
1 + ‖K‖2F

)3 · [1− ρ(A−BK)
]−1

.

(F.22)
By (F.15) and (F.22), we know that ξ(ζ) ∈ Vξ for any ζ ∈ Vζ . From this, we conclude the lemma.
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F.6 Proof of Lemma D.7

Proof. Assume that z̃0 ∼ N (µ†,Σ†). Recall that the following transition holds

z̃t+1 = Lz̃t + ν + δt. (F.23)

We know that

z̃t ∼ N

(
Ltµ† +

t−1∑
i=0

Li · ν, (L>)tΣ†L
t +

t−1∑
i=0

(L>)iΨδL
i

)
, (F.24)

where Ψδ is the covariance matrix of δt, which takes the form

Ψδ =

(
Ψω KΨω

KΨω KΨωK
> + σ2I

)
.

From (F.23), we know that µz takes the form

µz = (I − L)−1ν =

∞∑
j=0

Ljν.

Therefore, combining (F.24), we have

E(µ̂z) = µz +
1

T̃

T̃∑
t=1

Ltµ† −
1

T̃

T̃∑
t=1

∞∑
i=t

Liν. (F.25)

It holds that ∥∥∥∥∥ 1

T̃

T̃∑
t=1

Ltµ† −
1

T̃

T̃∑
t=1

∞∑
i=t

Liν

∥∥∥∥∥
2

≤ 1

T̃

T̃∑
t=1

ρ(L)t · ‖µ†‖2 +
1

T̃

T̃∑
t=1

∞∑
i=t

ρ(L)i · ‖ν‖2

≤
[
1− ρ(L)

]−1

T̃
· ‖µ†‖2 +

[
1− ρ(L)

]−2

T̃
· ‖ν‖2

≤Mµ · (1− ρ)−2 · ‖µz‖2/T̃ , (F.26)

where Mµ is a positive absolute constant. For the covariance, note that for any random variables
X ∼ N (µ1,Σ1) and Y ∼ N (µ2,Σ2), we know that Z = X + Y ∼ N (µ1 + µ2,Σ), where
‖Σ‖F ≤ 2‖Σ1‖F + 2‖Σ2‖F. Combining (F.24), we know that µ̂z ∼ N (Eµ̂z, Σ̃T̃ /T̃ ), where Σ̃T̃
satisfies that

T̃ /2 · ‖Σ̃T̃ ‖F ≤
T̃∑
t=1

ρ(L)2t · ‖Σ†‖F +

T̃∑
t=1

t−1∑
i=0

ρ(L)2i · ‖Ψδ‖F

≤
[
1− ρ(L)2

]−1 · ‖Σ†‖F + T̃ ·
[
1− ρ(L)2

]−1 · ‖Ψδ‖F,
which implies that

‖Σ̃T̃ ‖F ≤MΣ · (1− ρ)−1 · ‖Σz‖F, (F.27)

where MΣ is a positive absolute constant. Combining (F.25), (F.26) and (F.27), we conclude that µ̂z
follows the distribution. The inequality follows by a Gaussian tail bounds. Then we finish the proof
of the lemma.

F.7 Proof of Lemma D.8

Proof. We continue using the notations given in §D.3. We define

F̂ (ζ, ξ) =
{
E(ψ̂)ζ1 + E

[
(ψ̂ − ψ̂′)ψ̂>

]
ζ2 − E(cψ̂)

}>
ξ2 +

[
ζ1 − E(c)

]
· ξ1 − 1/2 · ‖ξ‖22,
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where ψ̂ = ψ̂(x, u) is the estimated feature vector. Here the expectation is only taken over the
trajectory generated by the state transition and the policy πK,b, instead of the randomness when
calculating the estimated feature vectors. Thus, the function F̂ (ζ, ξ) is still random, where the
randomness comes from the estimated feature vectors. Note that |F (ζ, ξ)− F̃ (ζ, ξ)| ≤ |F (ζ, ξ)−
F̂ (ζ, ξ)|+ |F̂ (ζ, ξ)− F̃ (ζ, ξ)|. Thus, we only need to characterize |F (ζ, ξ)− F̂ (ζ, ξ)| and |F̂ (ζ, ξ)−
F̃ (ζ, ξ)|.

Part 1. First we characterize |F (ζ, ξ)− F̂ (ζ, ξ)|. Note that by algebra, we have∣∣F (ζ, ξ)− F̂ (ζ, ξ)
∣∣ =

∣∣∣∣{E(ψ − ψ̂)ζ1 + E
[
(ψ − ψ′)ψ> − (ψ̂ − ψ̂′)ψ̂>

]
ζ2 − E

[
c(ψ − ψ̂)

]}>
ξ2

∣∣∣∣
≤ E

(
‖ψ − ψ̂‖2

)
·
[
|ζ1|+ E

(
‖ψ − ψ′‖2 + 2‖ψ̂‖2

)
‖ζ2‖2 + E(c)

]
· ‖ξ2‖2,

(F.28)
where the expectation is only taken over the trajectory generated by the state transition and the
policy πK,b. From P(‖µ̂z − µz + 1/T̃ · µT̃ ‖2 ≤ C1) ≥ 1 − T̃−6, we know that with prob-
ability at least 1 − T̃−6, the term E(‖ψ − ψ′‖2 + 2‖ψ̂‖2) is upper bounded by a polynomial
poly(‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)). Also, the term E(c) is also upper bounded by a poly-
nomial poly(‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)) by the definition of the cost function c(x, u).
Therefore, combining Condition B.9 and (F.28), with probability at least 1− T̃−6, we obtain that∣∣F (ζ, ξ)− F̂ (ζ, ξ)

∣∣ ≤ E
(
‖ψ − ψ̂‖2

)
· poly

(
‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
. (F.29)

We upper bound the term ‖ψ(x, u)− ψ̂(x, u)‖2 for any x and u as

‖ψ(x, u)− ψ̂(x, u)‖22 = ‖µ̂z − µz‖22 +
∥∥z(µ̂z − µz)> + (µ̂z − µz)z>

∥∥2

F
+ ‖µzµ>z − µ̂zµ̂>z ‖2F

≤ poly
(
‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
· ‖µ̂z − µz‖22, (F.30)

where z = [x>, u>]>. Also, by Lemma D.7, we know that

‖µ̂z − µz‖2 ≤
log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
‖ΦK‖∗, ‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
, (F.31)

holds with probability at least 1− T̃−6. Combining (F.29), (F.30) and (F.31), it holds that∣∣F (ζ, ξ)− F̂ (ζ, ξ)
∣∣ ≤ log T̃

T̃ 1/4
· (1− ρ)−2 · poly

(
‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
(F.32)

with probability at least 1− T̃−6.

Part 2. We now characterize |F̂ (ζ, ξ)− F̃ (ζ, ξ)| in the sequel. By definitions, we have∣∣F̃ (ζ, ξ)− F̂ (ζ, ξ)
∣∣

=

∣∣∣∣{E(ψ̃ − ψ̂)ζ1 + E
[
(ψ̃ − ψ̃′)ψ̃> − (ψ̂ − ψ̂′)ψ̂>

]
ζ2 − E(c̃ψ̃ − ĉψ̂)

}>
ξ2 + E(ĉ− c̃)ξ1

∣∣∣∣
≤
∣∣∣∣{E(ψ̂)ζ1 + E(ψ̂ψ̂>)ζ2 − E(ĉψ̂)

}>
ξ2 + E(ĉ)ξ1

∣∣∣∣ · 1Ec +
∣∣∣[E(ψ̂′ψ̂>)ζ2

]>
ξ2
∣∣∣ · 1(E′∩E)c ,

(F.33)

where E ′ is an event defined as

E ′ =

( ⋂
t∈[T ]

{∣∣‖z′t − µz + 1/T̃ · µT̃ ‖
2
2 − Tr(Σ̃z)

∣∣ ≤ C1 · log T · ‖Σ̃z‖∗
})⋂

E2,

which, by Lemma G.3, satisfies that P(E ′) ≥ 1− T−5 − T̃−6. By a similar argument as in Part 1,
we upper bound the two absolute values on the RHS of (F.33) as∣∣F̃ (ζ, ξ)− F̂ (ζ, ξ)

∣∣ ≤ [ 1

T
+

1

T̃ 1/4

]
· poly

(
‖K‖F, ‖b‖2, ‖µ‖2, J(K0, b0)

)
(F.34)

for sufficiently large T and T̃ . Therefore, combining (F.32) and (F.34), by triangular inequality, we
finish the proof of the lemma.
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F.8 Proof of Lemma E.2

Proof. Recall that the feature vector ψ(x, u) takes the following form

ψ(x, u) =

(
svec

[
(z − µz)(z − µz)>

]
z − µz

)
.

We then have

ψ(x, u)− ψ(x′, u′) =

(
svec

[
yy> − (Ly + δ)(Ly + δ)>

]
y − (Ly + δ)

)
,

where we denote by y = z − µz , and x′ and u′ are the state and action following the state transition
and the policy πK,b. Therefore, for any symmetric matricesM ,N and any vectorsm, n, the following
equation holds(

svec(M)
m

)>
ΘK,b

(
svec(N)

n

)
= Ey,δ

{(
svec(M)

m

)>(
svec(yy>)

y

)(
svec

[
yy> − (Ly + δ)(Ly + δ)>

]
y − (Ly + δ)

)>(
svec(N)

n

)}
= Ey,δ

{(
〈M,yy>〉+m>y

)
·
[
〈N, yy> − (Ly + δ)(Ly + δ)>〉+ n>(y − Ly − δ)

]}
= Ey

[
〈yy>,M〉 · 〈yy> − Lyy>L> −Ψδ, N〉

]︸ ︷︷ ︸
A1

+Ey
[
〈yy>,M〉 · n>(y − Ly)

]︸ ︷︷ ︸
A2

+ Ey
[
m>y · 〈yy> − Lyy>L> −Ψδ, N〉

]︸ ︷︷ ︸
A3

+Ey
[
m>y · n>(y − Ly)

]︸ ︷︷ ︸
A4

, (F.35)

where the expectations are taken over the distribution y ∼ N (0,Σz) and δ ∼ N (0,Ψδ).

For the terms A2 and A3 in (F.35), by the fact that y = z − µz ∼ N (0,Σz), we know that these two
terms vanish. For A4, it holds that

A4 = Ey
[
m>y · (y − Ly)>n

]
= Ey

[
m>yy>(I − L)>n

]
= m>Σz(I − L)>n. (F.36)

For A1, by algebra, we have

A1 = Ey
[
〈yy>,M〉 · 〈yy> − Lyy>L> −Ψδ, N〉

]
= Ey

[
〈yy>,M〉 · 〈yy> − Lyy>L>, N〉

]
− Ey

[
〈yy>,M〉 · 〈Ψδ, N〉

]
= Ey

[
y>My · y>(N − L>NL)y

]
− 〈Σz,M〉 · 〈Ψδ, N〉

= Eu∼N (0,I)

[
u>Σ1/2

z MΣ1/2
z u · u>Σ1/2

z (N − L>NL)Σ1/2
z u

]
− 〈Σz,M〉 · 〈Ψδ, N〉. (F.37)

Now, by applying Lemma G.1 to the first term on the RHS of (F.37), we know that

A1 = 2 Tr
[
Σ1/2
z MΣ1/2

z · Σ1/2
z (N − L>NL)Σ1/2

z

]
+ Tr(Σ1/2

z MΣ1/2
z ) · Tr

[
Σ1/2
z (N − L>NL)Σ1/2

z

]
− 〈Σz,M〉 · 〈Ψδ, N〉

= 2〈M,Σz(N − L>NL)Σz〉+ 〈Σz,M〉 · 〈Σz − LΣzL
> −Ψδ, N〉

= 2〈M,Σz(N − L>NL)Σz〉,

where we use (E.14) in the last equality. By using the property of the operator svec(·) and the
definition of the symmetric Kronecker product, we obtain that

A1 = 2svec(M)>svec
[
Σz(N − L>NL)Σz

]
= 2svec(M)>

[
Σz ⊗s Σz − (ΣzL

>)⊗s (ΣzL
>)
]
svec(N)

= 2svec(M)>
[
(Σz ⊗s Σz)(I − L⊗s L)>

]
svec(N). (F.38)
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Combining (F.35), (F.36) and (F.38), we obtain that(
svec(M)

m

)>
ΘK,b

(
svec(N)

n

)
= svec(M)>

[
2(Σz ⊗s Σz)(I − L⊗s L)>

]
svec(N) +m>Σz(I − L)>n

=

(
svec(M)

m

)>(
2(Σz ⊗s Σz)(I − L⊗s L)> 0

0 Σz(I − L)>

)(
svec(N)

n

)
.

Thus, the matrix ΘK,b takes the following form

ΘK,b =

(
2(Σz ⊗s Σz)(I − L⊗s L)> 0

0 Σz(I − L)>

)
.

This concludes the lemma.

F.9 Proof of Lemma E.3

Proof. By the property of the spectral norm, we upper bound ‖Θ̃−1
K,b‖∗ as

‖Θ̃−1
K,b‖

2
∗ ≤ 1 + ‖Θ−1

K,b‖
2
∗ + ‖Θ−1

K,bσ̃z‖
2
2. (F.39)

We proceed to bound the RHS of (F.39). For the term Θ−1
K,bσ̃z , combining Lemma E.2 and (E.16),

we have

Θ−1
K,bσ̃z =

(
1/2 · (I − L⊗s L)−>(Σz ⊗s Σz)

−1 · svec(Σz)
0k+m

)
=

(
1/2 · (I − L⊗s L)−>(Σ−1

z ⊗s Σ−1
z ) · svec(Σz)

0k+m

)
=

(
1/2 · (I − L⊗s L)−> · svec(Σ−1

z )
0k+m

)
,

where we use the property of the symmetric Kronecker product in the second and last line. Therefore,
we have

‖Θ−1
K,bσ̃z‖2 = 1/2 ·

∥∥(I − L⊗s L)−> · svec(Σ−1
z )
∥∥

2

≤ 1/2 ·
∥∥(I − L⊗s L)−>

∥∥
∗ ·
∥∥svec(Σ−1

z )
∥∥

2

≤ 1/2 ·
[
1− ρ2(L)

]−1 · ‖Σ−1
z ‖F

≤ 1/2 ·
√
k +m ·

[
1− ρ2(L)

]−1 · ‖Σ−1
z ‖∗

= 1/2 ·
√
k +m ·

[
1− ρ2(L)

]−1 ·
[
σmin(Σz)

]−1
, (F.40)

where in the third line we use Lemma G.2 to the matrix L⊗s L. Similarly, we upper bound ‖Θ−1
K,b‖∗

in the sequel

‖Θ−1
K,b‖∗ ≤ min

{
1/2 ·

[
1− ρ2(L)

]−1[
σmin(Σz)

]−2
,
[
1− ρ(L)

]−1[
σmin(Σz)

]−1
}
. (F.41)

Thus, combining (F.39), (F.40) and (F.41), we obtain that

‖Θ̃−1
K,b‖

2
∗ ≤ 1 + 1/2 ·

√
k +m ·

[
1− ρ2(L)

]−1 ·
[
σmin(Σz)

]−1

+ min
{

1/2 ·
[
1− ρ2(L)

]−1[
σmin(Σz)

]−2
,
[
1− ρ(L)

]−1[
σmin(Σz)

]−1
}
. (F.42)

Now it remains to characterize σmin(Σz). For any vectors s ∈ Rm and r ∈ Rk, we have(
s
r

)>
Σz

(
s
r

)
= EπK,b,x∼(µK,b,ΦK)

{[
s>(x− µK,b) + r>(u+KµK,b − b)

]2}
= Ex∼(µK,b,ΦK),η∼N (0,I)

{[
(s−K>r)>(x− µK,b) + σr>η

]2}
= Ex∼(µK,b,ΦK)

{[
(s−K>r)>(x− µK,b)

]2}
+ Eη∼N (0,I)

[
(σr>η)2

]
. (F.43)
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The first term on the RHS of (F.43) is lower bounded as

Ex∼(µK,b,ΦK)

{[
(s−K>r)>(x− µK,b)

]2}
= (s−K>r)>ΦK(s−K>r)

≥ ‖s−K>r‖22 · σmin(ΦK) ≥ ‖s−K>r‖22 · σmin(Ψω), (F.44)

where the last inequality comes from the fact that σmin(ΦK) ≥ σmin(Ψω) by (B.3). The second term
on the RHS of (F.43) takes the form Eη∼N (0,I)[(σr

>η)2] = σ2‖r‖22. Therefore, combining (F.43)
and (F.44), we have(

s
r

)>
Σz

(
s
r

)
≥ ‖s−K>r‖22 · σmin(Ψω) + σ2‖r‖22

≥ σmin(Ψω) · ‖s‖22 +
[
σ2 − ‖K‖2∗ · σmin(Ψω)

]
· ‖r‖22.

From this, we see that σmin(Σz) is lower bounded by min{σmin(Ψω), σ2 − ‖K‖2∗ · σmin(Ψω)},
which only depends on σmin(Ψω) and σ. Thus, combining (F.42), we know that ‖Θ̃−1

K,b‖∗ is upper

bounded by some constant λ̃K , where λ̃K only depends on ρ(A − BK), σ and σmin(Ψω). This
finishes the proof of the lemma.

F.10 Proof of Lemma D.3

Proof. By direct calculation and Proposition B.4, we have∣∣J1(K̃n+1)− J1(Kn+1)
∣∣ = Tr

[
(PK̃n+1

− PKn+1)Ψε

]
≤ ‖PK̃n+1

− PKn+1‖∗ · ‖Ψε‖F. (F.45)

The following lemma helps establish the upper bound of the term ‖PK̃n+1
− PKn+1

‖∗.

Lemma F.2. Suppose that the parameters K and K̃ satisfy that

‖K̃ −K‖∗ ·
(
‖A−BK‖∗ + 1

)
· ‖ΦK‖∗ ≤ σmin(Ψω)/4 · ‖B‖−1

∗ , (F.46)

then it holds that

‖PK̃ − PK‖∗ ≤ 6 · σ−1
min(Ψω) · ‖ΦK‖∗ · ‖K‖∗ · ‖R‖∗ · ‖K̃ −K‖∗
·
(
‖B‖∗ · ‖K‖∗) · ‖A−BK‖∗ + ‖B‖∗ · ‖K‖∗ + 1

)
. (F.47)

Proof. See Lemma 5.7 in [118] for a detailed proof.

To use Lemma F.2, we only need to verify that K̃n+1 and Kn+1 satisfy (F.46). Note that from (D.10)
and (D.11), we have

‖K̃n+1 −Kn+1‖∗ ·
(
‖A−BK̃n+1‖∗ + 1

)
· ‖ΦK̃n+1

‖∗

≤ γ · ‖Υ̂Kn −ΥKn‖F ·
(
1 + ‖Kn‖∗

)
·
(
‖A−BK̃n+1‖∗ + 1

)
· ‖ΦK̃n+1

‖∗. (F.48)

Now we proceed to upper bound the RHS of (F.48). For the term ‖A−BK̃n+1‖∗, we have

‖A−BK̃n+1‖∗ ≤ ‖A−BKn‖∗ + γ · ‖B‖∗ · ‖Υ22
KnKn −Υ21

Kn‖∗
≤ ‖A−BKn‖∗ + γ · ‖B‖∗ · ‖ΥKn‖∗ ·

(
1 + ‖Kn‖∗

)
. (F.49)

And by the definition of ΥKn in (B.7), we upper bound ‖ΥKn‖∗ as

‖ΥKn‖∗ ≤ ‖Q‖∗ + ‖R‖∗ +
(
‖A‖F + ‖B‖F

)2 · ‖PKn‖∗
≤ ‖Q‖∗ + ‖R‖∗ +

(
‖A‖F + ‖B‖F

)2 · J1(K0) · σ−1
min(Ψε), (F.50)

where the last line comes from the fact that ‖PKn‖∗ ≤ J1(Kn) · σ−1
min(Ψε) ≤ J1(K0) · σ−1

min(Ψε).
As for the term ‖ΦK̃n+1

‖∗ in (F.48), we upper bound it as

‖ΦK̃n+1
‖∗ ≤ J1(K̃n+1) · σ−1

min(Q) ≤ J1(K0) · σ−1
min(Q). (F.51)
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Therefore, combining (F.48), (F.49), (F.50) and (F.51), we know that

‖K̃n+1 −Kn+1‖∗ ·
(
‖A−BK̃n+1‖∗ + 1

)
· ‖ΦK̃n+1

‖∗

≤ poly1

(
‖Kn‖∗, J1(K0)

)
· ‖Υ̂Kn −ΥKn‖F.

Also, by the above results, the RHS of (F.47) is upper bounded as

6 · σ−1
min(Ψω) · ‖ΦK̃n+1

‖∗ · ‖K̃n+1‖∗ · ‖R‖∗ · ‖K̃n+1 −Kn+1‖∗

·
(
‖B‖∗ · ‖K̃n+1‖∗) · ‖A−BK̃n+1‖∗ + ‖B‖∗ · ‖K̃n+1‖∗ + 1

)
≤ poly2

(
‖Kn‖∗, J1(K0)

)
· ‖Υ̂Kn −ΥKn‖F.

Note that from the policy evaluation theorem B.10, we know that with probability at least 1− T−4 −
T̃−6, it holds that

‖Υ̂Kn −ΥKn‖F ≤
poly3

(
‖Kn‖F, ‖µ‖2

)
λKn · (1− ρ)2

· log3 Tn

T
1/4
n

+
poly4

(
‖Kn‖F, ‖bKn‖2, ‖µ‖2

)
λKn

· log1/2 T̃n

T̃
1/8
n · (1− ρ)

.

By choosing Tn and T̃n such that

poly3

(
‖Kn‖F, ‖µ‖2

)
λKn · (1− ρ)2

· log3 Tn

T
1/4
n

+
poly4

(
‖Kn‖F, ‖bKn‖2, ‖µ‖2

)
λKn

· log1/2 T̃n

T̃
1/8
n · (1− ρ)

≤ max

{[
poly1

(
‖Kn‖∗, J1(K0)

)]−1

· σmin(Ψω)/4 · ‖B‖−1
∗ ,[

poly2

(
‖Kn‖∗, J1(K0)

)]−1

· ε/2 · γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1
∗ · ‖Ψε‖−1

F

}
,

in other words, we pick

Tn ≥ poly5

(
‖Kn‖F, ‖bKn‖2, ‖µ‖2

)
· λ−4

Kn
·
[
1− ρ(A−BKn)

]−9 · ε−5,

T̃n ≥ poly6

(
‖Kn‖F, ‖bKn‖2, ‖µ‖2

)
· λ−2

Kn
·
[
1− ρ(A−BKn)

]−12 · ε−12,

then we know that (F.46) holds with probability at least 1 − ε10 for sufficiently small ε > 0. This
corresponds to the parameters that we choose in the statement of Theorem B.6. By applying Lemma
F.2, combining (F.45), we derive that∣∣J1(K̃n+1)− J1(Kn+1)

∣∣ ≤ γ · σmin(Ψε) · σmin(R) · ‖ΦK∗‖−1
∗ · ε/4

holds with probability at least 1− ε15. By this, we finish the proof of the lemma.

F.11 Proof of Lemma F.1

Proof. First, note that the cost function c(x, u) is written in the following way

c(x, u) = ψ(x, u)>

svec
[
diag(Q,R)

]
2QµK,b
2RµuK,b

+ ((µK,b)
>QµK,b + (µuK,b)

>RµuK,b + µ>Qµ).
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For any test matrix V and vectors vx, vu, we proceed by the following calculations

EπK,bK
[
c(x, u)ψ(x, u)

]>(svec(V )
vx
vu

)

= EπK,bK

ψ(x, u)>

svec
[
diag(Q,R)

]
2QµK,b
2RµuK,b

ψ(x, u)>

(svec(V )
vx
vu

)
+ EπK,bK

ψ(x, u)>((µK,b)
>QµK,b + (µuK,b)

>RµuK,b + µ>Qµ)

(svec(V )
vx
vu

) =: D1 +D2.

(F.52)

In the sequel, we calculate D1 and D2 respectively.

Calculation of D1. Note that from the definition of ψ(x, u) in (B.12), we calculate D1 as

D1 = EπK,bK


[

(z − µz)>diag(Q,R)(z − µz) + (z − µz)>
(

2QµK,b
2RµuK,b

)]

·

[
(z − µz)>V (z − µz) + (z − µz)>

(
vx
vu

)]
= EπK,bK

[
(z − µz)>diag(Q,R)(z − µz) · (z − µz)>V (z − µz)

]
+ EπK,bK

[(
2QµK,b
2RµuK,b

)>
(z − µz)(z − µz)>

(
vx
vu

)]
. (F.53)

Here z = (x>, u>)> and µz = EπK,bK (z). For the first term on the RHS of (F.53), note that z − µz
is a centralized Gaussian, whose covariance matrix is Σz; therefore, by Lemma G.1, we obtain that

EπK,bK
[
(z − µz)>diag(Q,R)(z − µz) · (z − µz)>V (z − µz)

]
= 2
〈
Σzdiag(Q,R)Σz, V

〉
+
〈
Σz,diag(Q,R)

〉
· 〈Σz, V 〉

= svec
[
2Σzdiag(Q,R)Σz +

〈
Σz,diag(Q,R)

〉
· Σz

]>
svec(V ).

Moreover, the second term on the RHS of (F.53) is calculated as

EπK,bK

[(
2QµK,b
2RµuK,b

)>
(z − µz)(z − µz)>

(
vx
vu

)]
=

[
Σz

(
2QµK,b
2RµuK,b

)]>(
vx
vu

)
.

Combining the above two equations and (F.53), we obtain that

D1 =

2svec
[
Σzdiag(Q,R)Σz + 〈Σz,diag(Q,R)〉Σz

]
Σz

(
2QµK,b
2RµuK,b

) >(svec(V )
vx
vu

)
. (F.54)

Calculation of D2: By the definition of the feature vector ψ(x, u) in (B.12), we know that

D2 = ((µK,b)
>QµK,b + (µuK,b)

>RµuK,b + µ>Qµ)

(svec(Σz)
0m
0k

)>(svec(V )
vx
vu

)
. (F.55)

Now, combining (F.52), (F.54) and (F.55), we conclude the lemma.
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G Auxiliary Results

Lemma G.1. Assume that the random variable w ∼ N (0, I), and let U and V be two symmetric
matrices, then it holds that

E[w>Uw · w>V w] = 2 Tr(UV ) + Tr(U) · Tr(V ).

Proof. See [75, 74] for a detailed proof.

Lemma G.2. Let M , N be commuting symmetric matrices, and let α1, . . . , αn, β1, . . . , βn denote
their eigenvalues with v1, . . . , vn a common basis of orthogonal eigenvectors. Then the n(n+ 1)/2
eigenvalues of M ⊗s N are given by (αiβj + αjβi)/2, where 1 ≤ i ≤ j ≤ n.

Proof. See Lemma 2 in [1] for a detailed proof.

Lemma G.3. For any integer m > 0, let A ∈ Rm×m and η ∼ N (0, Im). Then, there exists some
absolute constant C > 0 such that for any t ≥ 0, we have

P
[∣∣η>Aη − E(η>Aη)

∣∣ > t
]
≤ 2 · exp

[
−C ·min

(
t2‖A‖−2

F , t‖A‖−1
∗
)]
.

Proof. See [89] for a detailed proof.
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