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Abstract

Algorithms based on the entropy regularized framework, such as Soft Q-learning
and Soft Actor-Critic, recently showed state-of-the-art performance on a number
of challenging reinforcement learning (RL) tasks. The regularized formulation
modifies the standard RL objective and thus, generally, converges to a policy
different from the optimal greedy policy of the original RL problem. Practically, it
is important to control the suboptimality of the regularized optimal policy. In this
paper, we propose the optimality-preserving regularized modified policy iteration
(MPI) scheme that simultaneously (a) provides desirable properties to intermediate
policies such as targeted exploration, and (b) guarantees convergence to the optimal
policy with explicit rates depending on the decrease rate of the regularization
parameter. This result is based on two more general results. First, we show that the
approximate MPI scheme converges as fast as the exact MPI if the decrease rate of
error sequence is sufficiently fast; otherwise, its rate of convergence slows down to
the errors decrease rate. Second, we show the regularized MPI is an instance of the
approximate MPI where regularization plays the role of errors. In a special case of
negative entropy regularizer (leading to a popular Soft Q-learning algorithm), our
result explicitly links the convergence rate of policy / value iterates to exploration.

1 Introduction

The main principle of the entropy regularized approach to RL [1–4] is to modify the standard RL
objective to additionally maximize the (relative) entropy of a policy at each visited state. The resulted
regularized objective has shown substantially improved performance and exploration targeted at
high-value actions [5]. The regularization parameter, referred to as temperature, controls the relative
importance of the exploration versus the reward. In this paper, we view different entropy regularized
algorithms from a unified perspective using the recently proposed regularized MPI framework [6].

Despite the empirical success, the algorithms under regularized MPI framework would not generally
converge to the optimal policy/value pair. A natural way of controlling the optimality gap is through
the regularization parameter that, set at zero, recovers the unregularized objective. Thus, a common
idea is to gradually decrease the regularization weight to eventually converge into this regime.

Prior works considered decaying temperature during learning in the context of specific algorithms.
[7] proved asymptotic convergence of SARSA with Boltzmann policy and decaying temperature.
Experimentally, a linear schedule of the inverse temperature over iterations was used with Soft
Q-learning [3] and Dual Averaging algorithms [8]. The authors in [6, D.1] suggest time-varying
values of the regularizer weight analogous to the learning rate in the gradient descent approach.

In this work, we show that the regularized MPI scheme with a decreasing schedule for the regulariza-
tion parameter converges to the optimal policy/value pair of the original RL problem. Furthermore,
we establish a relation between the decrease rate of regularization weight and the convergence rate of
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the regularized MPI to optimality. In the entropy regularized case, this relation corresponds to the
exploration-exploitation trade-off since the regularization weight matches the temperature parameter
that controls the amount of exploration performed by the policy.

This result is a consequence of two more general contributions:

(1) We derive the convergence rate of the approximate MPI [9] to optimality in terms of the
decrease rate of error sequence (Theorem 1),

(2) We derive the convergence rate of the regularized MPI to the optimal solution of the
non-regularized RL problem through the reduction to the approximate MPI (Theorem 2).

One consequence of the result (1) is that in the approximate MPI scheme the errors decreasing
faster than the discount factor (asymptotically) result in the same convergence rate as the exact MPI.
From the result (2), it can be explicitly shown that optimality-preserving temperature schedule of the
regularized MPI trades the speed of convergence for exploration.

Paper organisation. In Section 2 we detail the notations and introduce MPI-based algorithmic
schemes. In Section 3 we present our results (1) and (2). We discuss the related works in Section 4.

2 Preliminaries

2.1 Notations and terminology

∆X will denote the set of probability distributions over finite set (or general measurable space) X
and Y X is a set of mappings from set X to set Y . We consider a Markov decision process (MDP)
is a tuple M := (S,A, P, r, γ) where S is a state space, A is a finite action space, P ∈ ∆S×AS is
the transition kernel so that the probability of the environment moving to state s′ after the agent
takes action a in state s is P (s′|s, a), accompanied by a reward r(s, a) (assumed to be bounded). We
define a stochastic stationary policy π ∈ ∆SA. We consider the discounted setting with discount factor
γ ∈ [0, 1). We define the Bellman operator T π for any function V ∈ RS , ∀s ∈ S as follows:

[T πV ](s) := Ea∼π(·|s)
[
r(s, a) + γEs′∼P (·|s,a)[V (s′)]

]
= rπ(s) + γPπ(·|s)V, (1)

where rπ ∈ RS and Pπ ∈ ∆SS are defined by rπ(s) := Ea∼π(·|s)[r(s, a)] and Pπ(s′|s) :=
Ea∼π(·|s)[P (s′|s, a)]. T π is a γ-contraction in `∞ norm and its unique fixed-point is V π:=
limk→∞(T π)kV = V π , where equality holds component-wise. By denoting QV (s, a) := r(s, a) +
γEs′∼p(s′|s,a)[V (s′)], Eq. (1) can be re-written as an inner-product [T πV ](s = 〈π(·|s), QV (s, ·)〉.
Finally, we define the Bellman max-operator as follows (the max is point-wise)

T ?V := max
π∈∆SA

T πV, (2)

which again is a γ-contraction in `∞ norm and its unique fixed-point is the optimal value function
V ?. We denote by G(V ) the set of optimal policies that achieve the maximum of Eq. (2) state-wise

G(V ) := arg max
π∈∆SA

T πV ⊆ ∆SA.

Equivalently, this set coincides with the set of optimal policies: G(V ) = {π : T πV = T ?V }.

2.2 Modified policy-iteration schemes

Modified Policy Iteration (MPI) [10]. MPI is a classical dynamic programming algorithm that
alternates between policy improvement and (partial) policy evaluation steps. For m ≥ 1, the MPI
algorithm is defined as follows {

πt+1 ∈ G(Vt)

Vt+1 = (T πt+1)mVt,
(3)

where m = 1 corresponds to Value Iteration and m =∞ corresponds to Policy Iteration. Here Vt
denotes an approximation of V πt .
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Convex conjugate functions. Following [6], we introduce the regularized RL framework through
convex conjugate functions, see e.g. Section 3.3.1 in [11]. For a strongly convex function Ω : ∆A →
R its convex conjugate Ω? : RA → R is given by

Ω?(q) = max
πs∈∆A

〈πs, q〉 − Ω(πs), ∀q ∈ RA, (4)

where 〈πs, q〉 := Ea∼πs
[q(a)], where πs := π(·|s). Ω(π) will be used as a shorthand for the vector

(Ω(πs))s∈S . Further, we make use of the weighted regularizer Ωα(π) := αΩ(π) that, by properties
of the convex conjugate, results in Ω∗α(q) := αΩ∗(q/α). Another property of the convex conjugate
(Danskin’s Theorem) is that the maximizer of (4) is given by the gradient of the dual function

∇Ω?(q) = arg max
πs∈∆A

〈πs, q〉 − Ω(πs). (5)

Approximate Modified Policy Iteration (AMPI) [9]. AMPI is an approximate counterpart of (3)
that can be seen as a generalization of MPI that allows errors in the policy improvement (ε′t) and
policy evaluation (εt) steps {

πt+1 ∈ Gε′t+1
(Vt)

Vt+1 = (T πt+1Vt)
m + εt+1,

(6)

where εt, ε′t ∈ RS are respectively the evaluation step and the policy improvement step error vectors
(one component per state) and π ∈ Gε′(V ) ⇐⇒ ∀π′ T π′V ≤ T πV + ε′. AMPI naturally arises
from MPI in practical settings with large state and / or action spaces.

Regularized Modified Policy Iteration (reg-MPI) [6]. Similarly to standard Bellman opera-
tors (1), we define the regularized Bellman operator [6] as follows

T πΩ V := T πV − Ω(π), (7)

and by virtue of (5) the corresponding optimal policy GΩ(V ) ∈ ∆SA is given by

GΩ(V ) := arg max
π∈∆SA

T πΩ V = (∇Ω?(QV (s, ·))s∈S .

Reg-MPI is a formulation of MPI that underlies several state-of-the-art RL algorithms [2, 4, 12]{
πt+1 ← GΩt(Vt)

Vt+1 ← (T πt+1

Ωt
)mVt.

(8)

Negative entropy regularizer. A practically important instance of the reg-MPI scheme corresponds
to the negative entropy regularizer Ωt(π(·|s)) = λtΩEnt(π(·|s)) for a time-varying temperature
parameter λt > 0, with ΩEnt(π(·|s)) =

∑
a π(a|s) log π(a|s). Its convex conjugate is the smoothed

maximum Ω?t (QV (s, ·)) = λt log
∑
a exp(QV (s, a)/λt) and the maximizing policy is given by the

Boltzmann policy πt+1(·|s) = ∇Ω?t (QVt
(s, ·)) given by

πt+1(a|s) =
exp(QVt

(s, a)/λt)∑
a′ exp(QVt

(s, a′)/λt)
. (9)

With this regularization and m = 1, the reg-MPI scheme (8) describes the core principle of the Soft
Q-learning algorithm [3, 2].

3 Contributions: Error analysis and convergence rates of AMPI algorithms

We now present the main contributions of this work, namely a fine-grained error analysis of AMPI-
type algorithms, including sufficient conditions for convergence, with explicit convergence rates.

3.1 General AMPI algorithms

The error propagation analysis links the error sequence that occurred at previous iterations to the
distance to optimality of the current value iterate. In the following Lemma, we restate the error
propagation bounds of AMPI established in [9, Theorem 7].
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Lemma 1 (AMPI error propagation [9]). For any initial value function V0 and m ≥ 1, consider the
AMPI scheme (6). Then, one has

‖VN − V ∗‖∞ ≤
2

1− γ
(
EN + γN‖V0 − V ∗‖∞

)
, (10)

where EN :=
∑N−1
t=1 γN−t(‖εt‖∞ + ‖ε′t‖∞).

Thus, convergence of the AMPI algorithm entirely depends on controlling the cumulative error term
EN in the above Lemma. In the next theorem, we show the general convergence of AMPI if the
sequence of sums of evaluation step and improvement step errors ‖εN‖∞ + ‖ε′N‖∞ converge to zero.
By analysing the decrease rate of the error sequence, we provide explicit rates of convergence of
AMPI value iterates to the optimal value function.
Theorem 1 (AMPI convergence). Suppose the error sequences (‖εN‖∞)N and (‖ε′N‖∞)N satisfy
‖εN‖∞ + ‖ε′N‖∞ ≤ CrN for some constant C > 0 and a sequence rN −→ 0. Then, the AMPI
scheme (6) converges to the optimal greedy policy of the exact MPI (3).

Furthermore, define ρ := lim inf
N−→∞

rN/rN−1 and ρ := lim sup
N−→∞

rN/rN−1.

(A) If ρ > γ, then ‖VN − V ∗‖∞ = O(rN ).

(B) If ρ ≤ γ, then ‖VN − V ∗‖∞ =

{
O(γN ), if ρ < γ,

O(NγN ), if ρ = γ.

We note that the conditions in the theorem are not restrictive. For example, the maximum error can
decrease as slow as inverse logarithmically in the number of iterations and still eventually yield an
optimal policy at the rate given in Theorem 1(A). A similar story holds for estimates of the form
rN ∝ 1/N ; rN ∝ 1/

√
N ; rN ∝ 1/ logN ; rN ∝ logN/N ; etc. where ρ = ρ = 1 > γ. On the

other hand, if the error sequences decrease at at rate which is (asymptotically) less than the discount
factor γ, then the AMPI converges at the same linear rate as the exact MPI! Fig. 1 illustrates these
bounds.

Proof of Theorem 1. The proof is based on basic properties of convergent sequences and series.

General convergence. Since rt −→ 0, it follows that for any δ > 0, rt . δ (where the symbol
"at . bt" means that at ≤ bt for sufficiently large t ). Thus for sufficiently large N , one has

EN :=

N−1∑
t=1

γN−t(‖εt‖∞ + ‖ε′t‖∞) ≤ C
N−1∑
t=1

γN−trt . Cδ

N−1∑
t=1

γN−t ≤ C γ

1− γ
δ.

Thus EN −→ 0 in the limit N → ∞, and by virtue of the bound (10) of Lemma 1 the algorithm
converges to the optimal value function V ∗ as claimed.

Convergence with explicit rates. We now establish the explicit rates of convergence claimed in the
theorem under corresponding additional assumptions.

(A) Suppose ρ := lim inf
N−→∞

rN/rN−1 > γ. For sufficiently large t ≤ N , we have rN ≥ ρrN−1 ≥

. . . ≥ ρN−trt and so rt ≤ rNρ−(N−t). So, for large N , one computes

EN :=
∑N−1
t=1 γN−t(‖εt‖∞ + ‖ε′t‖∞) ≤ C

∑N−1
t=1 γN−trt . C

∑N−1
t=1 γN−trNρ

−(N−t)

= CrN
∑N−1
t=1 (γ/ρ)N−t = CrN (γ/ρ)

1−(γ/ρ)N

1−γ/ρ . Cγ
ρ−γ rN = O(rN ).

(B) Suppose ρ := lim sup
N−→∞

rN/rN−1 < γ. Then for sufficiently large t ≤ N , it holds that rt ≤

ρrt−1 ≤ . . . ≤ ρt−1r1. Thus for sufficiently large N , one has

EN ≤ C
∑N−1
t=1 γN−trt . C

∑N−1
t=1 γN−tr1ρ

t−1 = Cr1γ
N−1

∑N−2
t=0 (ρ/γ)t

= Cr1γ
N−1 1−(ρ/γ)N−1

1−ρ/γ . Cγ
γ−ρr1γ

N−1 = O(γN ).

Finally, if ρ = γ, then similar arguments yield EN . Cr1γ
N−1

∑N−2
t=0 1 = O(NγN ).
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Figure 1: Illustration of the bounds established in Theorem 1, for different regimes of the per-iteration error
bounds rt. In these illustrations, we plugged γ = 0.9. We see that our proposed upper bounds are quite tight.

3.2 Regularized MPI algorithms

We first show that the reg-MPI (8) is an instance of the AMPI (6). Then, using Theorem 1, we bound
the distance between the value iterates of the reg-MPI and the optimal solution of the exact MPI (3).
Without loss of generality, we will consider the reg-MPI scheme with weighted regularizer.
Theorem 2 (Reg-MPI convergence). Consider the reg-MPI algorithm (8) with time-varying regular-
ization functions Ωt, and let the sequence (αt)t which uniformly boundes Ωt, that is

sup
π
‖Ωt(π)‖∞ := sup

π, s
|Ω(π(·|s))| ≤ αt. (11)

Then it holds that

‖VN,Ω − V ∗‖∞ ≤
2

1− γ
(
AN + γN‖V0,Ω − V ∗‖∞

)
, (12)

where AN := (1 + 1−γm

1−γ )
∑N−1
t=1 γN−tαt. Moreover, if αt −→ 0, then the algorithm converges to

the optimal value function V ∗.

Furthermore, let ρ := lim inf
N−→∞

αN/αN−1 and ρ := lim sup
N−→∞

αN/αN−1.

(A) If ρ > γ, then the algorithm converges to the optimal value function V ∗ with the same rate
as the step-sizes: ‖VN,Ω − V ∗‖∞ = O(αN ).

(B) If ρ ≤ γ, then the algorithm converges to the optimal value function V ∗ at same rate as the
exact MPI (3) (i.e linear rate of convergence). More precisely,

‖VN,Ω − V ∗‖∞ =

{
O(γN ), if ρ < γ,

O(NγN ), if ρ = γ.

It should be noted that the condition (11) is satisfied by time-varying rgularizers of the form Ωt = αtΩ,
for some uniformly bounded Ω. These include the negative entropy regularizer as a special case.

Proof of Theorem 2. We proceed by bounding the policy evaluation and policy improvement step
errors of the reg-MPI (8) with respect to the exact MPI (3) defined as in the AMPI (6).

Step 1: bound evaluation step error ‖εt‖∞. To begin, it is easy to prove by induction on m (see
Appendix A) that for every policy π ∈ ∆SA and value function V ∈ RS and one has the formula

(T πΩ )mV = (T π)mV −
m−1∑
j=0

γj(Pπ)jΩ(π), (13)

where (Pπ)j is the jth power of the matrix Pπ . Thus one has

‖εt‖∞ = ‖Vt,Ω − (T πt)mVt‖∞ = ‖(T πt

Ωt
)mVt − (T πt)mVt‖∞ =

∥∥∥∥∥∥
m−1∑
j=0

γj(Pπt)jΩt(πt)

∥∥∥∥∥∥
∞

≤
m−1∑
j=0

γj‖(Pπt)jΩt(πt)‖∞ ≤
m−1∑
j=0

γj‖Ωt(πt)‖∞ =
1− γm

1− γ
‖Ωt(πt)‖∞ ≤

1− γm

1− γ
αt,

(14)
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where the last inequality follows from the Cauchy-Schwartz inequality
‖(Pπ)jΩt(πt)‖∞ = max

s
|(Pπ)j(·|s)Ωt(πt)| ≤ max

s
‖(Pπt)j(·|s)‖1‖Ωt(πt)‖∞ = ‖Ωt(πt)‖∞,

since ‖(Pπt)j(·|s)‖1 = 1 because (Pπt)j(·|s) is a probability distribution (over next states).

Step 2: bound policy improvement step error ‖ε′t‖∞. Using elementary properties of the max
operator and definition of the regularized operator T πΩ , one has
‖ε′t‖∞ = ‖max

π
T πVt−max

π
T πΩt

Vt‖∞ ≤ max
π
‖T πVt−T πΩt

Vt‖∞ = max
π
‖Ωt(π)‖∞ ≤ αt. (15)

By combining per-iteration error bounds (14) and (15) and using Lemma 1, one obtains (12). From
this bound and Theorem 1 invoked with rt := αt and C = 1 + 1−γm

1−γ , we get that the algorithm
reg-MPI (8) converges to the optimal value function V ∗, with the claimed rates of convergence.

We note that in the case of negative entropy regularizer, the step-sizes αt correspond to a dynamic
temperature parameter and the temperature controls the amount of exploration performed by the
policy. From (12) it is apparent that exploration is performed in exchange for slower convergence
if the decrease rate is greater than the discount factor γ. On the other hand, if the decrease rate is
fast enough (smaller than the discount factor asymptotically), then exploration does not impact the
convergence rate that matches the rate of the exact MPI. To the best of our knowledge, this result is
the first to relate non-asymptotic performance of MPI to exploration.

One limitation of Theorem 2 is that it does not provide a specific weight schedule to a problem
at hand. Indeed, the amount of necessary exploration depends on the MDP structure. Too fast
temperature decay implies no regularization and leads to insufficient exploration. On the other hand,
too slow temperature decay results in too strong regularization and unnecessary slow convergence.
This trade-off has also been shown empirically on a class of entropy regularized algorithms in [8].

4 Related works

We first discuss closely related work [7, 13]. [7] proves convergence to optimality of the SARSA
algorithm with GLIE policies ("greedy in the limit with infinite exploration") that include a class
of Boltzmann policies with decaying temperature. Another close work [13] studies convergence to
optimality of value iteration algorithm with dynamic Boltzmann operator that represents an instance
of the reg-MPI scheme withm = 1, negative entropy regularizer and decreasing temperature schedule.
Our work is different from the above-cited work since (1) we consider MPI-based algorithms, (2)
our result on convergence rate holds over a class of the approximate MPI and the regularized MPI
algorithms, and (3) we link the exploration in the regularized MPI to its convergence rate through the
schedule of regularization parameter.

The optimization perspective on the regularized MDP framework proposed by [8, 6] allows the
learning rate interpretation of the regularization weight. In [6, D.1] the regret of the weighted
regularized MPI scheme is analysed when it is subject to approximations. Our work is different in
that we consider the regularization itself as errors in the approximate MPI scheme.

The temperature schedules obtained in Section 3.1 have similarities with the decrease factors of the
Boltzmann exploration in the multi-arm bandit setting, e.g. O(1/N) and O(logN/N) are frequently
used [14, 2.2]. Recently, it was shown that temperature schedules of the form O(1/

√
N) induce

near-optimal performance [15]. Despite these similarities, exploration in the RL setup is not as well
understood as in bandits setting; our work contributes by providing a link to the convergence rate.

5 Conclusion

Following the success of entropy-regularized methods in RL, we study the convergence to optimality
of a class of dynamic programming algorithms unified under the regularized MPI scheme. By the
means of reduction to the approximate MPI, we showed the general convergence of this scheme to
the solution of the original RL problem under decreasing schedule of the regularization parameter
over iterations. Moreover, our analysis showed that the convergence of the regularized MPI is as fast
as the exact MPI, if the regularization decay rate is large enough, but otherwise slows down to the
decay rate of regularization parameter.
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A Supplement to proofs

Proof of formula (13). Let π be a policy and V be a value function. By (7), one has T πΩ V =
T πV − Ω(π) = T πV − γ0(Pπ)0Ω(π), and so the formula is valid for m = 1 step. Now suppose
the formula (13) is valid for m steps. Then

(T πΩ )m+1V = T πΩ ((T πΩ )mV ) = T π((T πΩ )mV )− Ω(π) = rπ + γPπ(T πΩ )mV − Ω(π)

= rπ + γPπ

(T π)mV −
m−1∑
j=0

γj(Pπ)jΩ(π)

− Ω(π)

= rπ + γPπ(T π)mV − γPπ
m−1∑
j=0

γj(Pπ)jΩ(π)− Ω(π)

= T π((T π)mV )−
m∑
j=0

γj(Pπ)jΩ(π) = (T π)m+1V −
m∑
j=0

γj(Pπ)jΩ(π),

which is the formula (13) for m+ 1 steps.
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