
On the Sample Complexity of Actor-Critic
for Reinforcement Learning

Harshat Kumar
Dept. of Electrical and Systems Eng.

University of Pennsylvania
Philadelphia, PA 19104

harshat@seas.upenn.edu

Alec Koppel
Computational and Information Sciences Directorate

U.S. Army Research Laboratory
Aldephi, MD 20783

alec.e.koppel.civ@mail.mil

Alejandro Ribeiro
Dept. of Electrical and Systems Eng.

University of Pennsylvania
Philadelphia, PA 19104

aribeiro@seas.upenn.edu

Abstract

Combining dynamic programming and policy search techniques to solve rein-
forcement learning problems, actor-critic algorithms are known to work well in
practice. Despite its widespread use, only the asymptotic behavior of actor-critic
is known by connecting its behavior to dynamical systems. This work attempts
to close this gap in existing literature by characterizing the rate of convergence in
expectation for actor-critic in continuous state action space with linear function
approximation using policy gradient for policy search and any critic method. Our
rates are corroborated by implementing actor critic on a navigation problem with
Temporal Difference, Gradient Temporal Difference, and Accelerated Gradient
Temporal Difference critic updates.

1 Introduction

Reinforcement learning (RL) is a form of adaptive control where the system model is unknown and
one seeks to estimate parameters of a controller through repeated interaction with the environment
[3, 26]. This framework gained attention recently for its ability to express problems that exhibit
complicated dependencies between action selection and environmental response, i.e., when the cost
function or system dynamics are difficult to express, as in supply chain management [14], power
systems [15], robotic manipulation [16], and games of various kinds [29, 24, 9]. Although the
expressive capability of RL continues to motivate new and diverse applications, its computational
challenges remain doggedly persistent.

Two dominant approaches to RL have emerged since its original conception from Bellman [2]. The
first, dynamic programming [33], writes the value as the expected one-step reward plus all subsequent
rewards (Bellman equations), and then proceeds by stochastic fixed point iterations [30]. Combining
dynamic programming approaches with nonlinear function parameterizations, as noted by [31], may
cause instability. On the other hand, the alternative approach, policy search [27], hypothesizes actions
are chosen according to a parameterized distribution, and then repeatedly revises those parameters
according via stochastic search. Policy search has gained popularity due to its ability to scale to large
(or continuous) spaces and exhibit global convergence. Also worth mentioning is Monte Carlo search
(“guess and check") [1, 13], which is essential to reducing large spaces to only viable hypotheses.

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

In this work, we focus on methods that operate in the intersection of dynamic programming and policy
search called actor-critic [18, 17]. Actor-critic is an online form of policy iteration [3] that inherits
the ability of policy search to scale to large (or continuous) spaces, while reducing its number of
queries to the environment. In particular, policy gradient method repeatedly revises policy parameter
estimates through gradient steps. Via the Policy Gradient Theorem [27], the policy gradient is the
product of two factors: the score function and the Q function. One may employ Monte Carlo rollouts
to acquire the Q-estimates, which under careful choice of the rollout horizon, can be shown to be
unbiased [22, 34]. Doing so, however, requires an inordinate amount of querying to the environment.

Actor-critic replaces Monte-Carlo rollouts for the Q-value by stochastic approximates of solutions
to Bellman equations, i.e., temporal difference (TD) [25] or gradient temporal difference (GTD)
[28] steps. Intuitively, this weaving together of the merits of dynamic programming and policy
search yields comparable scalability properties to policy search while reducing its sample complexity.
However, the iteration (and sample) complexity of actor-critic is noticeably absent from the literature,
which is striking due to its foundational role in modern reinforcement learning systems [20, 24], and
the fact that efforts to improve upon it also only establish asymptotics [6].

Therefore, in this work, we characterize the complexity of actor-critic algorithms. Our results are
framed by viewing policy search as a form of stochastic gradient method for maximizing a non-convex
function, where the ascent directions are biased. Moreover, the magnitude of this bias is determined
the number of critic steps. This perspective treats actor-critic a form of two time-scale algorithm
[7], whose asymptotic stability is well-known via dynamical systems tools [19, 8]. To wield these
approaches to establish finite-time performance, however, concentration probabilities and geometric
ergodicity assumptions of the Markov dynamics are required – see [8]. To obviate these complications
and exploit recent unbiased sampling procedures [22, 34], we focus on the case where independent
trajectory samples are acquirable through querying the environment.

Our main result establishes that actor-critic, independent of any critic method, exhibits convergence
to stationary points of the value function that are comparable to stochastic gradient ascent in the
non-convex regime. We note that a key distinguishing feature from standard non-convex stochastic
programming is that the rates are inherently tied to the bias of the search direction which is determined
by the choice of critic scheme. The rate we derive (See Theorem 1) depends on the convergence rate
of the critic method. Critic methods with slow convergence become the bottleneck for actor-critic,
while methods with fast convergence guarantees shift bottleneck to the policy gradient updates.
Empirically, we show that although fast critic convergence will result in faster convergence for
actor-critic, the stationary point it reaches is worse than methods which have slower convergence
guarantees. Experiments on a simple navigation problem with an obstacle demonstrate the empirical
validity of these results, which overall illuminate the interplay between generalization, optimization,
and function parameterization in reinforcement learning.

2 Reinforcement Learning

In reinforcement learning (RL), an agent moves through a state space S and takes actions belonging
to set A, where the state/action spaces are assumed to be continuous compact subsets of Euclidean
space: S ⊂ Rq and A ⊂ Rp. After each action, the agent transitions to its next state that depending
on its current state and action. Moreover, a reward is revealed by the environment. In this situation,
the agent would like to accumulate as much reward as possible in the long term, which is referred to
as value. Mathematically this problem definition may be encapsulated as a Markov decision process
(MDP), which is a a tuple (S,A,P, R, γ) with Markov transition density P(s′ | s, a) : S×A → P(S)
that determines the probability of moving to state s′. Here, γ ∈ (0, 1) is the discount factor that
parameterizes the value of a given sequence of actions, which we will define shortly.

At each time t, the agent executes an action at ∈ A given the current state st ∈ S, following a
possibly stochastic policy π : S → P(A), i.e., at ∼ π(· | st). Then, given the state-action pair
(st, at), the agent observes a (deterministic) reward rt = R(st, at) and transitions to a new state
s′t ∼ P(· | st, at) according to a transition density that is Markov. For any policy π mapping states to
actions, define the value function Vπ : S → R as

Vπ(s) = Eat∼π(·|st),st+1∼P(·|st,at)

(∞∑
t=0

γtrt | s0 = s

)
, (1)

2

which is the long term average reward accumulation discounted by γ. We can further define the
value Vπ : S × A → R conditioned on a given initial action as the action-value, or Q-function as
Qπ(s, a) = E

(∑∞
t=0 γ

trt | s0 = s, a0 = a
)
. Given initial state s0, the agent seeks to find policy π

that maximizes the long-term return Vπ(s0), i.e., to solve the following optimization problem

max
π∈Π

J(π) := Vπ(s0). (2)

In this work, we investigate actor-critic methods to solve (2), which is a hybrid RL method that
fuses key properties of policy search and approximate dynamic programming. We first derive policy
gradient method, and explain how actor-critic augments policy search. To mitigate the issue of
searching over an arbitrarily complicated function class Π, we parameterize the policy π by a vector
θ ∈ Rd, i.e., π = πθ, as in [17, 6, 10]. Under this specification, the search may be reduced to
vector-valued optimization maxθ∈Rd J(θ) := Vπθ (s0). Subsequently, we denote J(πθ) by J(θ) for
notational convenience. We first make the following standard assumption on the regularity of the
MDP problem and the parameterized policy πθ, which are the same conditions as [35].

Assumption 1. Suppose the reward R and the parameterized policy πθ satisfy the following:

(i) The reward R is bounded absolutely and uniformly: |R(s, a)| ∈ [0, UR] for (s, a) ∈ S ×A.

(ii) The policy πθ is differentiable with respect to θ, and the score function ∇ log πθ(a | s) is
LΘ-Lipschitz and has bounded norm, i.e., for any (s, a) ∈ S ×A,

‖∇ log πθ1(a | s)−∇ log πθ2(a | s)‖ ≤ LΘ · ‖θ1 − θ2‖, for any θ1, θ2, (3)
‖∇ log πθ(a | s)‖ ≤ BΘ, for any θ. (4)

Note that the boundedness of the reward function in Assumption1(i) is standard in policy search
algorithms [5, 6, 10, 36]. Observe that with R, we have the Q-function is absolutely upper bounded:

|Qπθ (s, a)| ≤
∞∑
t=0

γt · UR = UR/(1− γ), for any (s, a) ∈ S ×A. (5)

The same holds true for Vπθ (s) for any πθ and s ∈ S and thus for the objective J(θ) := Vπθ (s0), i.e.,

|Vπθ (s)| ≤ UR/(1− γ), for any s ∈ S, |J(θ)| ≤ UR/(1− γ). (6)

We note that the conditions (3) and (4) have appeared in recent analyses of policy search [10, 23, 21],
and are satisfied by canonical policy parameterizations such as Boltzmann policy [18] and Gaussian
policy [12]. For example, for Gaussian policy1 in continuous spaces, πθ(· | s) = N (φ(s)>θ, σ2),
where N (µ, σ2) denotes the Gaussian distribution with mean µ and variance σ2. Then the score
function has the form [a − φ(s)>θ]φ(s)/σ2, which satisfies (3) and (4) if the feature vectors φ(s)
have bounded norm, the parameter θ lies some bounded set, and the action a ∈ A is bounded.

Assumption 2. For any state action pair (s, a) ∈ S ×A, the feature map ϕ(s, a) has norm bounded
by a constant C2 ∈ R+.

The score function is bounded by BΘ (c.f. Assumption 1) and reward is bounded, so for some
constant C3 ∈ R+

‖J(θk)‖ ≤ C3for all (s, a) ∈ S ×A (7)

We further assume the estimate of the Q function conditioned on the filtration has finite variance σ2.

Assumption 3. There exits a σ2 > 0 such that for all state action pairs (st, at) ∈ S ×A,

E(‖ξ>t ϕ(st, at)∇ log π(st, at|θk)‖|Fk) ≤ σ2. (8)

Our goal is to design actor-critic algorithms to attain stationary points of the value function J(θ).
Moreover, we characterize the sample complexity of actor-critic, a noticeable gap in the literature for
an algorithmic tool decades old [18] at the heart of the recent artificial intelligence innovations [24].

1In practice, the action space A is bounded, which requires a truncated Gaussian policy over A, as in [21].

3

3 From Policy Gradient to Actor-Critic

In this section, we derive actor-critic method [18] from an optimization perspective: we view actor-
critic as a way of doing stochastic gradient ascent with biased ascent directions, and the magnitude of
this bias is determined by the number of critic evaluations done in the inner loop of the algorithm.
The building block of actor-critic is called policy gradient method, a type of direct policy search,
based on stochastic gradient ascent. Begin by noting that the gradient of the objective J(θ) with
respect to policy parameters θ, owing to the Policy Gradient Theorem [27], has the following form:

∇J(θ) =
1

1− γ
· E(s,a)∼ρθ(·,·)

[
∇ log πθ(a | s) ·Qπθ (s, a)

]
. (9)

The derivative of the logarithm of the policy ∇ log[πθ(· | s)] is referred to as the score function
corresponding to the policy πθ(· | s) for any s ∈ S. Unbiased samples of the gradient ∇J(θ) are
required to perform the stochastic gradient ascent, which hopefully converges to a stationary solution
of the nonconvex maximization. One may obtain an estimate of the gradient ∇J(θ) by evaluating
the score function and Q function at the end of a rollout whose length is drawn from a geometric
distribution with parameter 1−γ [35][Theorem 4.3]. If theQ estimate is unbiased, then the stochastic
estimate of the gradient∇J(θ) is unbiased as well. Therefore define the stochastic estimate by

∇̂J(θ) =
1

1− γ
Q̂πθ (sT , aT)∇ log πθ(aT |sT). (10)

We consider the case where the Q function admits a linear parametrization of the form Q̂πθ (s, a) =
ξ>ϕ(s, a), which in the literature on policy search is referred to as the critic [18], as it “criticizes"
the performance of actions chosen according to policy π. Here ξ ∈ Rp and ϕ : X × A → Rp is a
(possibly nonlinear) feature map such as a network of radial basis functions [] or auto-encoder [].
Moreover, we estimate the parameter ξ that defines the Q function from a policy evaluation (critic
only) method after some TC(k) iterations, where k denotes the number of policy gradient updates.
Thus, we may write the stochastic gradient estimate as

∇̂J(θ) =
1

1− γ
ξ>k ϕ(sT , aT)∇ log πθ(aT |sT). (11)

If the estimate of the Q function is unbiased, i.e., E[ξ>k ϕ(sT , aT) | θ, s, a] = Q(s, a), then
E[∇̂J(θ) | θ] = ∇J(θ) (c.f. [35][Theorem 4.3]). Typically, critic only methods do not give un-
biased estimates of the Q function; however, in expectation the rate at which their bias decays is
proportional to the number of Q estimation steps. In particular, denote ξ∗ as the parameter for which
the Q estimate is unbiased:

E[ξ>∗ ϕ(s, a)] = E[Q̂πθ (s, a)] = Q(s, a). (12)

Hence, by adding and subtracting the true estimate of the parametrized Q function to (11), we arrive
at the fact the policy search direction admits the following decomposition:

∇̂J(θ) =
1

1− γ
(ξk − ξ∗)>ϕ(sT , aT)∇ log πθ(aT |sT) +

1

1− γ
(ξ∗)

>ϕ(sT , aT)∇ log πθ(aT |sT).

(13)
The second term in is the unbiased estimate of the gradient ∇J(x), whereas the first defines the
difference of the critic parameter at iteration k with the true estimate ξ∗. For linear parameterizations
of theQ function, policy evaluation methods establish convergence in mean of the bias E[‖ξk−ξ∗‖] ≤
g(k), where g(k) is some decreasing function. We address cases where the critic bias decays at rate
k−b for b > 0, due to the fact that several state of the art works on policy evaluation may be mapped
to the form (14) for this specification [32, 11, 4, 37].
Assumption 4. The critic parameter has error mean bounded by O(k−b) for some b ∈ (0, 1], i.e.,
there exists constant L1 > 0 such that

E[‖ξk − ξ∗‖] ≤ L1k
−b. (14)

Several existing bounds on the policy evaluation error take the form k−b for some b ∈ (0, 1]
[32, 11, 4, 37]. Alternate rates have been established as O(log k/k); however, they concede that

4

Algorithm 1 Generic Actor-Critic

Require:
s0 ∈ Rn, θ0, ξ0, stepsize {ηk}, Policy evaluation method Critic: N→ Rp, γ ∈ (0, 1)

1: for k = 1, . . . do
2: ξTC(k) ← Critic(TC(k))
3: Draw Tk ∼ Geom(1− γ)
4: (sTk , aTk)← rollout of πθk with length Tk
5: θk+1 ← θk + 1

1−γ ηkξ
>
TC(k)ϕ(sTk , aTk)∇ log πθk(sTk , aTk |θk)

O(1/k) rates may be possible. Thus, we subsume sample complexity characterizations of policy
evaluation as (14).

Thus, (13) is nearly a valid ascent direction: it is approximately an unbiased estimate of the gradient
∇J(θ) since the first term becomes negligible as the number of critic estimation steps increases.
Based upon this observation, we propose the following variant of actor-critic method [18]: run a critic
estimator (policy evaluator) for TC(k) steps, whose output is critic parameters ξTC(k). We denote
the critic estimator by Critic:N → Rp which returns the parameter ξTC(k) ∈ Rp after TC(k) ∈ N
iterations. Then, simulate a trajectory of length Tk, where Tk is geometrically distributed with
parameter 1− γ, and update the actor (policy) parameters θ as:

θk+1 = θk + ηk
1

1− γ
ηkξ
>
TC(k)ϕ(sTk , aTk)∇ log πθk(sTk , aTk |θk) (15)

We summarize the aforementioned procedure, which is agnostic to particular choice of critic estimator,
as Algorithm 1. Subsequently, we shift focus to characterizing the mean convergence of actor-critic
method given any policy evaluation method satisfying (14). By Assumption 4 (which is not really an
assumption but rather a fundamental property of most common policy evaluation schemes), the error
goes to zero in expectation as the number of critic steps increases. Thus, we leverage this property to
derive the sample complexity of actor-critic (Algorithm 1). To do so, we define the rate in terms of
the complexity measure Kε, the smallest number of actor updates k required to attain a value function
gradient smaller ε, i,.e.,

Kε = min{k : inf
0≤m≤k

‖∇J(θm)‖2 < ε}. (16)

Theorem 1. Suppose the step-size satisfies ηk = k−a for a > 0 and the critic update satisfies
Assumption 4. When the critic bias converges to null as O(k−1), i.e., b = 1 in (14), then TC(k) =
k + 1 critic updates occur per actor update. Alternatively, if the critic bias converges to null more
slowly b ∈ (0, 1) then TC(k) = k critic updates per actor update are chosen. Then the actor sequence
defined by Algorithm 1 satisfies

Kε ≤ O
(
ε−1/`

)
, where ` = min{a, 1− a, b} (17)

Minimizing over a yields actor step-size ηk = k−1/2. Moreover, depending on the rate b of
attenuation of the critic bias [cf. (14)], the resulting sample complexity is:

Kε ≤
{
O
(
ε−1/b

)
if b ∈ (0, 1/2)

O
(
ε−2
)
. if b ∈ (1/2, 1]

(18)

Proof. See Appendix A

The analysis of Lemma 2 and Theorem 1 do not make any assumptions on the size of the state action
space. Additionally, the result describes the number of actor updates required. The number of critic
updates required is simply the K th

ε triangular number ,i.e.
(
Kε+1

2

)
.

4 Empirical Results

We numerically evaluate the rates at which actor-critic converges to a stationary point by observing
the discounted reward and estimate of the gradient norm for a navigation problem. In particular,

5

0 20 40 60 80 100 120

Policy Gradient Updates

-450

-400

-350

-300

-250

-200

-150

-100

-50

0

50

A
ve

ra
ge

 D
is

co
un

te
d

R
ew

ar
d

GTD
TD(0)
A-GTD
solved

0 20 40 60 80 100 120

Policy Gradient Updates

0

0.5

1

1.5

 E
st

im
at

e
 o

f N
or

m
 G

ra
di

en
t

GTD
TD(0)
A-GTD

(a) (b)

0 20 40 60 80 100 120

Policy Gradient Updates

0

5

10

15

20

25

30

N
um

be
r

of
 E

pi
so

de
s

TD(0)
GTD
A-GTD

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

(c) (d)
Figure 1: Convergence Results for actor-critic with TD(0), GTD, and A-GTD critic updates. (a)
shows the average discounted reward. Average reward greater than−40 (shown in gray) is considered
solved. (b) Estimate of the norm gradient (c) support of the first two plots (d) Example of a solved
rollout with total reward equal to −35.6

we consider the problem where a point agent starts at an initial position s0 = (2, 2) and must learn
to navigate to a region around a target sG = (−2,−2) while avoiding collisions with an obstacle
and outer boundary. Given the state at time t, the action at is sampled from a multivariate Gaussian
distribution parametrized by mean θ>ϕ(st) and covariance matrix Σ = 0.5 · I2. Given the action,
the state transition is determined by st+1 = st + 0.5at/‖at‖. The state is represented by the agent’s
location in R2. A circular obstacle with radius one is centered at the origin, and the goal of the agent
is a circular disc with radius 0.5 located at sG. The agent is out of bounds if it steps outside the disc
centered at the origin with radius equal to four. Wanting the agent to reach the target while avoiding
the obstacle and outer boundary, the agent sees rt = −11 if it hits an obstacle or boundary, rt = −1
if it remains in the free space, and rt = −0.1 if it hits the target region.

To evaluate the policy, we take the average reward of ten trajectories with length 50. This means
that average rewards greater than −40 are avoiding obstacles while reaching the destination and
are therefore considered solved (see Figure 1 (d)). To estimate the norm of the gradient squared,
we take the average of the gradient estimate at the end ten trajectories with lengths determined by
sampling a geometric distribution with parameter 1 − γ (discount factor γ = 0.9). The feature
representation of the state is determined by a radial basis (Gaussian) kernel grid where κ(x, x′) =
exp

{
−‖x− x′‖22/2σ2

}
. The 100 grid points are chosen evenly between −5 and 5 on both axes with

σ2 = 0.1. For all simulations, we chose a constant actor stepsize ηk = 0.001.

We considered actor-critic with classic Temporal Difference (TD(0)), Gradient Temporal Difference
(GTD), and Accelerated Gradient Temporal Difference (A-GTD) critic updates. The algorithm was
implemented for 30 episodes, terminated early if the average reward was less greater than −40, the
estimate of the norm gradient was less than 0.2, or the actor parameter’s norm exceeded 25. Figure 1
characterizes the rate with confidence intervals shaded show the standard deviation. Unsurprisingly,
for all critic methods, the increase in reward corresponds to a decrease in the gradient norm. A-GTD
converges very quickly, but its mean never reaches the solved region denoted by the gray shade.
Indeed, these rates characterize corroborate Theorem 1, showing that actor-critic complexity is
bottlenecked by the critic when the critic has a slow convergence rate.

6

References

[1] John Asmuth and Michael L Littman. Approaching bayes-optimalilty using monte-carlo tree
search. In Proc. 21st Int. Conf. Automat. Plan. Sched., Freiburg, Germany, 2011.

[2] Richard Bellman. The theory of dynamic programming. Technical report, RAND Corp Santa
Monica CA, 1954.

[3] Dimitri P Bertsekas. Dynamic Programming and Optimal Control, volume 1. 2005.

[4] Jalaj Bhandari, Daniel Russo, and Raghav Singal. A finite time analysis of temporal difference
learning with linear function approximation. arXiv preprint arXiv:1806.02450, 2018.

[5] Shalabh Bhatnagar, Mohammad Ghavamzadeh, Mark Lee, and Richard S Sutton. Incremental
natural actor-critic algorithms. In Advances in Neural Information Processing Systems, pages
105–112, 2008.

[6] Shalabh Bhatnagar, Richard Sutton, Mohammad Ghavamzadeh, and Mark Lee. Natural actor-
critic algorithms. Automatica, 45(11):2471–2482, 2009.

[7] Vivek S Borkar. Stochastic approximation with two time scales. Systems & Control Letters,
29(5):291–294, 1997.

[8] Vivek S Borkar. Stochastic approximation: a dynamical systems viewpoint, volume 48. Springer,
2009.

[9] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, Schulman John, Tang Jie,
and Zaremba Wojciech. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[10] Dotan Di Castro and Ron Meir. A convergent online single-time-scale actor-critic algorithm.
Journal of Machine Learning Research, 11(Jan):367–410, 2010.

[11] Gal Dalal, Balazs Szorenyi, Gugan Thoppe, and Shie Mannor. Finite sample analysis of two-
timescale stochastic approximation with applications to reinforcement learning. arXiv preprint
arXiv:1703.05376, 2017.

[12] Kenji Doya. Reinforcement learning in continuous time and space. Neural Computation,
12(1):219–245, 2000.

[13] Sylvain Gelly and David Silver. Monte-carlo tree search and rapid action value estimation in
computer go. Artificial Intelligence, 175(11):1856–1875, 2011.

[14] Ilaria Giannoccaro and Pierpaolo Pontrandolfo. Inventory management in supply chains: a
reinforcement learning approach. International Journal of Production Economics, 78(2):153–
161, 2002.

[15] Daniel R Jiang, Thuy V Pham, Warren B Powell, Daniel F Salas, and Warren R Scott. A
comparison of approximate dynamic programming techniques on benchmark energy storage
problems: Does anything work? In 2014 IEEE Symposium on Adaptive Dynamic Programming
and Reinforcement Learning (ADPRL), pages 1–8. IEEE, 2014.

[16] Jens Kober and Jan Peters. Reinforcement learning in robotics: A survey. In Reinforcement
Learning, pages 579–610. Springer, 2012.

[17] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, pages 1008–1014, 2000.

[18] Vijaymohan R Konda and Vivek S Borkar. Actor-critic–type learning algorithms for Markov
decision processes. SIAM Journal on Control and Optimization, 38(1):94–123, 1999.

[19] Harold J. Kushner and G. George Yin. Stochastic approximation and recursive algorithms and
applications. Springer, New York, NY, 2003.

7

[20] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep rein-
forcement learning. In International Conference on Machine Learning, pages 1928–1937,
2016.

[21] Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In International Conference on Machine Learning,
pages 4026–4035, 2018.

[22] Santiago Paternain. Stochastic Control Foundations of Autonomous Behavior. PhD thesis,
University of Pennsylvania, 2018.

[23] Matteo Pirotta, Marcello Restelli, and Luca Bascetta. Policy gradient in Lipschitz Markov
Decision processes. Machine Learning, 100(2-3):255–283, 2015.

[24] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur
Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of
Go without human knowledge. Nature, 550(7676):354–359, 2017.

[25] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[26] Richard S Sutton, Andrew G Barto, et al. Reinforcement Learning: An Introduction. 2 edition,
2017.

[27] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[28] Richard S Sutton, Csaba Szepesvári, and Hamid Reza Maei. A convergent o (n) algorithm for
off-policy temporal-difference learning with linear function approximation. Advances in neural
information processing systems, 21(21):1609–1616, 2008.

[29] Gerald Tesauro. Temporal difference learning and td-gammon. 1995.

[30] John N Tsitsiklis. Asynchronous stochastic approximation and q-learning. Machine learning,
16(3):185–202, 1994.

[31] John N Tsitsiklis and Benjamin Van Roy. Analysis of temporal-diffference learning with
function approximation. In Advances in Neural Information Processing Systems, pages 1075–
1081, 1997.

[32] Xiao Wang, Shiqian Ma, Donald Goldfarb, and Wei Liu. Stochastic quasi-newton methods for
nonconvex stochastic optimization. SIAM Journal on Optimization, 27(2):927–956, 2017.

[33] Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,
1992.

[34] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Convergence and iteration complexity
of policy gradient method for infinite-horizon reinforcement learning. IEEE Conference on
Decision and Control (to appear), Dec. 2019.

[35] Kaiqing Zhang, Alec Koppel, Hao Zhu, and Tamer Başar. Global convergence of policy gradient
methods: A nonconvex optimization perspective. SIAM Journal on Control and Optimization
(SICON) (submitted), Jan 2019.

[36] Kaiqing Zhang, Zhuoran Yang, Han Liu, Tong Zhang, and Tamer Başar. Fully decentralized
multi-agent reinforcement learning with networked agents. In International Conference on
Machine Learning, pages 5872–5881, 2018.

[37] Shaofeng Zou, Tengyu Xu, and Yingbin Liang. Finite-sample analysis for sarsa and q-learning
with linear function approximation. arXiv preprint arXiv:1902.02234, 2019.

8

A Proof of Theorem 1

We begin by recalling [35][Lemma 4.2]

Lemma 1 (Lipschitz-Continuity of Policy Gradient). The policy gradient ∇J(θ) is Lipschitz contin-
uous with some constant L > 0, i.e., for any θ1, θ2 ∈ Rd

‖∇J(θ1)−∇J(θ2)‖ ≤ L · ‖θ1 − θ2‖. (19)

This lemma allows us to establish an approximate ascent lemma for a random variable Wk defined by

Wk = J(θk)− Lσ2
∞∑
j=k

η2
j , (20)

where J(θ) is defined in (2), σ2 is defined in Assumption 8, and L is the Lipshitz constant of the
gradient from Lemma 1. Unless otherwise stated, to alleviate notation, we denote ξk as short-hand
for ξTC(k).

Lemma 2. Consider the actor parameter sequence defined by Algorithm 1. The sequence {Wk}
defined in (20) satisfies the inequality

E[Wk+1|Fk] ≥Wk + ηk‖∇J(θk)‖2 − ηkCE[‖ξk − ξ∗‖|F] (21)

where C = BΘC2C3/(1− γ), with BΘ the bound on the score function as in Assumption 1, C2 the
bound on the feature map in Assumption 2, and C3 as the bound on the value function in (7).

Proof. See AppendixB

Given the aforementioned lemmas, we are now in the position to begin the main argument. Begin by
substituting the definition for Wk [cf. (20)] into Lemma 2, i.e., (21) to write

E[J(θk+1)|Fk]−Lσ2
∞∑

j=k+1

η2
j ≥ J(θk)−Lσ2

∞∑
j=k

η2
j+ηk‖∇J(θk)‖2−ηkCE[‖ξk−ξ∗‖|Fk]. (22)

Take the total expectation and the term
∑∞
j=k+1 η

2
j cancels from both sides

E[J(θk+1)] ≥ E[J(θk)]− Lσ2η2
k + ηk‖∇J(θk)‖2 − ηkCE[‖ξk − ξ∗‖]. (23)

Define Uk := J(θ∗)−J(θk) where θ∗ is the solution of (2) when the policy is parametrized by θ. By
this definition, we know that Uk is non-negative for all θk. Add J(θ∗) to both sides of the inequality
and rearrange terms

ηkE[‖∇J(θk)‖] ≤ E[Uk]− E[Uk+1] + Lσ2η2
k + ηkCE[‖ξk − ξ∗‖]. (24)

Divide both sides by ηk and take the sum over {k −N, . . . , k} where 0 < N ∈ Z

k∑
j=k−N

E[‖∇J(θj)‖2] ≤
k∑

j=k−N

1

ηj
(E[Uj]− E[Uj+1]) + Lσ2

k∑
j=k−N

ηj + C

k∑
j=k−N

E[‖ξj − ξ∗‖].

(25)
Add and subtract 1/ηk−N−1E[Uk−N] on the right hand side. This allows us to write

k∑
j=k−N

E[‖∇J(θj)‖2] ≤
k∑

j=k−N

(
1

ηj
− 1

ηj−1

)
E[Uj]−

1

ηk
E[Uk+1] +

1

ηk−N−1
E[Uk−N]

+ Lσ2
k∑

j=k−N

ηj + C

k∑
j=k−N

E[‖ξj − ξ∗‖]. (26)

By definition of Uk, E[Uk+1] ≥ 0. Therefore we can omit it from the right hand side of (26). Further,
we know that J(θ∗) ≤ UR by Assumption 1(i). Hence we have Uk ≤ 2UR/(1− γ) =: C4 for all k.

9

Substituting this fact into the preceding expression yields
k∑

j=k−N

E[‖∇J(θj)‖2] ≤
k∑

j=k−N

(
1

ηj
− 1

ηj−1

)
C4

+
1

ηk−N−1
C4 + Lσ2

k∑
j=k−N

ηj + C

k∑
j=k−N

E[‖ξj − ξ∗‖].

(27)

By unraveling the telescoping sum, the first two terms are equal to C4/ηk
k∑

j=k−N

E[‖∇J(θj)‖2] ≤ C4

ηk
+ Lσ2

k∑
j=k−N

ηj + C

k∑
j=k−N

E[‖ξj − ξ∗‖]. (28)

Substitute the ηk = k−a for the step size and apply the bound (14) in Assumption 4 using extended
notation ξk = ξTC(k)

k∑
j=k−N

E[‖∇J(θj)‖2] ≤ C4k
a + Lσ2

k∑
j=k−N

j−a + CL1

k∑
j=k−N

TC(j)−b. (29)

We break the remainder of the proof into two cases due to the fact that the right-hand side of the
preceding expression simplifies when b = 1, and is more intricate when 0 < b < 1. We focus on the
later case first.

Case (i): b ∈ (0, 1) Consider the case where b ∈ (0, 1). Set TC(k) = k. Substitute the integration
rule, namely that

∑k
j=k−N j

−a ≤ k1−a − (k −N − 1)1−a, into (29) to obtain:
k∑

j=k−N

E[‖∇J(θj)‖2] ≤C4k
a +

Lσ2

1− a
(
k1−a − (k −N − 1)1−a)

+
CL1

1− b
(
k1−b − (k −N − 1)1−b) .

(30)

Divide both sides by k and set N = k − 1

1

k

k∑
j=1

E[‖∇J(θj)‖2] ≤ C4k
a−1 +

Lσ2

1− a
k−a +

CL1

1− b
k−b. (31)

Suppose k = Kε so that we may write

1

Kε

Kε∑
j=1

E[‖∇J(θj)‖2] ≤ O
(
Ka−1
ε +K−aε +K−bε

)
. (32)

By definition of Kε, we have

ε ≤ 1

Kε

Kε∑
j=1

E[‖∇J(θj)‖2] ≤ O
(
Ka−1
ε +K−aε +K−bε

)
. (33)

Defining ` = min{a, 1− a, b}, the preceding expression then implies

ε ≤ O(K−`ε), (34)
which by inverting the expression, yields the sample complexity

Kε ≤ O(ε−1/`). (35)

Case (ii): b = 1 Now consider the case where b = 1. Set TC(k) = k + 1. Again, using the
integration rule, and that

∑k
j=k−N (j + 1)−1 ≤ log(k + 1) − log(k −N), we substitute into (29)

which yields
k∑

j=k−N

E[‖∇J(θj)‖2] ≤C4k
a +

Lσ2

1− a
(
k1−a − (k −N − 1)1−a)

+ CL1 (log(k + 1)− log(k −N)) .

(36)

10

Divide both sides by k and fix N = k − 1

1

k

k∑
j=1

E[‖∇J(θj)‖2] ≤ C4k
a−1 +

Lσ2

1− a
k−a + CL1

log(k + 1)

k
. (37)

Let k = Kε in the preceding expression, which then becomes

1

Kε

Kε∑
j=1

E[‖∇J(θj)‖2] ≤ O
(
Ka−1
ε +K−aε +

log(Kε + 1)

Kε

)
. (38)

By definition of Kε, we have

ε ≤ 1

Kε

Kε∑
j=1

E[‖∇J(θj)‖2] ≤ O
(
Ka−1
ε +K−aε +

log(Kε + 1)

Kε

)
. (39)

Optimizing over a, we have

ε ≤ O
(
K
− 1

2
ε

)
for b >

1

2
(40)

On the other hand,
ε ≤ O

(
K−bε

)
. for b ≤ 1/2 (41)

Fix ` = min{1/2, b}, then
ε ≤ O(K−`ε), (42)

which implies
Kε ≤ O(ε−1/`). (43)

This concludes the proof.

B Proof of Lemma 2

By definition of Wk, we write the expression for Wk+1

Wk+1 = J(θk+1)− Lσ2
∞∑

j=k+1

η2
j . (44)

By the Mean Value Theorem, there exists θ̃k = λθk + (1− λ)θk+1 for some λ ∈ [0, 1] such that

J(θk+1) = J(θk) + (θk+1 − θk)>∇J(θ̃k). (45)

Substitute this expression for J(θk+1) in (44)

Wk+1 = J(θk) + (θk+1 − θk)>∇J(θ̃k)− Lσ2
∞∑

j=k+1

η2
j . (46)

Add and subtract (θk+1 − θk)>∇J(θk) to the right hand side of (46) to obtain

Wk+1 = J(θk)+(θk+1−θk)>
(
∇J(θ̃k)−∇J(θk)

)
+(θk+1−θk)>∇J(θk)−Lσ2

∞∑
j=k+1

η2
j . (47)

By Cauchy Schwartz, we know (θk+1 − θk)>
(
∇J(θ̃k)−∇J(θk)

)
≥ −‖θk+1 − θk‖‖∇J(θ̃k)−

J(θk)‖. Further, by the Lipschitz continuity of the gradient, we know ‖∇J(θ̃k) − ∇J(θk)‖ ≤
L‖θ̃k − θk‖. Therefore, we have

(θk+1 − θk)>
(
∇J(θ̃k)− J(θk)

)
≥ −L‖θ̃k − θk‖ · ‖θk+1 − θk‖ ≥ −L‖θk+1 − θk‖2 , (48)

where the second inequality comes from substituting θ̃k = (1− λ)θk+1 + λθk. We substitute this
expression into the definition of Wk+1 in (47) to obtain

Wk+1 ≥ J(θk) + (θk+1 − θk)>∇J(θk)− L‖θk+1 − θk‖2 − Lσ2
∞∑

j=k+1

η2
j . (49)

11

Take the expectation with respect to the filtration Fk, substitute the definition for the actor update
(15), together with the fact that this update has bounded variance (8) (Assumption 3), to obtain

E[Wk+1|Fk] ≥ J(θk) + E[θk+1 − θk|Fk]>∇J(θk)− Lσ2η2
k − Lσ2

∞∑
j=k+1

η2
j . (50)

The terms on the right hand side outside the expectation may be identified as Wk [cf. (20)] by
definition, which allows us to write

E[Wk+1|Fk] ≥Wk + E[θk+1 − θk|Fk]>∇J(θk). (51)

Therefore, we are left to show that the last term on the right-hand side of the preceding expression is
“nearly" an ascent direction, i.e.,

E[θk+1 − θk|Fk]>∇J(θk) ≥ ηk‖∇J(θk)‖2 − ηkCE[‖ξk − ξ∗‖2|Fk]. (52)

and how far from an ascent direction it is depends on the critic estimate bias E[‖ξk − ξ∗‖2|Fk]. From
Algorithm 1, the actor parameter update may be written as

θk+1 − θk =
1

1− γ
ηkξ
>
k ϕ(sTk , aTk)∇ log π(sTk , aTk |θk). (53)

Add and subtract ηkξ>∗ ϕ(sTk , aTk)∇ log π(sTk , aTk |θk) to (53) where ξ∗ is such that the estimate
Q̂πθk (s, a) = ξ>∗ ϕ(s, a) = Qπθk (s, a) is unbiased. Hence, ‖ξTk − ξ∗‖ represents the distance
between the critic parameters corresponding to the biased estimate after k critic only steps and the
true estimate of the Q function.

θk+1 − θk =
1

1− γ
ηk(ξk − ξ∗)>ϕ(sTk , aTk)∇ log π(sTk , aTk |θk)

+
1

1− γ
ηkξ
>
∗ ϕ(sTk , aTk)∇ log π(sTk , aTk |θk).

(54)

Here we recall (11) and (12) from the derivation of the algorithm, that is that the expected value of
the stochastic estimate given θ is unbiased. Therefore, by taking the expectation of (54) with respect
to the filtration Fk, we obtain

E[θk+1−θk|Fk] =
1

1− γ
ηkE[(ξk−ξ∗)>ϕ(sTk , aTk)∇ log π(sTk , aTk |θk)|Fk]+ηk∇J(θk). (55)

Take the inner product with∇J(θk) on both sides

E[θk+1 − θk|Fk]>∇J(θk) =
1

1− γ
ηkE[(ξk − ξ∗)>ϕ(sTk , aTk)∇ log π(sTk , aTk |θk)|Fk]>∇J(θk)

+ ηk‖∇J(θk)‖2
(56)

The first term on the right-hand side is lower-bounded by the negative of its absolute value, i.e.,

E[θk+1 − θk|Fk]>∇J(θk) ≥

− 1

1− γ
ηk|E[(ξk − ξ∗)>ϕ(sTk , aTk)∇ log π(sTk , aTk |θk)|Fk]>∇J(θk)|+ ηk‖∇J(θk)‖2.

(57)

Next, we apply Cauchy Schwartz to the first term on the right-hand side of the previous expression,
followed by Jensen’s Inequality, and then Cauchy Schwartz again, to obtain

E[θk+1 − θk|Fk]>∇J(θk) (58)

≥ − 1

1− γ
ηk‖E[(ξk − ξ∗)>ϕ(sTk , aTk)∇ log π(sTk , aTk |θk)| |Fk]‖ · ‖∇J(θk)‖+ ηk‖∇J(θk)‖2

≥ − 1

1− γ
ηkE[|(ξk − ξ∗)>ϕ(sTk , aTk)|‖∇ log π(sTk , aTk |θk)‖| |Fk] · ‖∇J(θk)‖+ ηk‖∇J(θk)‖2

≥ − 1

1− γ
ηkE[‖(ξk − ξ∗)‖ · ‖ϕ(sTk , aTk)‖ · ‖∇ log π(sTk , aTk |θk)‖| |Fk] · ‖∇J(θk)‖

+ ηk‖∇J(θk)‖2.

12

Because the score function (‖∇ log π(s, a|θ)‖ ≤ BΘ), the feature map (‖ϕ(s, a)‖ ≤ C2), and
the gradient (‖∇J(θk)‖ ≤ C3) are bounded, we define C be the product of these constants with
1/(1− γ):

‖ϕ(sTk , aTk)‖ · ‖∇ log π(sTk , aTk |θk)‖ · ‖∇J(θk)‖ ≤ BΘC2C3

1− γ
=: C. (59)

which my be substituted into (58) to write

E[θk+1 − θk|Fk]>∇J(θk) ≥ −CηkE[‖ξk − ξ∗‖|Fk] + ηk‖∇J(θk)‖2 (60)

Now, we can express this relationship in terms of Wk by substituting back into (51):

E[Wk+1|Fk] ≥Wk − CηkE[‖ξk − ξ∗‖|Fk] + ηk‖∇J(θk)‖2 (61)

which is as stated in (21).

C Extended Discussion

Our main result states that actor critic converges at rate O(ε−2) when the critic converges at a rate
faster than k−1/2 and at rate O(ε−1/b) when the critic converges slower than k−1/2. This means
that when the actor critic algorithm uses a critic method which converges quickly, the actor critic
algorithm will converge faster than otherwise. Consider the critic convergence rates characterized
by Temporal Difference (TD(0)), Gradient Temporal Difference (GTD), and Accelerated Gradient
Temporal Difference (A-GTD). Depending on the assumptions on the state action space, TD(0) has
been shown to have a convergence rate of k−1/4 for continuous state action spaces. Using stochastic
compositional gradient descent, GTD can be shown to have a convergence rate of k−1/3 while
A-GTD has the fastest convergence rate k−2/5.

Indeed, our numerical simulations show that A-GTD, the actor-critic algorithm with the fastest critic
only convergence rate, converges faster than GTD or TD(0). What is interesting, however is that the
stationary point to which it converges is not considered solved. This means the agent only learned how
to avoid obstacles, but did not learn to navigate to the target. Recall that each episode was terminated
early if either the problem was solved, the norm of the gradient was below a certain threshold, or the
norm of the actor parameter grew too large. Of the three algorithms, GTD performed the poorest, and
was also the only algorithm which was terminated early due to the large actor parameter. We believe
this was because of a poor choice of actor stepsize.

Taken together, these theoretical and experimental results suggest a tight coupling between the choice
of training methodology and the quality of learned policies. Thus, just as the choice of optimization
method, statistical model, and sample size influence generalization in supervised learning, they do so
in reinforcement learning.

There are a number of future directions to take this work. To begin, we can explicitly characterize the
rate of convergence for TD(0), GTD, and A-GTD by applying bounds of the form (14) from existing
literature. Second, we can establish bounds on cases where the samples are not i.i.d., but instead
have Markovian noise. Finally, we can characterize the behavior of the variance and employ such
characterizations to accelerate training.

13

	Introduction
	Reinforcement Learning
	From Policy Gradient to Actor-Critic
	Empirical Results
	Proof of Theorem 1
	Proof of Lemma 2
	Extended Discussion

