
Improving Evolutionary Strategies With Past Descent
Directions

Florian Meier ∗, Asier Mujika†∗, Marcelo Matheus Gauy, Angelika Steger
Department of Computer Science

ETH Zürich, Switzerland
{meierflo, asierm, marcelo.matheus, steger}@inf.ethz.ch

Abstract

Evolutionary Strategies (ES) have been shown to be an effective black-box opti-
mization technique for deep neural networks when the access to the true gradients is
not possible, like in Reinforcement Learning (RL). Maheswaranathan et al. recently
showed how to use surrogate gradients to improve the gradient estimation of ES. In
this paper, we follow this line of research and propose a new method to incorporate
surrogate gradient information. We prove that it determines the direction of the
subspace of evaluated directions that is most aligned with the true gradient. As a
consequence, it is guaranteed to always improve on the surrogate direction. Further,
we propose that the previous gradient estimate can serve as surrogate gradient for
the current search point. We theoretically prove that iteratively using past gradient
estimates leads to fast convergence to the true gradient for linear functions and
yields a significant improvement for general functions. Finally, we empirically test
our approach and show that it considerably improves the gradient estimation of ES
at no extra computational cost.

1 Introduction

Designing agents that learn to successfully interact with complex environments is one of the main
open problems in artificial intelligence. In reinforcement learning (RL), an agent interacts with an
environment and the goal is finding a policy that maximizes the reward. While this goal is often
tackled with value function based approaches, evolutionary strategies (ES) have been shown to be
a viable alternative [1, 2], and were successfully applied in a variety of different settings [3, 4, 5].
ES approaches are highly parallelizable, account for robust learning while having decent data-
efficiency[1]. Moreover, black-box optimization techniques like ES do not require propagation of
gradients, are tolerant to long time horizons and do not suffer from sparse reward distributions.

The idea of ES is to compute the gradient of the (smoothed) reward function with respect to the
parameters by making random perturbations of the current search point. In many scenarios, surrogate
gradients are available for gradient estimation [6]. Here, we define surrogate gradients to be directions
that are correlated but usually not equal to the true gradient, e.g. they might be biased or unbiased
approximations of the gradient. If surrogate gradients are available to the algorithm, it was shown
in [6] that it can be beneficial to preferentially sample parameter perturbations from the subspace
defined by this direction. However, the proposed algorithm requires knowing in advance the quality
of the surrogate gradient, and it remained open how to obtain such surrogate gradients in an RL
setting.

Parallel to that, experimental evidence has established that higher order derivatives in deep learning
are usually "well behaved", in which case gradients of consecutive parameter updates correlate and

∗Equal contribution.
†Author was supported by grant no. CRSII5_173721 of the Swiss National Science Foundation.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

A PREPRINT - NOVEMBER 21, 2019

applying momentum speeds up convergence [7, 8, 9]. These observations suggest that past update
directions are promising candidates for surrogate gradients.

Our contribution is threefold:

• First, we show theoretically how to optimally combine the surrogate gradient directions
with new random search directions, even when the quality of these surrogate gradients is not
known.

• Second, we propose using the last update direction as a surrogate gradient. We prove that this
will optimally converge to the true gradient for linear functions and offer an improvement
over ES that depends on the rate of change of the gradient.

• Third, we validate experimentally that these results transfer to practice, that is, the proposed
approach computes more accurate gradients than standard ES.

2 Related Work

Evolutionary strategies [10, 11, 12] are black box optimization techniques that approximate the
gradient or descent direction by taking finite differences in random directions in parameter space.
The usefulness of ES for RL in combination with neural networks was demonstrated in [1], which
boosted the popularity of ES methods in RL in recent years [2, 3, 4, 5]. They showed that training was
efficient, despite taking a number of samples much smaller than the dimensionality of the network,
which leads to very noisy gradients.

The history of descent directions was previously used to adapt the search distribution in covariance
matrix adaptation ES (CMA-ES) [13]. However, this approach is closer to second-order methods
as it tries to also adapt the step-size based on it and uses a full covariance matrix, which makes the
algorithm quadratic and thus, impractical in high-dimensional spaces. There are different linear time
approximations of CMA-ES [14] . These approximations do often not work well. For example,
when optimizing a linear function, treating the covariance matrix as a diagonal will not lead to a
gradient approximation that is aligned with the true gradient. Instead, it will lead to an arbitrarily large
step-size in the descent direction. This is a fundamental difference to our approach. We simply try to
approximate the gradient more efficiently and then feed this gradient approximation to a first-order
optimization algorithm.

The closest work to ours is [6]. In this paper, biased estimates of the gradient are used to ’elongate’
the search space along the direction of the biased gradient. However, the approach has two main
shortcomings. First, the bias of the surrogate gradient has to be known to know how to adapt the
covariance matrix. Second, once the bias of the surrogate gradient is small enough, the algorithm
cannot improve on it. In contrast, in our algorithm, the expectation of the cosine is always larger than
that of the biased gradient and we do not need to know how biased the surrogate gradient is. These
two factors allow us to apply our algorithm iteratively, using past gradient estimates.

Applying different kinds of momentum is one of the standard tools in current deep learning and it
has been shown to speed-up learning in a very wide range of tasks [15, 8, 9]. This hints, that for
many problems the higher-order terms in deep learning models are "well-behaved" and thus, the
gradients don’t change too much after each parameter update. These approaches focus on momentum
for parameter updates and in fact, our approach can be seen as a form of momentum too but on the
search space of ES.

3 Gradient Estimation

We aim at minimizing a function f : Rn → R by steepest descent. ES computes an estimate of the
gradient of a smoothed version of f and thus provides a good parameter update direction in scenarios
where5f does not exist, or5f is impossible or computationally hard to compute.

3.1 Antithetic ES gradient estimator

ES considers the function fσ that is obtained by gaussian smoothing

fσ(x) = Eε∼N (0,I)[f(x+ σε)] . (1)

2

A PREPRINT - NOVEMBER 21, 2019

The gradient of fσ with respect to parameters x is given by

5fσ =
1

σ
Eε∼N (0,I)[f(x+ σε)ε], (2)

which can be sampled by a Monte Carlo estimator that samples random vectors ε ∼ N (0, I). Often
antithetic sampling is used, as it reduces variance [2]. The antithetic ES gradient estimator using P
samples is given by

g =

P∑
i=1

f(x+ σεi)− f(x− σεi)
2σ

εi , (3)

where εi ∼ N (0, I) for i ∈ {1, . . . , P} and σ is a hyperparameter modulating the magnitude of the
parameter perturbations.

3.2 Our one step gradient estimator

Given one surrogate gradient direction ζ, our one step gradient estimator applies the following
sampling strategy. First, it estimates how much the gradient points into the direction of ζ by
antithetically evaluating f in the direction of ζ. Second, it estimates the part of the gradient that is
orthogonal to ζ by essentially applying ES in the subspace that is orthogonal to ζ. More precisely,
it evaluates random orthogonal directions that are orthogonal to ζ. This way, our estimator detects
precisely how much one should update the parameters into the surrogate direction (the step into this
direction has length 0 if the gradient is orthogonal to the surrogate direction and maximal length if
they are parallel). Additionally, if the surrogate direction and the gradient are not perfectly aligned,
then the gradient estimate strictly improves over the surrogate direction due to the contribution from
the evaluated directions orthogonal to ζ . In the following we define our estimator formally and prove
that it possesses best possible alignment with the gradient that can be achieved with our sampling
scheme.

We assume that k orthogonal surrogate gradient directions ζ1, . . . , ζk are given to our estimator.
Denote by Rζ the subspace of Rn that is spanned by the ζi, and by R⊥ζ the subspace that is orthogonal
to R⊥ζ . Further, for any vector v, we denote by v̂ the normalized vector v

‖v‖ , and we denote by 5̂f
the normalized gradient5f . Let ε̂1, . . . , ε̂P be random orthogonal unit vectors from R⊥ζ . Then, our
estimator is defined as

gour =

k∑
i=1

f(x+ σζ̂i)− f(x− σζ̂i)
2σ

ζ̂i +

P∑
i=1

f(x+ σε̂i)− f(x− σε̂i)
2σ

ε̂i . (4)

We write 5f = 5f‖ζ + 5f⊥ζ , where 5f‖ζ and 5f⊥ζ the projections of 5f on Rζ and R⊥ζ ,
respectively. In essence, the first sum in (4) computes5f‖ζ by assessing the quality of each surrogate
gradient direction, and the second sum estimates5f⊥ζ similar to an orthogonalized antithetic ES
gradient estimator, that samples directions from R⊥ζ , see [2]. We remark that we require orthogonal
unit directions ε̂i for the proofs. In practice this is nearly identical as sampling εi from a N (0, I)
distribution, because in high-dimensional space the norm of εi ∼ N (0, I) is highly concentrated
around 1 and the cosine of two such random vectors is almost surely very close to 0.

For the sake of analysis, we assume that f is differentiable and we assume equality for the following
first order approximation

f(x+ σε̂)− f(x− σε̂)
2σ

≈ 〈5f(x), ε̂〉

In the following we will omit the x in 5f(x). Remark that when sampling 〈5f, vi〉 for arbitrary
directions vi, then no information about search directions orthogonal to the subspace spanned by the
vis is obtained. Therefore, one can only hope for finding the best approximation of5f lying within
the subspace spanned by the vi’s. Our first theorem states that gour computes the direction in the
subspace spanned by ζ1, . . . , ζk, ε1, . . . , εP that is most aligned with5f .
Theorem 1 (Optimal direction of gour). Let ζ1, . . . , ζk, ε1, . . . , εP be orthogonal vectors in Rn. The
direction ε of the subspace spanned by ζ1, . . . , ζk, ε1, . . . , εP , that maximizes the cosine 〈5̂f, ε̂〉
between 5f and ε, is given by the projection of 5f on this subspace. Especially, ε is given by
gour =

∑k
i=1〈5f, ζ̂i〉ζ̂i +

∑P
i=1〈5f, ε̂i〉ε̂i, and 〈5̂f, ε̂〉2 =

∑k
i=1〈5̂f, ζ̂i〉2 +

∑P
i=1〈5̂f, ε̂i〉2.

3

A PREPRINT - NOVEMBER 21, 2019

The proof of this theorem follows easily from the Cauchy-Schwarz inequality and is given in the
appendix.

3.3 Iterative application of our estimator

We suppose that the last gradient estimate is more aligned with the gradient than a random direction.
Thus, we propose to use the previous gradient estimate as surrogate direction for the current time step
in our gradient estimator. Thereby, the estimator improves over the surrogate direction in every time
step, and converges to the true gradient if the gradient does not change over time. In the following,
we rigorously analyze the convergence rate of this iterative gradient estimation process for linear
functions, and determine the convergence value for general functions assuming some simplifying
assumptions.

Denote by xt the search point at time t and by ζt the parameter update step that is applied at time
t, that is, xt+1 = xt + ζt. For the analysis, we assume that in order to obtain an estimate for the
gradient 5f(xt), we compute gour by evaluating the last update direction ζt−1 and one random
direction εt orthogonal to ζt−1:

ζt = 〈5ft, ζ̂t−1〉ζ̂t−1 + 〈5ft, ε̂t〉ε̂t . (5)

We remark that restricting the analysis to one direction ε̂t is no restriction at all, because the right
hand side of (4) can be obtained by choosing ε̂t =

∑P
i=1〈5ft, ε̂i〉ε̂i and ζ̂t =

∑k
i=1〈5ft, ζ̂i〉ζ̂i.

The next theorem quantifies how fast the cosine between ζt and5ft converges to 1, if f is a linear
function, that is,5ft does not change over time.
Theorem 2 (Convergence rate for linear functions). Let c ≈ 1 be the constant such that the expected
cosine squared between two random vectors in an N − 1-dimensional space is c

N−1 . Let Xt =

〈5̂f, ζ̂t〉 be the random variable that denotes the cosine between ζt and 5ft at time t. Then, the
expected drift of X2

t is E[X2
t −X2

t−1|Xt−1 = xt−1] = (1 − x2t−1) c
N−1 . Moreover, let ε > 0 and

define T to be the first point in time t with X2
t ≥ 1− δ. It holds

E[T] ≤ N − 1

c
min{1− δ

δ
, 1 + ln(1/δ)} . (6)

The first bound E[T] ≤ N−1
c

1−δ
δ is tight for δ close to 1 and follows by an additive drift theorem,

while the second bound E[T] ≤ N−1
c (1 + ln(1/δ)) is tight for δ close to 0 and follows by a variable

drift theorem, see appendix.

Naturally, the linear case is not the most interesting one. However, it is hard to rigorously analyse the
case of general f , because it is unpredictable how the gradient5ft differs from5ft−1. Note that
5ft−5ft−1 ≈ Hζt−1, where H is the Hessian matrix of f at xt−1. We define αt = 〈5̂ft, 5̂ft−1〉
and write 5̂ft = αt5̂ft−1 +5f⊥ where5f⊥ is orthogonal to 5̂ft and has norm 1 − α2

t . Then,
the first term of (5) is equal to

〈5̂ft, ζ̂t−1〉2 = 〈αt5̂ft−1 +5f⊥, ζ̂t−1〉2 =
(
αt〈5̂ft−1, ζ̂t−1〉+ 〈5f⊥, ζ̂t−1〉

)2
. (7)

In the following, we assume that5f⊥ is a direction orthogonal to5ft−1 chosen uniformly at random.
Though, this assumption is not entirely true, it allows to get a grasp on the approximate cosine that
our estimator is going to converge to.
Theorem 3. Let xt−1 be the cosine between two vectors 5̂ft−1 and ζt−1. Further, let 1 ≥ αt ≥ 0

and 5̂ft = αt5̂ft−1 + 5f⊥, where 5f⊥ is a random vector orthogonal to 5̂ft−1 with norm√
1− α2

t . Choose ζt according to Equation (5) and define xt to be the cosine between 5̂ft and ζ̂t.
Then,

E[x2t |xt−1] =
(
α2
tx

2
t−1 + (1− α2

t)(1− x2t−1)
c

N − 1

)(
1− c

N − 1

)
+

c

N − 1
.

The last theorem implies that the evolution of the cosine depends heavily on the cosine αt between

consecutive gradients. Let A =
(1−α2

t)
c

N−1 (1−
c

N−1)+
c

N−1

1−(α2
t+(1−α2

t
c

N−1)(1−
c

N−1))
. Then, the theorem implies that the drift

E[x2t − x2t−1|xt−1] is positive if xt−1 ≤ A and negative otherwise. Thus, if αt would not change
over time, we would expect xt to converge to A.

4

A PREPRINT - NOVEMBER 21, 2019

Figure 2: The blue line represents the absolute
value of the cosine between the gradient before
and after a parameter update. The green line rep-
resents the expected absolute value of the cosine
with respect to a random vector.

Figure 3: The lines represent the ratio between
the gradient computed by our algorithm and
the one computed by ES. The blue and yellow
line correspond to the best models for SGD and
Adam, respectively.

Figure 4: Training log-likelihood (y-axes) of the
best three learning rates for ES (red line) with
Adam (top) and SGD (bottom). Our algorithm
(blue) uses the same parameters as ES.

Table 1: Results on the MNIST digit classification
task of the best performing learning rate for each
optimizer. While the final performance of our al-
gorithm is still better than ES, the main advantage
can be seen early on training.

Optimizer Steps until loss < 0.6 Final loss

ES + Adam 433 0.242
Ours + Adam 182 0.216

ES + SGD 727 0.305
Ours + SGD 295 0.278

4 Experiments

In this section, we will empirically evaluate the performance of our algorithm when combined with
deep neural networks. In our first set of experiments, we will train digit classifiers on MNIST. For
this task, we can compute the true gradient, and compare the gradient estimates computed by standard
ES and our algorithm to it. Additionally, this task allows us to study the optimization aspects of
ES , while ignoring more complex phenomena that occur in Reinforcement Learning (RL), like
exploration or function smoothing. Finally, we will also test our algorithm in a set of RL robotics
tasks (Roboschool).

4.1 MNIST

For these experiments, we use a fully connected neural network with two hidden layers of 1000 units
each with a tanh non-linearity. For standard ES 128 random perturbations are evaluated at each step.
For our algorithm the previous gradient estimate and 126 random perturbations are evaluated. To
eliminate the noise of the function evaluations, all perturbations are evaluated on the same batch of
images (the batch is resampled after every step). We use small perturbations (σ = 0.001), as the
objective function is already differentiable and there is no function evaluation noise. We test both
SGD and Adam optimizers with learning rates in the range 100.5, 100, . . . , 10−3.

We train the network with our algorithm and measure three different aspects over the training process.
First, we want to validate the idea that consecutive gradients are correlated in consecutive steps in
deep neural networks. For this, at each step of training, we will compute the cosine of the gradient
with respect to the gradient at the previous step. We do this by computing the gradient using back-
propagation. Second, we will compare the gradients computed by standard ES and our algorithm
to the gradient computed by back-propagation. This is done over a single network trained with our
algorithm (such that ES and our algorithm are evaluated at the same search points). Third, we train
the network also with standard ES, to see the effect of the improved gradient estimation in practice.

5

A PREPRINT - NOVEMBER 21, 2019

Figure 2 show consecutive gradients are highly correlated, specially taking into account the high
dimensionality (1.8M parameters) of the model. In Figure 3, we can see how in the initial steps our
algorithm get a gradient estimate that is considerably better than standard ES and then it converges to
sligthly above what ES does. In fact, the steps in which our algorithm performs best, match the ones
where the consecutive gradients are more highly correlated (see Figure 2), just as we would expect
from our theoretical analysis. Finally, Figure 4 shows that our algorithm outperforms standard ES in
final performance, but specially in speed of convergence, for all parameters that we tried. See also
Table 1.

4.2 Robotic RL environments

For the next set of experiments, we evaluate our algorithm on three different robotics task of
the Roboschool environment: RoboschoolInvertedPendulum-v1, RoboschoolHalfCheetah-v1 and
RoboschoolAnt-v1. We use most of the hyper-parameters from the OpenAI implementation 3 . That
is, two hidden layers of 256 units each and with a tanh non-linearity. Further, we use a learning rate
of 0.01, a perturbation standard deviation of σ = 0.02 and the Adam optimizer, and we also apply
fitness shaping [14]. For standard ES 128 random perturbations are evaluated at each step. For our
algorithm the previous gradient estimate and 126 random perturbations are evaluated.

For the Ant and Cheetah environments, we observed with this setup, that agents often get stuck in a
local optima where they stay completely still, instead of running forward. As this happens for both,
ES and our algorithm, we tweaked the environments in order to ensure that a true solution to the task
is learned and not some some degenerate optima, we tweaked the environments in the following way.
We remove the penalty for using electricity and finish the episode if the agent does not make any
progress in a given amount of time. In this way, agents consistently escape the local minima. We use
a tanh non-linearity on the output of the network, which increased stability of training, as otherwise
the output of the network would become very large without an electricity penalty.

Figure 5: Performance of our algorithm (red line)
and ES (blue line) on three different Roboschool
tasks: Ant (left), Cheetah (center) and Pendulum
(right). The plot shows the mean average reward
over 9 repetitions as a function of time-steps (in
thousands).

Our approach outperforms ES in the pendulum
task, but offers only a small improvement over
ES in the other two tasks, see Figure 5. We ob-
served that our approach finds parameters with
larger norms. This is likely because the consec-
utive parameter updates are more correlated in
our approach. Since we use a fixed perturbation
size, we speculate, that the exploration is hin-
dered in our approach as a consequence of the
large parameter norms. Thus, that the benefits
of more accurate gradients may be counteracted
by the worse exploration. However, this is not
an inherent issue with our approach and can be
fixed, for example, by using other sources of
exploration [16], or adaptive perturbation sizes.

5 Conclusion

We proposed an approach that optimally incorporates surrogate gradient directions into ES, in the
sense that it determines the direction with maximal cosine to the true gradient from the subspace of
evaluated directions. Such a method has many applications as elucidated in [6]. Further, we showed
that previous gradient estimates can iteratively be used as good candidate directions for our gradient
estimator. We theoretically quantified the benefits of the proposed iterative gradient estimation.
Finally, we showed that our approach in combination with deep neural networks considerably
improves the gradient estimation capabilities of ES, at no extra computational cost.

While our approach offered only a small advantage in Reinforcement Learning, we showed that this
is likely related to large parameter norms, that hinder exploration. However, if the exploration issue
is fixed, the promising results on MNIST indicate that Evolutionary Strategies, a key algorithm in the
current Reinforcement Learning toolbox, can be greatly speed-up.

3https://github.com/openai/evolution-strategies-starter

6

https://github.com/openai/evolution-strategies-starter

A PREPRINT - NOVEMBER 21, 2019

References
[1] Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. Evolution strategies

as a scalable alternative to reinforcement learning. arXiv preprint arXiv:1703.03864, 2017.
[2] Krzysztof Choromanski, Mark Rowland, Vikas Sindhwani, Richard E Turner, and Adrian Weller.

Structured evolution with compact architectures for scalable policy optimization. arXiv preprint
arXiv:1804.02395, 2018.

[3] Xiaodong Cui, Wei Zhang, Zoltán Tüske, and Michael Picheny. Evolutionary stochastic gradient
descent for optimization of deep neural networks. In Advances in neural information processing
systems, pages 6048–6058, 2018.

[4] Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, OpenAI Jonathan Ho,
and Pieter Abbeel. Evolved policy gradients. In Advances in Neural Information Processing
Systems, pages 5400–5409, 2018.

[5] David Ha and Jürgen Schmidhuber. Recurrent world models facilitate policy evolution. In
Advances in Neural Information Processing Systems, pages 2450–2462, 2018.

[6] Niru Maheswaranathan, Luke Metz, George Tucker, Dami Choi, and Jascha Sohl-Dickstein.
Guided evolutionary strategies: augmenting random search with surrogate gradients. In Interna-
tional Conference on Machine Learning, pages 4264–4273, 2019.

[7] Timothy Dozat. Incorporating nesterov momentum into adam. 2016.
[8] Ilya Sutskever, James Martens, George Dahl, and Geoffrey Hinton. On the importance of

initialization and momentum in deep learning. In International conference on machine learning,
pages 1139–1147, 2013.

[9] Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

[10] Ingo Rechenberg. Evolution strategy: Optimization of technical systems by means of biological
evolution. Fromman-Holzboog, Stuttgart, 104:15–16, 1973.

[11] Hans-Paul Schwefel. Evolutionsstrategien für die numerische optimierung. In Numerische
Optimierung von Computer-Modellen mittels der Evolutionsstrategie, pages 123–176. Springer,
1977.

[12] Yurii Nesterov and Vladimir Spokoiny. Random gradient-free minimization of convex functions.
Foundations of Computational Mathematics, 17(2):527–566, 2017.

[13] Nikolaus Hansen. The cma evolution strategy: A tutorial. arXiv preprint arXiv:1604.00772,
2016.

[14] Daan Wierstra, Tom Schaul, Tobias Glasmachers, Yi Sun, Jan Peters, and Jürgen Schmidhuber.
Natural evolution strategies. The Journal of Machine Learning Research, 15(1):949–980, 2014.

[15] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[16] Edoardo Conti, Vashisht Madhavan, Felipe Petroski Such, Joel Lehman, Kenneth Stanley, and
Jeff Clune. Improving exploration in evolution strategies for deep reinforcement learning via a
population of novelty-seeking agents. In Advances in Neural Information Processing Systems,
pages 5027–5038, 2018.

[17] Johannes Lengler and Angelika Steger. Drift analysis and evolutionary algorithms revisited.
Combinatorics, Probability and Computing, 27(4):643–666, 2018.

A Proof of Theorems

In this Section we proof the theorems from the main paper rigorously.

A.1 Proof of Theorem 1

Note that for this theoerem there is no distinction between the directions ζi and εi. For the ease
of notation, we therefore denote ζ1, . . . , ζk, ζ1, . . . , ζP by ε1, . . . , εm. The theorem is a simple
application of the Cauchy-Schwarz inequality. We can write ε =

∑m
i=1 αiε̂i. Denote by5f‖ε(x) =

7

A PREPRINT - NOVEMBER 21, 2019

∑m
i=1〈5f(x), ε̂i〉ε̂i the projection of5f(x) in the hyper plane spanned by the εis. Then, Cauchy-

Schwarz implies
〈5f(x), ε〉 = 〈5f‖ε(x), ε〉 ≤ ‖ 5 f‖ε(x)‖‖ε‖ , (8)

where equality holds if and only if ε and5f‖ε(x) have the same direction. In particular, in this case
the cosine is

〈5̂f(x), ε̂〉2 =
‖ 5 f‖ε(x)‖2

‖ 5 f(x)‖2
=

m∑
i=1

〈5̂f(x), ε̂i〉2 (9)

A.2 Proof of Theorem 2

When taking one sample per time step, ε̂t is a random unit vector orthogonal to ζ̂t−1. We can
split 5̂f = 5f⊥ζ + 5f‖ζ into an orthogonal to ζ̂t−1part and a parallel to ζ̂t−1 part. It holds
〈5̂f‖ζ , ε̂t〉 = 0 and ‖ 5 f⊥ζ‖2 = 1− 〈5̂f, ζ̂t−1〉2. Recall that 5̂f⊥ζ = 5f⊥ζ

‖5f⊥ζ‖ , then

〈5̂f, ε̂t〉2 = 〈5f⊥ζ , ε̂t〉2 = (1− 〈5̂f, ζ̂t−1〉2)〈5̂f⊥ζ , ε̂t〉2 = (1−X2
t−1)〈5̂f⊥ζ , ε̂t〉2 , (10)

and therefore

X2
t = 〈5̂f, ζ̂t−1〉2 + 〈5̂f, ε̂t〉2 = X2

t−1 + (1−X2
t−1)〈5̂f⊥ζ , ε̂t〉2 (11)

(12)

Define the random process Yt = 1−X2
t . It holds

Yt = 1−X2
t−1 + (1−X2

t−1)〈5̂f⊥ζ , ε̂t〉2 = Yt−1(1− 〈5̂f⊥ζ , ε̂t〉2) , and (13)

E[Yt|Yt−1 = yt−1] = yt−1

(
1− E[〈5̂f⊥ζ , ε̂t〉2]

)
= yt−1

(
1− c

N − 1

)
, (14)

where we used that ε̂t is a random vector in the N − 1 dimensional space that is orthogonal to ζ̂t−1
and5f⊥ζ is a vector in the same subspace, which implies E[〈5̂f⊥ζ , ε̂t〉2] = c

N−1

In order to derive the first bound on T , we bound the drift of Yt for Yt ≥ δ.

E[Yt|Yt−1 = yt−1, yt−1 ≥ δ] = yt−1 − yt−1
c

N − 1
≤ yt−1 − δ

c

N − 1
(15)

In order to apply Theorem 4, we define the auxiliary process Zt = Yt − δ. Then, T is the expected
time that Zt hits 0. Since E[Zt|Zt−1 = zt−1, zt−1 ≥ 0] ≤ zt−1− δ c

N−1 and Z0 = 1− δ, Theorem 4
implies that

E[T] ≤ 1− δ
δ

N − 1

c
(16)

In order to apply Theorem 5, to show the second bound on T , we need to rescale Yt such that it takes
values in {0} ∪ [1,∞). Define the auxiliary process Zt by

Zt =

{
Yt/δ if Yt ≥ δ
0 if Yt < δ

. (17)

Then, T is the expected time that Zt hits 0. The process Zt satisfies

E [Zt|Zt−1 = zt−1, zt−1 ≥ 1] ≤ E [Yt/δ|Yt−1 = δzt−1, zt−1 ≥ 1] ≤ zt−1
(
1− c

N − 1

)
. (18)

Since Z0 = 1/δ, Theorem 5 for h(z) = z c
N−1 implies that

E[T] ≤ N − 1

c
+

∫ 1/δ

1

N − 1

cu
du =

N − 1

c
(1 + ln(1/δ) .

8

A PREPRINT - NOVEMBER 21, 2019

A.3 Proof of Theorem 3

Intuitively, the idea is simple. We have 〈5̂ft, ζ̂t〉2 = 〈5̂ft, ζ̂t−1〉2 + 〈5̂ft, ε̂t〉2. As before we can
write 〈5̂ft, ε̂t〉2 = (1− 〈5̂ft, ζ̂t−1〉2)〈5̂f⊥ζ̂t−1

, ε̂t〉2 and note that E[〈5̂f⊥ζ̂t−1
, ε̂t〉2] = c

N−1 , as ε̂

is a random direction orthogonal to ζ̂t−1. This implies that

E[〈5̂ft, ζ̂t〉2] =
(
1− c

N − 1

)
E[〈5̂ft, ζ̂t−1〉2] +

c

N − 1
(19)

To understand how the xt evolves we need to analyze how 〈5̂ft, ζ̂t−1〉2 relates to 〈5̂ft−1, ζ̂t−1〉2.
To that end, we set αt = 〈5̂ft, 5̂ft−1〉 and write 5̂ft = αt5̂ft−1+5f⊥ where5f⊥ is orthogonal
to 5̂ft and has norm 1− α2

t . Then, the first term of (5) is equal to

〈5̂ft, ζ̂t−1〉2 = 〈αt5̂ft−1 +5f⊥, ζ̂t−1〉2 =
(
αt〈5̂ft−1, ζ̂t−1〉+ 〈5f⊥, ζ̂t−1〉

)2
. (20)

It follows that

E[〈5̂ft, ζ̂t−1〉2] = α2
tx

2
t−1 + 2αtxt−1E[〈5f⊥, ζ̂t−1〉] + E[〈5f⊥, ζ̂t−1〉2] (21)

= α2
tx

2
t−1 + (1− α2

t)(1− x2t)
c

N − 1
, (22)

where E[〈5f⊥, ζ̂t−1〉] = 0 follows from the randomness of f⊥, and

E[〈5f⊥, ζ̂t−1〉2] = E[〈5f⊥, ζ̂t−1⊥5ft−1
〉2] (23)

= ‖ 5 f⊥‖2‖ζ̂t−1⊥5ft−1
‖2E[〈 5f⊥

‖ 5 f⊥‖
,
ζ̂t−1⊥5ft−1

‖ζ̂t−1⊥5ft−1
‖
〉2] (24)

= (1− α2
t)(1− x2t)

c

N − 1
. (25)

Then, plugging in Equation (21) into (19), implies the theorem.

B Drift Theorems

For the proves of 2, we use two drif theorems from [17].
Theorem 4 (Additive Drift, Theorem 1 from [17]). Let (Xt)t∈N0

be a Markov chain with state space
S ⊂ [0,∞) and assume X0 = n. Let T be the earliest point in time t ≥ 0 such that Xt = 0. If there
exists c > 0 such that for all x ∈ S, x > 0 and for all t ≥ 0 we have

E[Xt+1|Xt = x] ≤ x− c .

Then,
E[T] ≤ n

c
.

Theorem 5. Variable Drift, Theorem 4 from [17]] Let (Xt)t∈N be a Markov chain with state space
S ⊂ {0} ∪ [1,∞) and with X0 = n. Let T be the earliest point in time t ≥ 0 such that Xt = 0.
Suppose furthermore that there is a positive, increasing function h : [1,∞)→ R>0 such that for all
x ∈ S, x > 0 we have for all t ≥ 0

E[Xt+1|Xt = x] ≤ x− h(x) .
Then,

E[T] ≤ 1

h(1)
+

∫ n

1

1

h(u)
du .

9

	Introduction
	Related Work
	Gradient Estimation
	Antithetic ES gradient estimator
	Our one step gradient estimator
	Iterative application of our estimator

	Experiments
	MNIST
	Robotic RL environments

	Conclusion
	Proof of Theorems
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Drift Theorems

