
Trajectory-wise Control Variates for Variance
Reduction in Policy Gradient Methods

Xinyan Yan*∗

Georgia Tech
xinyan.yan@cc.gatech.edu

Ching-An Cheng*

Georgia Tech
cacheng@gatech.edu

Byron Boots
Georgia Tech

bboots@cc.gatech.edu

Abstract

Policy gradient methods have demonstrated success in reinforcement learning, but
they are also notoriously sample-inefficient. This can be attributed, at least in part,
to the high variance in gradient estimates based on Monte Carlo methods. Previous
research has endeavored to contend with this problem by control variates (CVs),
including the early baselines, state dependent CVs, and the more recent state-action
dependent CVs. In this work, we analyze the properties and drawbacks of previous
CV techniques. Surprisingly, we find that these works have overlooked an important
fact that Monte Carlo gradient estimates are generated by trajectories of states and
actions. We show that ignoring the correlation across the trajectories can result in
suboptimal variance reduction, and we propose a simple fix: a class of trajectory-
wise CVs, that can further drive down the variance. We show that trajectory-wise
CVs can be computed recursively and requires only learning Q-functions like the
previous CVs for policy gradient. We further prove that the proposed approach are
optimal for variance reduction under reasonable assumptions.

1 Introduction
Policy gradient methods [1–6] are a popular class of model-free reinforcement learning (RL) algo-
rithms. They have many advantages, including simple update rules and convergence guarantees [2, 7–
9]. However, basic policy gradient methods, like REINFORCE [1], are also notoriously sample
inefficiency. This can be attributed, at least in part, to the high variance in Monte Carlo gradient
estimates, which stems from both policy stochasticity necessary for exploration as well as stochastic
environmental dynamics. The high variance is further exacerbated as the horizon becomes longer and
the dimension becomes higher. If the variance of gradient estimates can be reduced, then the learning
speed of policy gradient methods can be accelerated [10, 6].

Variance reduction has been studied since early work of policy gradient methods. For example,
function approximators (critics) have been adopted to (partially) replace the Monte Carlo estimates,
which reduces variance but at the expense of bias in the search direction [2, 11–15]. This bias-variance
tradeoff can work well in practice, but can also diverge when not tuned carefully [14, 16, 9].

Another line of research uses the control variate (CV) method from statistics, designed for reducing
variance in Monte Carlo methods without introducing bias [2, 17–24]. For policy gradient especially,
the state dependent CVs (also known as baselines or reward reshaping [17, 19]) have been thoroughly
investigated [18]. Common state dependent CVs are constructed as approximators of the policy’s
value function, which admits update rules based on standard policy evaluation techniques. Overall,
state dependent CVs are simple to implement and have been found to be quite effective, but the
resulting policy gradients can still posses detrimentally high variance, especially in problems that has
a long horizon. This has motivated the recent development of state-action dependent CVs [20–23, 25],
which can further reduce the variance due to randomness in the actions.
∗Equal contribution.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

Considering the decades-long development of CV methods, one might wonder if there is a need
for new policy gradient CV techniques. In this paper, we argue that the past development of CVs
for policy gradients has overlooked an important fact that the Monte Carlo gradient estimates are
generated by rolling out a policy and collecting statistics along a trajectory of states and actions.
Instead the focus has been on sampling pairs of states and actions, ignoring the correlation between
states and actions across time steps. Recently [23] empirically analyzed the variance of instantaneous
state-action pairs and compared this to the variance correlations across time steps in multiple simulated
robot locomotion tasks. They found that the variance due to long-term trajectories is often larger than
the variance due to instantaneous state-action pairs, implying a potential room for improvement.

In this paper, we theoretically analyze the properties of previous CVs, and show that indeed the
variance due to long-term trajectories has non-negligible effects. Motivated by this observation, we
propose a family of trajectory-wise CVs, called TrajCV, which augment existing CVs with extra
terms to additionally cancel this long-term variance. We show that TrajCV is particularly effective
when the transition dynamics, despite unknown, is close to deterministic. Like existing CVs, TrajCV
requires only knowledge of state-action value function (i.e. Q-function) approximates, and can be
computed recursively. Furthermore, we prove that TrajCV is optimal for variance reduction under
reasonable assumptions. These theoretical insights are validated in simulation (Appendix A).

Upon finishing this work we discovered a recent technical report [24] that is motivated similarly and
details exactly the equation (11) that TrajCV uses. Their empirical results on simulated LQG tasks
are encouraging too: TrajCV demonstrated superior performance compared with previous state and
state-action dependent CVs. By contrast, we derive TrajCV following a completely different route,
which brings extra insight into the previous deficiency and suggests natural ways for improvement.
In addition, we analyze other potential trajectory-wise CVs and prove the proposed idea is optimal.

2 Problem Setup and Background
We consider episodic policy optimization in a finite-horizon Markov Decision Process (MDP) [26, 27]
with horizon h, state space S, action space A, instantaneous cost function c : S × A → R, initial
state distribution pinit, and dynamics P .2 Given a parameterized stochastic policy class Π the goal is
to search for a policy in Π that achieves low accumulated costs averaged over trajectories

J(π) := E[
∑h
t=1 Ct], where Ct := c(St, At), S1 ∼ pinit, At ∼ πSt , St+1 ∼ PSt,At (1)

where Ps,a denotes the distribution of the next state after applying action a ∈ A at state s ∈ S,
and πs denotes the distribution of action at state s ∈ S. Note that St and At are the sampled state
and action at step t. For simplicity of writing, we embed the time information into the definition of
state, e.g., c(St, At) can represent non-stationary functions. The randomness in (1) consists of the
randomness in the start state, policy, and dynamics. In this work, we focus on the case where the
dynamics P and the start state distribution pinit are unknown, but the instantaneous cost c is known.

We use uppercases to denote random variables, such as St and At, with the exception of J . We
will use subscript i..j to denote the set of random variables, i.e. X1..5 = {X1, . . . , X5}, and i:j

to denote summation (i.e. C1:h =
∑h
t=1 Ct). As we will be frequently manipulating conditional

distributions, we adopt the subscript notation below to write conditional expectation and variance. For
EX|Y [f(X,Y)] of some function f , X denotes the random variable where the expectation is defined
and Y denotes the conditioned one. Furthermore, for f(X1..N , Y), we use E|Y [f(X1..N , Y)] as a
shorthand to denote taking the expectation over all other random variables (i.e. X1..N) conditioned
on Y . This subscript notation also applies to variance, which is denoted as Var.

2.1 Policy Gradient Methods: Pros and Cons
The goal of this paper is to improve policy gradient methods [1, 7, 2–4, 13, 5, 6]. These algorithms
treat minimizing (1) as a first-order stochastic non-convex optimization problem, where noisy,
unbiased gradient estimates of J in (1) are used to inform policy search. The basic idea is to apply
the likelihood-ratio method to derive the gradient of (1). Let us define Nt := ∇ log πSt

(At), where
∇ is the derivative with respect to the policy parameters, and define qπ as the Q-function of π; that is,
qπ(St, At) = E[Ct:h] where the expectation is generated by taking At at St and then π afterwards.
Define G := G1:h and Gt := NtCt:h. Then it follows [1]

∇J(π) = E[
∑h
t=1Ntq

π(St, At)] = E [G] , (2)
2We use one-based indexing throughout the manuscript.

2

where the second equality is due to qπ(St, At) := E[Ct:h]. Eq. (2) is an expectation over trajectories
generated by running π, so we can treat the random vector G as an unbiased estimate of ∇J(π),
which can be computed by executing the policy π starting from initial distribution and then recording
the statistics Gt, for t ∈ {1, . . . , h}. This technique is known as the Monte Carlo estimate.

The policy gradient methods optimize policies based on gradient estimates constructed using the
idea above. While they have numerous advantages as we discussed, simply using the Monte Carlo
estimate G in policy optimization (i.e. the vanilla implementation of REINFORCE) can result in
poor parameter updates due to excessive variance [13, 14], making learning sample-inefficient.

2.2 Variance Reduction and Control Variate
A powerful technique for reducing the variance in the Monte Carlo estimates is the CV method [28,
29]. Leveraging correlation between random estimates, the CV method has formed the backbone
of many state-of-the-art stochastic optimization algorithms [30–32], in particular, practical policy
gradient methods for RL [18] because of the high-variance issue of G discussed in the previous
section. Below, we review the basics of the CV method as well as previous CV techniques designed
for reducing the variance of G. Without loss of generality, we suppose only one trajectory is sampled
from the MDP to construct the estimate of (2) and study the variance of different single-sample
estimates. We remind that the variance can be always further reduced, when more i.i.d. trajectories
are sampled (i.e. using mini batches).

2.3 The Control Variate Method
Consider the problem of estimating the expectation E[X], where X is a (possibly multivariate)
random variable. The CV method [28, 29] is a technique for synthesizing unbiased estimates of E[X]
that potentially have lower variance than the naive sample estimate X . It works as follows: Assume
that we have access to another random variable Y , called the CV, whose expectation E[Y] is cheaper
to estimate than E[X]. Then we can devise this new estimate by a linear combination,

X − Ω>(Y −E[Y]), (3)

where Ω is a properly-shaped matrix. Due to the linearity of expectation, the estimate in (3) is
unbiased. While theoretically one can compute the optimal Ω, it requires many data. Therefore, in
practice Ω is often set as the identity matrix, which often works well when Y is positively correlated
with X . The resulting estimate X − (Y −E [Y]) is known as the difference estimator [29] and has
variance Var [X − Y], meaning that if Y is close to X then the variance becomes smaller.

2.4 Common Control Variates for Policy Gradient Methods
The art to various CV methods lies in the design of the correlated random variable Y . The choice is
often domain-dependent, based on how X is generated. When estimating the policy gradient in (2),
many structures (e.g. the Markov property) can be leveraged to design CVs, as we shall discuss.
Following previous works (e.g. [18, 23]) here we focus on the policy gradient component Gt of G
given in (2) for simplicity of exposition.3 The most commonly used CVs for policy gradient [1, 17, 18]
are state-dependent functions v̂ : S → R, which leads to the difference estimator

G̃s
t := Gt −

(
NtV̂t −EAt|St

[NtV̂t]
)

= Gt −NtV̂t, where V̂t := v̂(St), (4)

and the expectation vanishes as EAt|St
[NtV̂t] = V̂t∇EAt|St

[1] = 0.4 Recently, state-action CVs
q̂ : S × A → R have also been proposed [20–23, 25, 33], in an attempt to reduce more variance
through CVs that better correlate with Gt. The state-action CVs yields the difference estimator

G̃sa
t := Gt −

(
NtQ̂t −EAt|St

[NtQ̂t]
)
, where Q̂t := q̂(St, At). (5)

Usually v̂ and q̂ are constructed as function approximators of the value function vπ and the Q-function
qπ of the current policy π, respectively, and learned by policy evaluation, e.g., variants of TD(λ) [34],
during policy optimization. Therefore, these methods can also be viewed as unbiased actor-critic
approaches. In practice, it has been observed that these CVs indeed accelerate policy optimization,
especially in simulated robot control tasks [20, 21, 23, 25, 33].

3The variance of G can be bounded by the variance of Gt (Appendix B.3). Tighter bounds can be derived
when assumptions on the MDP is made, e.g., faster mixing rate [18].

4State dependent functions naturally include non-stationary constant baselines in our notation.

3

3 Why We Need New Control Variates
Given the decades-long development of CVs for policy gradient reviewed above, one might wonder
if there is a need for new policy gradient CV techniques. If so, what is the additional gain we can
potentially have? To answer, let us analyze the variance of policy gradient component Gt and how
the CVs above reduce it. By the law of total variance, Var[Gt] can be decomposed into three terms

VarSt
E|St

[NtCt:h] + ESt
VarAt|St

[
NtE|St,At

[Ct:h]
]

+ ESt,At
Var|St,At

[NtCt:h] , (6)

where the first term is due to the randomness of policy and dynamics before getting to St, the second
term is due to policy randomness alone at step t, i.e. selecting At, and the third term is due to again
both the policy and the dynamics randomness in the future trajectories, i.e. after St and At.5 Let us
measure the size of these three terms by their trace and define

VSt
:= Tr

(
VarStE|St

[NtCt:h]
)
, VAt|St

:= Tr
(
EStVarAt|St

[
NtE|St,At

[Ct:h]
])
,

V|St,At
:= Tr

(
ESt,AtVar|St,At

[NtCt:h]
)
.

(7)

Hence, Tr (Var[Gt]) = VSt
+ VAt|St

+ V|St,At
. The following theorem shows the size of each

term when the policy is Gaussian, which is commonly the case for problems with continuous actions.

Theorem 3.1. Suppose the policy π is Gaussian such that πSt
(At) = N (At|µθ(St), σI), where

µθ is the mean function, and θ and σ > 0 are learnable parameters. Assume the cost function c
is bounded and the Q-function qπ(s, a) is analytic in a. Then for small enough σ, it holds that
VSt

= O(h2), VAt|St
= O(h2/σ4), and V|St,At

= O(h2/σ4).

Here we focus on the effects due to the problem horizon h and the policy variance σ. Theorem 3.1
(proved in Appendix B.2) shows that, when the stochasticity in policy decreases (e.g. when it passes
the initial exploration phase) the terms VAt|St

and V|St,At
will dominate variance in policy gradients.

An intuitive explanation to this effect is that, as the policy becomes more deterministic, it becomes
harder to compute the derivative through zero-order feedback (i.e. accumulated costs). In particular,
one can expect that V|St,At

is likely to be larger than VAt|St
when the variation of Ct:h is larger than

the variation of qπ(St, At) := E|St,At
[Ct:h].6 With this insight, let us analyze Var[G̃sa

t] to see why
using Q-function estimates as CVs (in Section 2.4) can reduce the variance.7 Akin to the derivation
of (6), one can show that Var[G̃sa

t] can be written as

VarStE|St
[NtCt:h] + EStVarAt|St

[Nt(E|St,At
[Ct:h]− Q̂t)] + ESt,AtVar|St,At

[NtCt:h]. (8)

Comparing (6) and (8), we can see that the CVs in the literature have been focusing on reducing
the second term VarAt|St

. Apparently, from the decomposition (8), the optimal choice of the state-
action CV q̂ is the Q-function of the current policy qπ, because qπ(St, At) := E|St,At

[Ct:h], which
explains why q̂ can be constructed by policy evaluation. When q̂ = qπ, the effect of VarAt|St

can be completely removed. In practice, q̂ is never perfect (let alone the state-dependent version);
nonetheless, improvement in learning speed has been consistently reported.

However, Theorem 3.1 suggests that Var|St,At
is a similar same size as VarAt|St

, implying that
even when we completely remove the second term VarAt|St

, the variance of the gradient estimate
can still be significant. Indeed, recently [23] empirically analyzed the three variance components
in (8) in LQG and simulated robot locomotion tasks. They found that the third term Var|St,At

is
sometimes close to the second term VarAt|St

, and both of them are several orders of magnitude
larger than the first term VarSt

. Our Theorem 3.1 supports their finding and implies that there is a
potential for improvement by reducing Var|St,At

. We discuss exactly how to do this next.

4 Trajectory-wise Control Variates
We propose a new family of trajectory-wise CVs, called TrajCV, that improves upon existing state or
state-action CV techniques by tackling additionally Var|St,At

, the variance due to randomness in
trajectory after step t. While this idea sounds intuitively pleasing, a technical challenge immediately

5The law of total variance: Var[f(X,Y)] = EXVarY |X [f(X,Y)] +VarXEY |X [f(X,Y)] [35].
6The empirical size of the three terms on the simulated CartPole task in different policy optimization stages

can be found in Appendix A.
7Discussion on Var[G̃s

t] is omitted in that G̃s
t is subsumed by G̃sa

t .

4

arises. Recall in designing CVs, we need to know the expectation of the proposed CV function
over the randomness that we wish to reduce (see (3)). In this case, suppose we propose a CV
g(St..h, At..h), we would need to know its conditional expectation E|St,At

[g(St..h, At..h)]. This need
makes reducing Var|St,At

fundamentally different from reducing VarAt|St
, the latter of which has

been the main focus in the literature: Because the dynamics P is unknown, we do not have access to
the distribution of trajectories after step t and therefore cannot compute E|St,At

; by contrast, reducing
VarAt|St

only requires knowing the policy π.

At first glance this seems like an impossible quest. But we will show that by a clever divide-and-
conquer trick, an unbiased CV can actually be devised to reduce the variance Var|St,At

. The main
idea is to 1) decompose Var|St,At

through repeatedly invoking the law of total variance and then 2)
attack the terms that are amenable to reduction using CVs. As expected, the future variance cannot
be completely reduced, because of the unknown dynamics. But we should be able to reduce the
randomness due to known distributions, namely, the future uses of policy π.

4.1 A Divide-and-Conquer Strategy
Before giving the details, let us first elucidate our idea using a toy problem. Consider estimating
E [f(X1..5)], the expectation of a function f of 5 random variables. We can apply the law of total
variance repeatedly, in the order indicated by the subscript, and decompose the variance into

Var [f(X1..5)] =
∑5
k=1 EX1..k−1

VarXk|X1..k−1
EXk+1..n|X1..k

[f(X1..5)] (9)

For example, suppose we wish to reduce VarX3|X1..2
we simply need to consider a CV in the

form g (X1..3), which does not depends on random variables with larger indices. With the differ-
ence estimator f(X1..5)− g (X1..3) + EX3|X1..2

[g (X1..3)], the variance VarX3|X1..2
changes into

EX1..2
VarX3|X1..2

[EX4..5|X1..3
[f(X1..5)] − g(X1..3)]. Apparently when g is optimally chosen as

g?(X1..3) := EX4..5|X1..3
[f(X1..5)], this term vanishes.

Fact 1 A key property of designing CVs by the recursive decomposition above is that the inclusion
of the extra term, e.g. g (X1..3)−EX3|X1..2

[g(X1..3)], in the difference estimator only affects a single
component VarX3|X1..2

in the total variance, without influencing the other terms. This separation
property hence allows for a divide-and-conquer strategy: we can design CVs for each term separately
and then combine them; the reduction on each term will add up and reduce the total variance.

Fact 2 There is still one missing piece before we can adopt the above idea to design CVs for
estimating policy gradients: the ordering of random variables. In the example above, we need to
know EX3|X1..2

[g(X1..3)] to compute the difference estimator. Namely, it implicitly assumes the
knowledge about p(X3|X1..2), which may or may not be accessible. Suppose p(X3|X1..2) is not
available but p(X3|X4..5) is. We can consider instead using the law of total variance in a different
order, e.g. X4 → X5 → X3 → X1 → X2, and utilize the information p(X3|X4..5) to construct
a difference estimator to reduce VarX3|X4..5

. Therefore, the design of CVs hinges also on the
information available. Recall that we only know about the policy but not the dynamics in RL.

4.2 Design of TrajCV
We present TrajCVs for policy gradient below. For transparency, again let us focus on the component
Gt, which is a function of St..h and At..h. Given the information of known random variables (i.e. the
policy) and the Markovian structure, a natural ordering for applying law of total variance is

St → At → St+1 → At+1 → · · · → Sh → Ah. (10)

Suppose now we want to reduce VarAk|St..k,At..k−1
for some k > t. Based on Section 4.1, we

may consider a CV in the form gk(St..k, At..k), whose the optimal choice is g?k(St..k, At..k) =
E|St..k,At..k

[NtCt:h] = Nt
(
Ct:k−1 + E|St..k,At..k

[Ck:h]
)

= Nt (Ct:k−1 + qπ(Sk, Ak)), where the
last equality is due to the Markovian structure and the definition of qπ. This suggests practically
we can use gk(St..k, At..k) := Nt(Ct:k−1 + Q̂k), where Q̂k := q̂(Sk, Ak) and q̂ ≈ qπ as was
in (5). In other words, we showed that finding the optimal CV for reducing variance in policy
gradient can be reduced to learning the Q-function; this enables us to take advantage of existing
policy evaluation algorithms. Now we combine {gk(St..k, At..k)}hk=t+1 to build the CV for Gt.
Because from Section 4.1 these terms do not interfere with each other, we can simply add them
together into

∑h
k=t+1 gk(St..k, At..k). To construct TrajCV, we further add them onto state-action

5

CV. Equivalently, we have derived a difference estimator:

G̃traj
t := G̃sa

t −Nt
∑h
k=t+1

(
gk(St..k, At..k)−EAk|Sk

[gk(Sk..h, Ak..h)]
)

= G̃sa
t −Nt

∑h
k=t+1(Q̂k −EAk|Sk

[Q̂k]) (11)

Comparing TrajCV in (11) and state-action CV in (4), we see that the TrajCV has additional terms
Nt(Q̂k − EAk|Sk

[Q̂k]), for t < k ≤ h, which can be viewed as multiplying Nt with estimates of
future advantage functions. 8 Appealing to law of total variance, Var[G̃traj

t] can be decomposed into

VarStE|St [NtCt:h] +EStVarAt|St [Nt(E|St,At [Ct:h]− Q̂t)]+ (12)
h∑

k=t

ESk,AkVarSk+1|Sk,Ak

[
NtE|Sk+1

[Ck:h]
]
+

h∑
k=t

ESk+1VarAk+1|Sk+1
[Nt(E|Sk+1,Ak+1

[Ck:h]− Q̂k+1)]

where we further decompose the effect of Var|St,At
in the second line into the randomness in

dynamics and actions, respectively. Therefore, suppose the underlying dynamics is deterministic (i.e.
VarSk+1|Sk,Ak

vanishes), and q̂ = qπ, then using TrajCV (11) would completely remove VarAt|St

and Var|St,At
, the latter of which previous CVs (4) and (5) cannot affect. Note that in implementation

of TrajCV for G1:h, we only need to compute quantities Q̂t, EAt|St
[Q̂t] and ∇EAt|St

[Q̂t] along a
trajectory (done in O(h) time) and they can be used to compute {G̃traj

t }ht=1 (11).9

4.3 The Natural Ordering in (10) is Optimal
Recall in Section 4.1 we mentioned that the admissible ordering of random variables used in invoking
the law of total variance depends on the information available. Here we show that the chosen ordering
(10) is indeed the best ordering to adopt, as we only know the policy, not the dynamics.

We compare (10) against potential orderings constructed by reparameterizing the policy such that its
randomness in action becomes independent of the input state. We suppose the policy π ∈ Π can be
reparameterized by a function ω : S ×R → A and a distribution pR, so that for all s ∈ S, ω(s,R)
and πs are equal. Reparameterization makes designing a larger family of TrajCVs possible. When
applying the law of total variance, the ordering the random variables now can have many possibilities.
One might ask, given all possible orderings of random variables, which ordering we should pick to
design the CV. Interestingly, to this question, the most natural one and the optimal one coincide. The
proof is deferred to Appendix B.
Theorem 4.1. Suppose that policy specified by ω and pR is known, but the dynamics d is unknown.
Assume the optimal CV of a given ordering of random variables St..h and Rt..h can be obtained. The
the optimal ordering that minimizes the residue variance is the natural ordering (10) .

Theorem 4.1 tells us that if the optimal CVs are attainable (i.e. we can estimate the Q-function
exactly), then the natural ordering is optimal. However, in practice, the CVs are almost always
suboptimal due to error in estimation. If the dynamics is relatively accurate and the computing
resources for simulation are abundant, then although the residue is higher, the ordering that orders
all actions before states except St could actually be superior. Therefore, the ordering of random
variables based on the relative accuracy of different estimates is an interesting practical question to
pursue in future work.

5 Conclusion
We provide theoretical insights into the importance of considering long-term effects in designing CVs
for estimating policy gradient, especially for problems with a long horizon. The fix turns out to be
quite simple: just padding additional terms (cf. (11)) onto the existing CVs, which can be done using
Q-function approximators used in existing CVs without requiring new information. Interestingly we
prove this simple idea is actually optimal. Preliminary experimental results supporting the findings are
deferred to Appendix A. Important future work includes considering the different bias and variance
trade-off discussed in Section 4.3, and learning the linear combination weights of the CVs for policy
gradient components {Gt}ht=1.

Acknowledgments
This work was partially supported by NSF CAREER award 1750483.

8For brevity, we may use CV to mean the difference estimator of that CV when there is no confusion.
9Ways of approximately evaluating the expectation over actions are deferred to Appendix A.

6

References
[1] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-

ment learning. Machine learning, 8(3-4):229–256, 1992.

[2] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in Neural
Information Processing Systems, pages 1057–1063, 2000.

[3] Sham M Kakade. A natural policy gradient. In Advances in Neural Information Processing
Systems, pages 1531–1538, 2002.

[4] Jan Peters and Stefan Schaal. Natural actor-critic. Neurocomputing, 71(7-9):1180–1190, 2008.

[5] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[6] Ching-An Cheng, Xinyan Yan, Nathan Ratliff, and Byron Boots. Predictor-corrector policy
optimization. In International Conference on Machine Learning, 2019.

[7] Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in Neural Information
Processing Systems, pages 1008–1014, 2000.

[8] Ching-An Cheng, Xinyan Yan, Nolan Wagener, and Byron Boots. Fast policy learning through
imitation and reinforcement. In Conference on Uncertainty in Artificial Intelligence, 2018.

[9] Long Yang and Yu Zhang. Policy optimization with stochastic mirror descent. arXiv preprint
arXiv:1906.10462, 2019.

[10] Saeed Ghadimi, Guanghui Lan, and Hongchao Zhang. Mini-batch stochastic approximation
methods for nonconvex stochastic composite optimization. Mathematical Programming, 155(1-
2):267–305, 2016.

[11] Hajime Kimura, Shigenobu Kobayashi, et al. An analysis of actor-critic algorithms using
eligibility traces: reinforcement learning with imperfect value functions. Journal of Japanese
Society for Artificial Intelligence, 15(2):267–275, 2000.

[12] Philip Thomas. Bias in natural actor-critic algorithms. In International Conference on Machine
Learning, pages 441–448, 2014.

[13] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International Conference on Machine Learning,
2014.

[14] John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. In International
Conference on Learning Representations, 2016.

[15] Wen Sun, J Andrew Bagnell, and Byron Boots. Truncated horizon policy search: Combin-
ing reinforcement learning & imitation learning. In International Conference on Learning
Representations, 2018.

[16] Yonathan Efroni, Gal Dalal, Bruno Scherrer, and Shie Mannor. Beyond the one step greedy
approach in reinforcement learning. In International Conference on Machine Learning, 2019.

[17] Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transfor-
mations: Theory and application to reward shaping. In International Conference on Machine
Learning, volume 99, pages 278–287, 1999.

[18] Evan Greensmith, Peter L Bartlett, and Jonathan Baxter. Variance reduction techniques for gra-
dient estimates in reinforcement learning. Journal of Machine Learning Research, 5(Nov):1471–
1530, 2004.

7

[19] Tang Jie and Pieter Abbeel. On a connection between importance sampling and the likelihood
ratio policy gradient. In Advances in Neural Information Processing Systems, pages 1000–1008,
2010.

[20] Shixiang Gu, Timothy Lillicrap, Zoubin Ghahramani, Richard E Turner, and Sergey Levine.
Q-prop: Sample-efficient policy gradient with an off-policy critic. In International Conference
on Learning Representations, 2017.

[21] Hao Liu, Yihao Feng, Yi Mao, Dengyong Zhou, Jian Peng, and Qiang Liu. Action-depedent
control variates for policy optimization via stein’s identity. In International Conference on
Learning Representations, 2018.

[22] Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Duvenaud. Backprop-
agation through the void: Optimizing control variates for black-box gradient estimation. In
International Conference on Learning Representations, 2018.

[23] George Tucker, Surya Bhupatiraju, Shixiang Gu, Richard E Turner, Zoubin Ghahramani, and
Sergey Levine. The mirage of action-dependent baselines in reinforcement learning. arXiv
preprint arXiv:1802.10031, 2018.

[24] Sergey Pankov. Reward-estimation variance elimination in sequential decision processes. arXiv
preprint arXiv:1811.06225, 2018.

[25] Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M Bayen, Sham Kakade,
Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with action-dependent
factorized baselines. In International Conference on Learning Representation, 2018.

[26] Richard Bellman. A Markovian decision process. Journal of Mathematics and Mechanics,
pages 679–684, 1957.

[27] Dimitri P Bertsekas, Dimitri P Bertsekas, Dimitri P Bertsekas, and Dimitri P Bertsekas. Dynamic
programming and optimal control, volume 1. Athena scientific Belmont, MA, 1995.

[28] Sheldon M Ross. A course in simulation. Prentice Hall PTR, 1990.

[29] Art B. Owen. Monte Carlo theory, methods and examples. 2013.

[30] Mark Schmidt, Nicolas Le Roux, and Francis Bach. Minimizing finite sums with the stochastic
average gradient. Mathematical Programming, 162(1-2):83–112, 2017.

[31] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pages 315–323, 2013.

[32] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. Saga: A fast incremental gradient
method with support for non-strongly convex composite objectives. In Advances in Neural
Information Processing Systems, pages 1646–1654, 2014.

[33] Kamil Ciosek and Shimon Whiteson. Expected policy gradients for reinforcement learning.
arXiv preprint arXiv:1801.03326, 2018.

[34] Satinder P Singh and Richard S Sutton. Reinforcement learning with replacing eligibility traces.
Machine learning, 22(1-3):123–158, 1996.

[35] Kai Lai Chung. A course in probability theory. Academic press, 2001.

[36] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang,
and Wojciech Zaremba. OpenAI Gym. arXiv preprint arXiv:1606.01540, 2016.

[37] Jeongseok Lee, Michael X. Grey, Sehoon Ha, Tobias Kunz, Sumit Jain, Yuting Ye, Siddhartha S.
Srinivasa, Mike Stilman, and C. Karen Liu. DART: Dynamic animation and robotics toolkit.
The Journal of Open Source Software, 3(22):500, feb 2018.

[38] Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

8

