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Abstract

Q-learning is known to be one of the most popular reinforcement learning algo-
rithms to find an optimal policy for an unknown Markov decision process. In
this paper, we introduce a new asymptotic convergence analysis of Q-learning
based on switching system perspectives and theories. The approach provides a
unified viewpoint and greatly simplifies the analysis for a large family of Q-learning
algorithms.

1 Introduction

Q-learning, originally introduced by Watkin in [15], is one of the most popular and fundamental
reinforcement learning (RL) algorithms for finding the optimal policy of unknown Markov decision
processes. There exist few approaches that prove the asymptotic convergence of Q-learning: the
original proof [15],the stochastic approximation and contraction mapping-based approach [5, 13],
and the stochastic approximation and ODE (ordinary differential equation) approach [2].

The ODE approach analyzes the convergence of general stochastic recursions by examining stability
of the associated ODE model [1, 7, 2] and has been used as a convenient analysis tool to prove
convergence of many RL algorithms. However, its application to Q-learning has been limited due to
the presence of the max operator, which makes the associated ODE model a complex nonlinear system.
In contrast, the associated ODE of TD-learning [12] for policy evaluation is linear, whose asymptotic
stability is easier to analyze in general. While [2] gave the convergence proof of Q-learning based
on a nonlinear ODE model, to the authors’ knowledge, substantial analysis is required to prove the
stability of the corresponding nonlinear ODE [3] by using the max-norm contraction of the Bellman
operator. Moreover, the stability analysis does not immediately extend to other Q-learning variants,
Q-learning with linear function approximation, distributed Q-learning, and averaging Q-learning [8].

In this paper, we study a simple and unified framework to analyze Q-learning through switching linear
system (SLS) models [9] of the associated ODE. SLSs are an important class of nonlinear hybrid
systems, where the system dynamics matrix varies within a finite set of subsystem matrices (or modes)
according to a switching signal. The study of SLSs has attracted much attention in the past (see [10]
and [9] for comprehensive study and surveys). We show that a nonlinear ODE model associated with
Q-learning can be formulated as an SLS, and analyze its asymptotic stability by leveraging particular
structure of Q-learning, switching system theories [10, 9], and nonlinear control theories [6]. This
switching system approach can be easily extended to other Q-learning variants, such as Q-learning
with linear function approximation, distributed Q-learning, and averaging Q-learning [8]. Due to
page limits, we only focus on the analysis of the standard Q-learning algorithm here.
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2 Preliminaries

2.1 Markov decision problem

In this paper, we consider the infinite-horizon (discounted) Markov decision problem (MDP), where
the agent sequentially takes actions to maximize cumulative discounted rewards. In a Markov decision
process with the state-space S := {1, 2, . . . , |S|} and action-spaceA := {1, 2, . . . , |A|}, the decision
maker selects an action a ∈ A with the current state s, then the state transits to s′ with probability
Pa(s, s′), and the transition incurs a random reward ra(s, s′), where Pa ∈ R|S|×|S|, a ∈ A, Pa(s, s′)
is the state transition probability from the current state s ∈ S to the next state s′ ∈ S under action
a ∈ A, and ra(s, s′) is the reward random variable conditioned on a ∈ A, s, s′ ∈ S with its
expectation E[ra(s, s′)|s, a, s′] = Ra(s, s′). A deterministic policy, π : S → A, maps a state s ∈ S
to an action π(s) ∈ A. The Markov decision problem (MDP) is to find a deterministic optimal policy,
π∗, such that the cumulative discounted rewards over infinite time horizons is maximized, i.e.,

π∗ := arg max
π∈Θ

E

[ ∞∑
k=0

αkrak(sk, sk+1)

∣∣∣∣∣π
]
,

where γ ∈ [0, 1) is the discount factor, Θ is the set of all admissible deterministic policies,
(s0, a0, s1, a1, . . .) is a state-action trajectory generated by the Markov chain under policy π, and
E[·|·, π] is an expectation conditioned on the policy π. The Q-function under policy π is defined as

Qπ(s, a) = E

[ ∞∑
k=0

γkrak(sk, sk+1)

∣∣∣∣∣ s0 = s, a0 = a, π

]
, s ∈ S, a ∈ A,

and the corresponding optimal Q-function is defined as Q∗(s, a) = Qπ
∗
(s, a) for all s ∈ S, a ∈ A.

Once Q∗ is known, then an optimal policy can be retrieved by π∗(s) = arg maxa∈AQ
∗(s, a).

2.2 Basics of nonlinear system theory

Consider the nonlinear system

d

dt
xt = f(xt), x0 = z, t ≥ 0, (1)

where xt ∈ Rn is the state and f : Rn → Rn is a nonlinear mapping. The solution to (1) exists and
is unique so long as the mapping f is globally Lipschitz continuous.
Lemma 1 ([6, Theorem 3.2]). Consider the nonlinear system (1) and assume that f is globally
Lipschitz continuous, i.e.,

‖f(x)− f(y)‖ ≤ L‖x− y‖, ∀x, y ∈ Rn, (2)

for some L > 0 and norm ‖ · ‖, then it has a unique solution x(t) for all t ≥ 0 and x(0) ∈ Rn.

An important concept in dealing with the nonlinear system is the equilibrium point. A point x = xe

in the state space is said to be an equilibrium point of (1) if it has the property that whenever the state
of the system starts at xe, it will remain at xe [6]. For (1), the equilibrium points are the real roots of
the equation f(x) = 0. The equilibrium point xe is said to be globally asymptotically stable if for
any initial state x0 ∈ Rn, xt → xe as t→∞.

2.3 Switching system theory

Consider the particular nonlinear system, called the linear switching system,

d

dt
xt = Aσtxt, x0 = z ∈ Rn, t ∈ R+, (3)

where xt ∈ Rn is the state, σ ∈M := {1, 2, . . . ,M} is called the mode, and σt ∈M is called the
switching signal, and {Aσ, σ ∈M} are called the subsystem matrices. The switching signal can be
either arbitrary or controlled by the user under a certain switching policy. Especially, a state-feedback
switching policy is denoted by σ(xt). Now, we provide a vector comparison principle [14, 4, 11] for
multi-dimensional O.D.E., which will play a central role in the analysis below. We first introduce the
quasi-monotone increasing function, which is a necessary prerequisite for the comparison principle.
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Definition 1 (Quasi-monotone function). A vector-valued function f : Rn → Rn with f :=

[f1 f2 · · · fn]
T is said to be quasi-monotone increasing if fi(x) ≤ fi(y) holds for all i ∈

{1, 2, . . . , n} and x, y ∈ Rn such that xi = yi and xj ≤ yj for all j 6= i.

Lemma 2 (Vector comparison principle [14, page 112], [4, Theorem 3.2]). Suppose that f and f are
globally Lipschitz continuous. Let vt be a solution of the system

d

dt
xt = f(xt), x0 ∈ Rn,∀ t ≥ 0,

assume that f is quasi-monotone increasing, and let vt be a solution of the system
d

dt
vt = f(vt), v0 < x0, ∀t ≥ 0,

where f(v) ≤ f(v) holds for any v ∈ Rn. Then, vt ≤ xt for all t ≥ 0.

For completeness, we provide its proof in Appendix for cases tailored for our interest. Lastly, to
prove the global asymptotic stability of the switching system, we will use a fundamental algebraic
stability condition of switching systems reported in [10].
Lemma 3 (Global asymptotic stability [10, Theorem 8]). The origin of the linear switching system (3)
is the unique globally asymptotically stable equilibrium point under arbitrary switchings, σt, if and
only if there exist a full column rank matrix , L ∈ Rm×n, m ≥ n, and a family of matrices,
Āσ ∈ Rm×n, σ ∈M, with the so-called ‘strictly negative row dominating diagonal condition,’ i.e.,
for each Āσ, σ ∈M, its elements satisfying

[Āσ]ii +
∑

j∈{1,2,...,n}\{i}
|[Āσ]ij | < 0, ∀i ∈ {1, 2, . . . ,m},

where [·]ij is the (i, j)-element of a matrix (·), such that the following matrix relations are satisfied:

LAσ = ĀσL, ∀σ ∈M.

More comprehensive surveys and study of stability of switching systems can be found in [10] and [9].

2.4 ODE-based stochastic approximation

Due to its simplicity, the convergence analysis of many RL algorithms rely on the ODE (ordinary
differential equation) approach [1, 7]. It analyzes convergence of general stochastic recursions by
examining stability of the associated ODE model based on the fact that the stochastic recursions with
diminishing step-sizes approximate the corresponding ODEs in the limit. One of the most popular
approach is based on the Borkar and Meyn theorem [2]. We now briefly introduce the Borkar and
Meyn’s ODE approach [2] for analyzing convergence of the general stochastic recursions

θk+1 = θk + αk(f(θk) + εk+1) (4)

where f : Rn → Rn is a nonlinear mapping. Basic technical assumptions are given below.
Assumption 1.

1. The mapping f : Rn → Rn is globally Lipschitz continuous and there exists a function
f∞ : Rn → Rn such that

lim
c→∞

f(cx)

c
= f∞(x), ∀x ∈ Rn.

2. The origin in Rn is an asymptotically stable equilibrium for the ODE ẋt = f∞(xt).

3. There exists a unique globally asymptotically stable equilibrium θe ∈ Rn for the ODE
ẋt = f(xt), i.e., xt → θe as t→∞.

4. The sequence {εk,Gk, k ≥ 1} with Gk = σ(θi, εi, i ≤ k) is a Martingale difference
sequence. In addition, there exists a constant C0 <∞ such that for any initial θ0 ∈ Rn, we
have E[‖εk+1‖2|Gk] ≤ C0(1 + ‖θk‖2),∀k ≥ 0.

5. The step-sizes satisfy αk > 0,
∑∞
k=0 αk =∞,

∑∞
k=0 α

2
k <∞.

Lemma 4 (Borkar and Meyn theorem [2]). Suppose that Assumption 1 holds. For any initial θ0 ∈ Rn,
supk≥0 ‖θk‖ <∞ with probability one. In addition, θk → θe as k →∞ with probability one.
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3 Revisit Q-learning

In this section, we briefly review the standard Q-learning [15] and introduce an additional assumption
adopted in this paper.

The standard Q-learning [15] updates

Qk+1(sk, ak) = Qk(sk, ak) + αk(sk, ak)

{
rak(sk, sk+1) + γmax

a∈A
Qk(sk+1, ak)−Qk(sk, ak)

}
,

where 0 ≤ αk(s, a) ≤ 1 is called the learning rate associated with the state-action pair (s, a)
at iteration k. This value is assumed to be zero if (s, a) 6= (sk, ak). If

∑∞
k=0 αk(s, a) =

∞,
∑∞
k=0 α

2
k(s, a) < ∞, and every state-action pair is visited infinitely often, then the iter-

ate is guaranteed to converge to Q∗ with probability one. Note that the state-action can be visited
arbitrarily, which is more general than stochastic visiting rules.

To analyze the convergence based on the switching system model, we consider the stronger assumption
that {(sk, ak)}∞k=0 is a sequence of i.i.d. random variables with a fixed underlying probability
distribution, da(s), s ∈ S, a ∈ A, of the state and action pair (s, a). This assumption is common in
the ODE approaches for Q-learning and TD-learning [12]. Moreover, this assumption can be relaxed
by considering a time-varying distribution. However, this direction is not addressed in this paper to
simplify the presentation of the proofs.

Throughout the paper, we assume that
Assumption 2. da(s) > 0 holds for all s ∈ S, a ∈ A.

Under this assumption, the modified standard Q-learning is given in Algorithm 1. Compared to the
original version, the step-size αk does not depend on the state-action pair in this version. With a
suitable choice on the step-size, Algorithm 1 converges to the optimal Q∗ with probability one.

Algorithm 1 Standard Q-Learning

1: Initialize Q0 ∈ R|S||A| randomly.
2: for iteration k = 0, 1, . . . do
3: Sample (s, a) ∼ da(s)
4: Sample s′ ∼ Pa(s, ·) and ra(s, s′)
5: Update Qk+1(s, a) = Qk(s, a) + αk{ra(s, s′) + γmaxa∈AQk(s′, a)−Qk(s, a)}
6: end for

Theorem 1. Assume that the step-sizes satisfy

αk > 0,

∞∑
k=0

αk =∞,
∞∑
k=0

α2
k <∞. (5)

Then, Qk → Q∗ with probability one.

4 Analysis of Q-learning from Switching System Theory

In this section, we study a switching system-based ODE model of Q-learning and prove the conver-
gence of Q-learning in Theorem 1 based on the switching system analysis.

We first introduce the following compact notations:

P :=

 P1

...
P|A|

 ∈ R|S|×|S||A|, R :=

 R1

...
R|A|

 ∈ R|S||A|, Q :=

 Q1

...
Q|A|

 ∈ R|S||A|,

Da :=

da(1)
. . .

da(|S|)

 ∈ R|S|×|S|, D :=

D1

. . .
D|A|

 ∈ R|S||A|×|S||A|,
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where Qa = Q(·, a) ∈ R|S|, a ∈ A and Ra(s) := E[ra(s, s′)|s, a]. Note that D is a nonsingular
diagonal matrix with strictly positive diagonal elements. Using the notation introduced, the update
in Algorithm 1 can be written as

Qk+1 = Qk + αk{(ea ⊗ es)(ea ⊗ es)TR+ γ(ea ⊗ es)(es′)T max
a∈A

Q(·, a)− (ea ⊗ es)(ea ⊗ es)TQ},

where es ∈ R|S| and ea ∈ R|A| are s-th basis vector (all components are 0 except for the s-th
component which is 1) and a-th basis vector, respectively. For any deterministic policy, π : S → A,
we define the corresponding distribution vector ~π(s) := eπ(s) ∈ ∆|S|, where ∆|S| is the set of all
probability distributions over S , and the matrix

Ππ :=


~π(1)T ⊗ eT1
~π(2)T ⊗ eT2

...
~π(|S|)T ⊗ eT|S|

 ∈ R|S|×|S||A|.

Denoting πQ(s) := arg maxa∈A e
T
s Qa ∈ A, the update can be further simplified as

Qk+1 = Qk + αk{DR+ γDPΠπQk
Qk −DQk + εk+1}, (6)

where εk+1 = (ea ⊗ es)(ea ⊗ es)TR + γ(ea ⊗ es)(es′)TΠπQk
Qk − (ea ⊗ es)(ea ⊗ es)TQk −

(DR+ γDPΠπQk
Qk −DQk). We note that, for any π ∈ Θ, PΠπ is the state-action pair transition

probability matrix under the deterministic policy π. Using the Bellman equation

(γDPΠπQ∗ −D)Q∗ +DR = 0,

(6) can be rewritten as

(Qk+1 −Q∗) = (Qk −Q∗) + αk{(γDPΠπQk
−D)(Qt −Q∗) + γDP (ΠπQk

−ΠπQ∗ )Q∗ + εk+1}.
(7)

As discussed in Section 2.4, the convergence of (7) can be analyzed by evaluating the stability of the
corresponding continuous-time ODE
d

dt
(Qt −Q∗) = (γDPΠπQt

−D)(Qt −Q∗) + γDP (ΠπQt
−ΠπQ∗ )Q∗, Q0 −Q∗ = z ∈ R|S||A|,

(8)

which is a switching system. More precisely, if we define a one-to-one map ψ : Θ→ {1, 2, . . . , |Θ|},
where Θ is the set of all deterministic policies, xt := Qt −Q∗, and

(Aψ(π), bψ(π)) := (γDPΠπ −D, γDP (Ππ −ΠπQ∗ )Q∗)

for all π ∈ Θ, then (8) can be represented by the affine switching system
d

dt
xt = Aσ(xt)xt + bσ(xt), x0 = z ∈ R|S||A|, (9)

where, σ : R|S||A| → {1, 2, . . . , |Θ|} is a state-feedback switching policy defined by σ(xt) :=
ψ(πQt), πQt(s) = arg maxa∈A e

T
s Qt,a.

Moreover, we establish the existence and uniqueness of its solution, which follows from the global
Lipschitz continuity of the affine mapping. The proof is given in Appendix.
Proposition 1. Define f(θ) = (γDPΠπθ −D)θ. Then, f is globally Lipschitz continuous.

Invoking Lemma 1, we then have the following result
Proposition 2. The switching system (9) has a unique solution for all t ≥ 0 and x(0) ∈ Rn.

Note that proving the global asymptotic stability of (9) without the affine term is relevantly straight-
forward based on existing results, e.g., [10, Theorem 8]. However, with the affine term, the proof
is no longer trivial with the existing approaches in switching system theories. In what follows, we
show that by exploiting the special structure of the switching system and policy associated with the
Q-learning update rule, the global asymptotic stability can still be proved.

We first establish the asymptotic stability of the corresponding linear switching system.
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Lemma 5. Consider the affine switching system (9). The origin of the linear switching system

d

dt
xt = Aσtxt,

is the unique globally asymptotically stable equilibrium point under arbitrary switchings, σt.

The proof follows by applying Lemma 3 with L = I, Āσ = Aσ . We defer the proof to the Appendix.

We are now in position to prove the asymptotic stability of (9) associated with Q-learning.

Theorem 2. The origin is the unique globally asymptotically stable equilibrium point of the affine
switching system (9).

Proof. The basic idea of the proof is to find systems whose trajectories lower and upper bound the
trajectory of (9) by the vector comparison principle Lemma 2. Then, by proving asymptotic stability
of the two comparison systems, we can prove the asymptotic stability of (9). Here, we only provide a
brief sketch of the proof, and the full proof is deferred to Appendix. Since each element of ΠπQ∗Q

∗

takes the maximum value across a, it is clear that (ΠπQt
−ΠπQ∗ )Q∗ ≤ 0 holds, where the inequality

is element-wise. Moreover, since γDP has nonnegative elements, γDP (ΠπQt
− ΠπQ∗ )Q∗ ≤ 0

holds. Therefore, we have (γDβPΠπQt
−D)(Qt−Q∗)+γDP (ΠπQt

−ΠπQ∗ )Q∗ ≤ (γDPΠπQt
−

D)(Qt −Q∗) for all t ∈ R+. Now, consider the switching system, which we refer to as an upper
comparison system: d

dt (Q
u
t −Q∗) = (γDPΠπQut

−D)(Qut −Q∗), Qu0 −Q∗ > z ∈ R|S||A|. We
can prove that the vector function f associated with the above system is quasi-monotone increasing.
By the comparison principle, Lemma 2,Qt−Q∗ ≤ Qut −Q∗ holds for every t ∈ R+, whereQut −Q∗
is the solution of the upper comparison system. By Lemma 5, the origin of the above switching
system is globally asymptotically stable even under arbitrary switchings. Therefore, Qt − Q∗ is
asymptotically upper bounded by the zero vector as t→∞. On the other hand, we have

(γDPΠπQt
−D)(Qt −Q∗) + γDP (ΠπQt

−ΠπQ∗ )Q∗ =(γDPΠπQt
−D)Qt +DR

≥(γDPΠπQ∗ −D)Qt +DR

=(γDPΠπQ∗ −D)(Qt −Q∗),

where the first inequality is due to γDPΠπQt
Qt ≥ γDPΠπQ∗Qt, and the second equality uses

DQ∗ = γDPΠπQ∗Q
∗ + DR. Therefore, consider the following linear system called the lower

comparison system: d
dt (Q

l
t −Q∗) = (γDPΠQ∗ −D)(Qlt −Q∗), Ql0 −Q∗ < z ∈ R|S||A|. The

origin of the above linear system is globally asymptotically stable equilibrium point by Lemma 5.
Moreover, we can prove that the vector function f associated with the original switching system (9)
is quasi-monotone increasing. Again, we invoke the vector comparison principle, Lemma 2, to
prove the inequality Qlt −Q∗ ≤ Qt −Q∗ for all t ≥ 0, where Qlt −Q∗ is the solution of the lower
comparison system. Therefore, Qt − Q∗ is asymptotically lower bounded by the zero vector as
t→∞. Combining the bounds, we conclude that Qt−Q∗ → 0 as t→∞. This completes the proof
of Theorem 2.

Based on the results, we can now apply the Borkar and Meyn theorem, Lemma 4, to prove Theorem 1.
The proof follows typical routines of the ODE approaches [1], thus omitted here due to the space
limit and deferred to the Appendix.

5 Conclusion

In this paper, we studied the standard Q-learning algorithm through the switching system perspective,
and provided a simple proof for the asymptotic convergence of Q-learning by leveraging existing
theory on the stability of linear switching systems and comparison principles. The switching system
approach also provides a convenient tool for analysis of other Q-learning variants, and shed light
on the underlying dynamics of RL algorithms. For future work, we would like to investigate the
non-asymptotic convergence of Q-learning algorithms based on discrete-time stochastic switching
system models.
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Appendix

A Technical Proofs

A.1 Proof of Lemma 2

For convenience, we restate the lemma again.
Vector comparison principle: Suppose that f and f are globally Lipschitz continuous so that the
corresponding O.D.Es admit unique solutions in the conventional sense. Let vt be a solution of the
system

d

dt
xt = f(xt), x0 ∈ Rn,∀ t ≥ 0,

assume that f is quasi-monotone increasing, and let vt be a solution of the system

d

dt
vt = f(vt), v0 < x0, ∀t ≥ 0, (10)

where f(v) ≤ f(v) holds for any v ∈ Rn. Then, vt ≤ xt for all t ≥ 0.

We simplify and summarize the ideas of the proofs in the literature, [14, page 112],[4, Theorem 3.2.],
in the following proof.

Proof: Instead of (10), first consider

d

dt
vε(t) = f(vε(t))− ε1n, vε(0) < x(0), ∀t ≥ 0

where ε > 0 is a sufficiently small real number and 1n is a vector where all elements are ones, where
we use a different notation for the time index for convenience. Suppose that the statement is not true,
and let

t∗ := inf{t ≥ 0 : ∃i such that vε,i(t) > xi(t)} <∞,

and let i be such index. By the definition of t∗, we have that vε,i(t∗) = xi(t
∗) and vε,j(t∗) ≤ xj(t∗)

for any j 6= i. Then, since f is quasi-monotone increasing, we have

f i(vε(t
∗)) ≤ f i(x(t∗)). (11)

On the other hand, by the definition of t∗, there exists a small δ > 0 such that

vε,i(t
∗ + ∆t) > xi(t

∗ + ∆t)

for all 0 < ∆t < δ. Dividing both sides by ∆t and taking the limit ∆t→ 0, we have

v̇ε,i(t
∗) ≥ ẋi(t∗) = f i(x(t∗)). (12)

By the hypothesis, it holds that

d

dt
vε(t) = f(vε(t))− ε1n < f(vε(t)) ≤ f(vε(t))

holds for all t ≥ 0. The inequality implies v̇ε,i(t) < f i(vε(t)), which in combination with (12) leads
to f i(vε(t

∗)) > f i(x(t∗)). However, it contradicts with (11). Therefore, vε(t) ≤ x(t) holds for all
t ≥ 0. Since the solution vε(t) continuously depends on ε > 0 [14, Chap. 13], taking the limit ε→ 0,
we conclude v0(t) ≤ x(t) holds for all t ≥ 0. This completes the proof.

A.2 Proof of Proposition 1

The proof is completed by the inequalities

‖f(x)− f(y)‖∞ =‖(γDPΠπx −D)x− (γDPΠπy −D)y‖∞
≤‖γDP‖∞‖Ππxx−Ππyy‖∞ + ‖D‖∞‖x− y‖∞

8



=‖γDP‖∞max
s∈S
|max
a∈A

xa(s)−max
a∈A

ya(s)|+ ‖D‖∞‖x− y‖∞

≤‖γDP‖∞max
s∈S

max
a∈A
|xa(s)− ya(s)|+ ‖D‖∞‖x− y‖∞

=‖γDP‖∞‖x− y‖∞ + ‖D‖∞‖x− y‖∞
≤ (‖γDP‖∞ + ‖D‖∞) ‖x− y‖∞,

indicating that f is globally Lipschitz continuous with respect to the ‖ · ‖∞ norm. This completes the
proof.

A.3 Proof of Proposition 2

Note that using (γDPΠπQ∗ −D)Q∗ +DR = 0, the solution of (8) is equivalent to the solution of
the following system up to a constant shifting:

d

dt
Qt = (γDPΠπQt

−D)Qt +DR, Q0 = z ∈ R|S||A|,

which can be expressed as d
dtQt = f(Qt) with f(θ) = (γDPΠπθ − D)θ. By Proposition 1, its

solution exists and unique. This completes the proof.

A.4 Proof of Lemma 5

We apply Lemma 3 with L = I, Āσ = Aσ . In this case, the condition, LAσ = ĀσL holds. It remains
to prove the strictly negative row dominating diagonal property. For notational convenience, we
definte Πσ , σ ∈M as Ππ

QBt

such that σ = ψ(πQBt ). Letting n = |S||A|, the property is proved by

[Aσ]ii +
∑

j∈{1,2,...,n}\{i}

|[Aσ]ij |

=[D]ii[γPΠσ − I]ii

+
∑

j∈{1,2,...,n}\{i}

[D]ii|[γPΠσ − I]ij |

≤[γPΠσ − I]ii +
∑

j∈{1,2,...,n}\{i}

|[γPΠσ − I]ij |

=[γPΠσ]ii − 1 +
∑

j∈{1,2,...,n}\{i}

|[γPΠσ]ij |

=[γPΠσ]ii +
∑

j∈{1,2,...,n}\{i}

|[γPΠσ]ij | − 1

=γ − 1

<0, ∀σ ∈M,

which proves the global asymptotic stability. �

B Proof of Theorem 1

First of all, note that the affine switching system model in (9) corresponds to the ODE model,
d
dtxt = f(xt), that appears in Assumption 1. The proof is completed by examining all the statements
in Assumption 1. In the following, we itemize the proofs of the statements in Assumption 1 in the
same order.

1. Q-learning in (7) can be expressed as the stochastic recursion in (4) with

f(θ) = (γDPΠπθ −D)θ + γDP (Ππθ −ΠπQ∗ )Q∗.

To prove the first statement of Assumption 1, we note that

f(cθ)

c
=

(γDPΠπcθ −D)cθ + γDP (Ππcθ −ΠπQ∗ )Q∗

c

9



=(γDPΠπθ −D)θ +
γDP (Ππθ −ΠπQ∗ )Q∗

c
,

where the last equality is due to the homogeneity of the policy, πcθ(s) =
arg maxa∈A e

T
s cθa = arg maxa∈A e

T
s θa. By taking the limit, we have

lim
c→∞

f(cθ)

c
=(γDPΠπθ −D)θ

+ lim
c→∞

γDP (Ππθ −ΠπQ∗ )Q∗

c
=(γDPΠπθ −D)θ = f∞(θ).

Moreover, f is globally Lipschitz continuous according to the inequalities

‖f(x)− f(y)‖∞
=‖(γDPΠπx −D)x− (γDPΠπy −D)y‖∞
≤‖γDP‖∞‖Ππxx−Ππyy‖∞ + ‖D‖∞‖x− y‖∞
=‖γDP‖∞max

s∈S
|max
a∈A

xa(s)−max
a∈A

ya(s)|

+ ‖D‖∞‖x− y‖∞
≤‖γDP‖∞max

s∈S
max
a∈A
|xa(s)− ya(s)|

+ ‖D‖∞‖x− y‖∞
=‖γDP‖∞‖Ππ|x−y|(|x− y|)‖∞ + ‖D‖∞‖x− y‖∞
≤‖γDP‖∞‖Ππ|x−y|‖∞‖x− y‖∞ + ‖D‖∞‖x− y‖∞

≤
(
‖γDP‖∞max

π∈Θ
‖Ππ‖∞ + ‖D‖∞

)
‖x− y‖∞,

implying that f is globally Lipschitz continuous with the parameter
‖γDP‖∞maxπ∈Θ ‖Ππ‖∞ + ‖D‖∞. Therefore, the proof is completed.

2. The second statement of Assumption 1 is directly proved by Claim in the proof of Theo-
rem 2.

3. The third statement of Assumption 1 is directly proved by Theorem 2.

4. Next, we prove the remaining parts. If we define Mk :=
∑k
i=0 εi, then Mk is Martingale as

E[Mk+1|Gk]

=E

[
k+1∑
i=0

εi

∣∣∣∣∣ (εi, θi)ki=1

]

=E[εk+1|(εi, θi)ki=1] + E

[
k∑
i=0

εi

∣∣∣∣∣ (εi, θi)ki=1

]

=E

[
k∑
i=0

εi

∣∣∣∣∣ (εi, θi)ki=1

]
=

k∑
i=0

εi = Mk

and εk is a Martingale difference sequence. Moreover, it can be easily proved that the fourth
condition of Assumption 1 is satisfied. Therefore, the fourth condition is met. �

C Proof of Theorem 2

The basic idea of the proof is to find systems whose trajectories lower and upper bounds the trajectory
of (9) by the vector comparison principle. Then, by proving the asymptotic stability of the two
comparison systems, we can prove the asymptotic stability of (9).

Since each element of ΠπQ∗Q
∗ takes the maximum value across a, it is clear that (ΠπQt

−ΠπQ∗ )Q∗ ≤
0 holds, where the inequality is element-wise. Moreover, since γDP has nonnegative elements,

10



γDP (ΠπQt
−ΠπQ∗ )Q∗ ≤ 0 holds. Therefore, we have (γDβPΠπQt

−D)(Qt−Q∗)+γDP (ΠπQt
−

ΠπQ∗ )Q∗ ≤ (γDPΠπQt
− D)(Qt − Q∗) ≤ (γDPΠπQt−Q∗

− D)(Qt − Q∗) for all t ∈ R+. To
proceed, define the vector functions

f(y) =(γDPΠπy −D)y,

f(z) =(γDβPΠπz+Q∗ −D)z + γDP (Ππz+Q∗ −ΠπQ∗ )Q∗,

and consider the systems

d

dt
yt = f(yt), y0 > Q0 −Q∗,

d

dt
zt = f(zt), z0 = Q0 −Q∗,

for all t ≥ 0. To apply Lemma 2, we will prove that f is quasi-monotone increasing. For any
z ∈ R|S||A|, consider a nonnegative vector p ∈ R|S||A| such that its ith element is zero. Then, for
any i ∈ S, we have

eTi f(z + p) =eTi (γDPΠz+p −D)(z + p)

=γeTi DPΠz+p(z + p)− eTi Dz − eTi Dp
=γeTi DPΠz+p(z + p)− eTi Dz

=γeTi DP


maxa(za(1) + pa(1))
maxa(za(2) + pa(2))

...
maxa(za(|S|) + pa(|S|))

− eTi Dz

≥γeTi DP


maxa za(1)
maxa za(2)

...
maxa za(|S|)

− eTi Dz
=eTi f(z),

which proves the quasi-monotone increasing property.Therefore, we can apply Lemma 2. In particular,
by Lemma 2, Qt −Q∗ ≤ Qut −Q∗ holds for every t ∈ R+, where Qut −Q∗ is the solution of the
switching system, which we refer to as an upper comparison system

d

dt
(Qut −Q∗) = (γDPΠπQut

−D)(Qut −Q∗), Qu0 −Q∗ > Q0 −Q∗ ∈ R|S||A|,

By Lemma 5, the origin of the above switching system is globally asymptotically stable even under
arbitrary switching policies. Therefore, Qt −Q∗ is asymptotically upper bounded by the zero vector
as t→∞.

On the other hand, we have

(γDPΠπQt
−D)(Qt −Q∗) + γDP (ΠπQt

−ΠπQ∗ )Q∗ = (γDPΠπQt
−D)Qt +DR

≥(γDPΠπQ∗ −D)Qt +DR = (γDPΠπQ∗ −D)(Qt −Q∗),

where the first inequality is due to γDPΠπQt
Qt ≥ γDPΠπQ∗Qt, and the second equality uses

DQ∗ = γDPΠπQ∗Q
∗ +DR. Again, define the vector functions for lower comparison parts

f(y) =(γDPΠπy −D)y +DR,

f(z) =(γDPΠπQ∗ −D)z +DR (13)

and consider the systems

d

dt
yt = f(yt), y0 = Q0,

d

dt
zt = f(zt), z0 < Q0,

11



for all t ≥ 0. Similarly, we can prove that f is quasi-monotone increasing, and invoke Lemma 2,
to prove the inequality Qlt − Q∗ ≤ Qt − Q∗ for all t ≥ 0, where Qlt − Q∗ is the solution of the
following linear system called the lower comparison system:

d

dt
(Qlt −Q∗) = (γDPΠQ∗ −D)(Qlt −Q∗), Ql0 −Q∗ < Q0 −Q∗ ∈ R|S||A|.

Note that the solution of this system differs from the solution of (13) by a constant shifting. The
origin of the above linear system is globally asymptotically stable equilibrium point by Lemma 5.
Therefore, Qt −Q∗ is asymptotically lower bounded by the zero vector as t→∞. Combining the
bounds, we conclude that Qt −Q∗ → 0 as t→∞. This completes the proof of Theorem 2.

12
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