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Abstract

A major component of overfitting in model-free reinforcement learning (RL) in-
volves the case where the agent may mistakenly correlate reward with certain
spurious features from the observations generated by the Markov Decision Process
(MDP). We provide a general framework for analyzing this scenario, which we
use to design multiple synthetic benchmarks from only modifying the observation
space of an MDP. When an agent overfits to different observation spaces even
if the underlying MDP dynamics is unchanged, we term this observational over-
fitting. Our experiments expose intriguing properties especially with regards to
implicit regularization, and also corroborate results from previous works in RL
generalization and supervised learning (SL).

1 Introduction

Generalization for RL has recently grown to be an important topic for agents to perform well in
unseen environments. Complication arises when the dynamics of the environments tangle with the
observation, which is often a high-dimensional projection of the true latent state. In this work, we
focus on model-free RL and use the common zero-shot supervised framework [1, 2, 3, 4], which
treats RL generalization analogous to a classical supervised learning (SL) problem – i.e. assume there
exists a distribution of MDP’s {Mθ : θ ∈ Θ} which can be generated by an environment parameter

θ, train jointly on a finite "training set" {Mθ : θ ∼ Θ̂n,train} sampled from this distribution, and
check generalization gap between rewards JΘ̂(π)− JΘ(π) against the entire distribution with the
fixed trained policy π.

There are multiple confounding factors at play in this regime, which can be hard to separate. An
agent can overfit to the MDP dynamics [5, 6], or an RNN-based policy can overfit to maze-like tasks
in exploration [2], or even exploit determinism [7, 8]. Furthermore, various hyperparameters and
regularizations [9, 10, 11, 12] can also affect generalization.

We isolate one broad factor affecting generalization that is most correlated with themes in SL,
specifically observational overfitting, where an agent overfits due to properties of the observation
which are irrelevant to the latent dynamics of the MDP family. To study this factor, we fix a
single underlying MDP’s dynamics and generate a distribution of MDP’s by only modifying the
observational outputs.

Our contributions in this paper are the following:

1. We discuss realistic instances where observational overfitting may occur and its difference
from other confounding factors, and design a parametric theoretical framework to induce
observational overfitting that can be applied to any underlying MDP.

2. We study observational overfitting with linear quadratic regulators (LQR) in a synthetic
environment and neural networks such as MLPs and Convolutions in classic Gym environ-
ments. A primary novel result we demonstrate for all cases is that implicit regularization
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occurs in this setting in RL. We further test the implicit regularization hypothesis on the
benchmark CoinRun from using multi-layer perceptrons (MLP), even when the underlying
MDP dynamics are changing per level.

2 Motivation and Setup

Figure 1: Example of observational overfitting in Gym Retro [3] for Sonic. Saliency maps highlight
(in red) the top-left timer and background objects because they are correlated with progress. The
agent could memorize optimal actions for training levels if its observation was only from the timer,
and "blacking-out" the timer consistently improved generalization performance (see Appendix A.2.3).

Figure 1 highlights the issues surrounding MDP’s with rich, textured observations - specifically, the
agent can use any features that are correlated with progress, even those which may not generalize
across levels. Several artificial benchmarks [13, 14] have been proposed to study these behaviors,
where an agent must deal with a changing background - however, the key difference in insight is
that we explicitly require the "background" to be correlated with the progress rather than loosely
correlated (e.g. through determinism between the background and the game avatar) or not at all,
making this similar to the causal inference literature, [15, 16, 17] where a classifer is prone to produce
spurious correlations and must find invariant features to improve generalization.

We can model the effects of Figure 1 more generally, not specific to sidescroller games. We assume
that there is an underlying state s (e.g. xy-locations of objects in a game), whose features may be
very well structured, but that this state has been projected to a high dimensional observation space by
wθ. To abstract the notion of generalizable and non-generalizable features, we construct a simple and
natural candidate class of functions, where wθ(s) = h(f(s), gθ(s)).

In this setup, f(·) is a function invariant for the entire MDP population Θ, while gθ(·) is a function
dependent on the sampled parameter θ. h is a "combination" function which combines the two outputs
of f and g to produce a final observation. While f projects this latent data into salient and important,
invariant features such as the avatar, monsters, and items, gθ projects the latent data to unimportant
features that do not contribute to extra generalizable information, and can cause overfitting, such as
the changing background or textures. A visual representation is shown in Figure 2. Normally in a
MDP such as a game, the concatenation operation may be dependent on time (e.g. textures move
around in the frame). In the scope of this work, we simplify the concatenation effect and assume
h(·) is a static concatenation, but still are able to demonstrate insightful properties. We note that
this inductive bias on h allows explicit regularization to trivially solve this problem, by penalizing
a policy’s first layer that is used to "view" gθ(s) (Appendix A3), hence we only focus on implicit
regularizations.

Previously, many works interpret the decision-making of an agent through saliency and other network
visualizations [18, 19] on real-world tasks such as Atari. Our work is motivated by learning theoretic
frameworks to capture this phenomena, as there is vast literature on understanding the generalization
properties of SL classifiers [20, 21, 22, 23]. For an RL policy with high-dimensional observations,
we hypothesize its generalization performance can come from more theoretically principled reasons,
as opposed to purely good inductive biases on real-world images.

This setting also leads to more interpretable generalization bounds. The Rademacher Complexity term

in RL [24]) is defined Radm(RΠ) = E(θ1,...,θm)∼Θm

[
Eσ∈{−1,+1}

[
supπ∈Π

1
m

∑m
i=1 σiRθi(π)

] ]
,

which captures how invariant policies in the set Π with respect to θ. For most RL benchmarks, this is

2



(a) (b)

Figure 2: (a) Visual Analogy of the Observation Function. (b) Our combinations for 1-D and 2-D
images for synthetic tasks.

not interpretable with changing dynamics, as it is hard to imagine what behaviors or network weights
a policy would possess in order to produce the exact same total rewards, regardless of changing
dynamics. However, in the observation case, the Rademacher Complexity is directly based on how
much the policy “looks at" gθ which is the only environment change. If Π∗ is the set of policies π∗

which are not be affected by changes in gθ, then ∇θπ
∗(wθ(s)) = 0 ∀s and thusRθ(π

∗) = Rconst ∀θ;

hence Radm(RΠ∗) = Eσ∈{−1,+1}
[
supπ∗∈Π∗

1
m

∑m
i=1 σiRconst

]
= 0.

3 Experiments

This setting is naturally attractive to analzying architectural differences, as it is more closely related
in spirit to image classifiers and SL. One particular line of work to explain the effects of certain
architectural modifications in SL such as overparametrization and residual connections is implicit
regularization [25, 23]. As we will see in this experimental section, this can play a large role in the
RL generalization regime. In order to fairly measure generalization, we use fixed hyperparameters in
the RL algorithm, and only vary based on architecture for all experiments.

3.1 Overparametrized LQR

We start with a principled example in the deterministic classic control setting, by using the linear
quadratic regulator (LQR) as a basis for the underlying MDP. We use full gradient descent through the
loss, ignoring irrelevant aspects of reinforcement learning (exploration, entropy, γ, noise, stochastic

gradients, etc.). We project the state to a high dimensional observation ot =

[
f(st)
gθ(st)

]
=

[
Wc

Wθ

]
st,

where an agent parametrized by a high dimensional policy K performs action at = Kot. Wc,Wθ are
semi-orthogonal matrices (to prevent information loss), and Wc remains fixed while Wθ is randomly
sampled per level parameter θ. If s is of shape dstate, then Wc projects to a shape of dsignal, Wθ

projects to a much larger shape dnoise, and thus K is of shape (dstate, dsignal + dnoise).

If P⋆ is the unique minimizer of the original cost function, then the unique minimizer of the population

cost is K⋆ =

[
WcP

T

⋆
0

]T
. However, if we have a single level, then there exist multiple solutions,

for instance

[
αWcP

T

⋆

(1− α)WθP
T

⋆

]T
∀α. This extra bottom component WθP

T

⋆ causes overfitting. In

Appendix A.4.2, we show that in the 1-step LQR case (which can be extended to convex losses whose
gradients are linear in the input), gradient descent cannot remove this component, and thus overfitting
necessarily occurs.

Furthermore, we find that increasing dnoise increases the generalization gap in the LQR setting. This
is empirically verified in Figure 3 using an actual non-convex LQR loss, and the results suggest that
the gap scales by O(

√
dnoise). In our experiment, we set (dsignal, dnoise) = (100, 1000), and also

added more (100 × 100) linear layers K = K0K1, ...,Kj and increased widths for a 2-layer case
(Figure 3), and observe that both settings reduce the generalization gap, and also reduce the norms
(spectral, nuclear, Frobenius) of the final end-to-end policy K, without changing its expressiveness.
This suggests that gradient descent under overparametrization implicitly biases the policy towards
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a "simpler" model in the LQR case. However, from examining the distribution of singular values
on K (Appendix A1), we find that more layers does not bias the policy towards a low rank solution,
unlike [26] which shows this occurs for matrix completion and convex losses. Intriguingly, we find
that many of the known bounds in SL for both width and depth do not answer this problem, although
we still have a similar smoothness bound C(K;Wθ)− C(K ′;Wθ) ≤ O(‖K −K ′‖) shown in A.4,
which can be used to derive similar expressions as the SL bounds. To the best of our knowledge, our
problem is not equivalent to any of the well-studied problems in overparametrization.

For instance, we used bounds of the form Π·Σ, where Π is a "macro" product term Π =
∏j

i=0 ‖Ki‖ ≥∥∥∥
∏j

i=0Ki

∥∥∥ derivable from the fact that ‖AB‖ ≤ ‖A‖ ‖B‖ and Σ is a weight-counting term which

deals with the overparametrized case, such as Σ =
∑j

i=0
‖Ki‖2

F

‖Ki‖2 [27] or Σ =

(∑j
i=0

(
‖Ki‖1

‖Ki‖

)2/3)3

[28]. However, the Σ terms increase too rapidly for both the depth and width cases, as we show in
Figure 3.

Terms such as Frobenius product [29] and Fischer-Rao [30] are effective for the SL depth case, but
seem to be ineffective in the LQR depth case. For width, the only product which appears effective is
the nuclear norm product, whereas spectral and Frobenius products [26] are ineffective.

Figure 3: (Left) We show that the generalization gap vs noise dimension appears to tightly follow
O(

√
dnoise) as the noise dimension increases. (Right) LQR Generalization Gap vs Number of

Intermediate Layers. We plotted the different Σ terms without exponents, as powers of these terms
are monotonic transforms. We see that the naive spectral bound diverges at 2 layers, and the
weight-counting sums are too loose.
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3.2 Projected Gym Environments

We perform the above setup with non-linear environments as well, such as Gym and Mujoco
environments. We show that even in the space of basic MLP policies, there are significant architectural
effects.

Figure 4: Observational overfitting occurring for Gym. Full set of environments shown in A2.

Switching between ReLU and Tanh activations produces significantly different results during over-
parametrization. For instance, overparametrization on Tanh layers improves generalization on
CartPole-v1, and width increase with ReLU helps on Swimmer-v2. Tanh is noted to consistently

4



Figure 5: Effects of Depth.

Figure 6: Effects of Width.

improve generalization performance. However, stacking Tanh layers comes at a cost of also produc-
ing vanishing gradients which can produce subpar training performance, for e.g. HalfCheetah. To
allow larger depths, we use ReLU residual layers, which also improves generalization and stabilizes
training.

Previous work [2] did not find such a pattern, suggesting that this effect may exist primarily for
observational overfitting cases. While there has been numerous works on simplifying policies
[31, 32] or compactifying networks [33, 34], we instead find that there are generalization benefits to
overparametrization even in the nonlinear control case.

3.3 Deconvolutional Projections

We also setup a similar construction for convolutions, by projecting the state latent to a fixed length,
reshaping it into a square, and using our deconvolution projections to produce two 84× 84 images.
We combine the two outputs by using one half of the "image" from f , and one half from gθ, as shown
back in Figure 2.

As a ground truth reference, we the canonical networks proven to generalize well in the dataset
CoinRun, which are from worst to best, NatureCNN [35], IMPALA [36], and IMPALA-LARGE
(IMPALA with more residual blocks and higher convolution depths), which have respective parameter
numbers (600K, 622K, 823K).

Figure 7 shows that the same ranking between the three architectures exists our synthetic dataset as
found in CoinRun. This suggests that the RL generalization quality of a convolutional architecture
is not limited to real world data, as our test purely uses numeric observations. [2] found that larger
networks have a higher capacity to memorize training levels in the Gridworld domain. However,
our results suggest that there may other effects at play than the parameter count and capacity. We
also perform a memorization test by only showing gθ’s output to the policy, which is impossible to
generalize to, as a policy cannot invert every single observation function gθ1(·), gθ2(·), ... simultane-
ously. Using the underlying MDP as a Swimmer-v2 environment, we see that NatureCNN, IMPALA,
IMPALA-LARGE have reduced memorization performances. 3 IMPALA-LARGE, which has more
depth parameters and more residual layers (and thus technically has more capacity), memorizes less
than IMPALA due its inherent inductive bias. We hypothesize that these extra residual blocks may
be implicitly regularizing the network. This is corroborated by the fact that residual layers are also
explained as an implicit regularization technique [25] for SL.

3Another memorization test can be found in Appendix A.1.2.
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Figure 7: (Top) Performance of architectures in the synthetic Gym-Deconv dataset. (Bottom) We
only show the observation from gθ(s), which tests memorization capacity.

4 Overparametrization in CoinRun

We test our hypothesis from the above to the CoinRun benchmark, using unlimited levels for training.
For MLP networks, we downsized CoinRun from native 64 × 64 to 32 × 32, and flattened the
32× 32× 3 image for input to an MLP 4. Two significant differences from previous cases are that 1.
inherent dynamics are changing per level in CoinRun, and 2. the relevant and irrelevant CoinRun
features change locations across the 1-D input vector. Regardless, we show that overparametrization
can still improve generalization in this more realistic RL benchmark, much akin to [23] which showed
that overparametrization for MLP’s improved generalization on 32× 32× 3 CIFAR-10.

Figure 8: Overparametrization improves generalization for CoinRun.

One may wonder how to predict the generalization gap only from the training phase. A particular set
of metrics, popular in the SL community are margin distributions [37, 28], as they deal with the case
for softmax outputs which do not explicitly penalize the weight norm of a network, by normalizing the
"confidence" margin of the logit outputs. While using margins on state-action pairs (from an on-policy
replay buffer) is not technically rigorous, one may be curious to see if they have predictive power,
especially as MLP’s are relatively simple to norm-bound. We plotted these margin distributions in
Appendix A.2.2, but found that the weight norm bounds used in SL are simply too dominant for this
RL case. This, with the bound results found earlier for the LQR case, suggests that current norm
bounds are simply too loose for the RL case even though we have shown overparametrization helps
generalization in RL, and hopefully this motivates more of the study of such theory.

4We also present results for ImageNet networks in Appendix A.2.1.
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A.1 Full Plots for LQR, fg-Gym-MLP, fg-Gym-Deconv

A.1.1 LQR

Figure A1: (a,b): Singular Values for varying depths and widths. (c,d): Train and Test Loss for
varying widths and depths. (e): Train and Test Loss for varying Noise Dimensions.

(a) (b)

(c) (d)

(e)
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A.1.2 fg-Gym-MLP, Deconv

Figure A2: Each Mujoco task is given 10 training levels (randomly sampling gθ parameters). We used
a 2-layer Tanh policy, with 128 hidden units each. Dimensions of outputs of (f, g) were (30, 100)
respectively.

(a)

Figure A3: We further verify that explicit regularization (norm based penalties) also reduces general-
ization gaps, although explicit regularization may be explained by the bias of the synthetic tasks - The
first layer’s matrix may be regularized to only "view" the output of f , which significantly improves
generalization.
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Figure A4: Another deconvolution memorization test, using an LQR as the underlying MDP. While
fg-Gym-Deconv shows that memorization performance is dampened, this test shows that there can
exist specific hard limits to memorization.
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A.2 Extended Large RL Results

A.2.1 Large ImageNet Models for CoinRun

We experimentally verify in table (1) that large ImageNet models perform very differently in RL than
during SL. We note that default network with the highest test reward was IMPALA-LARGE-BN
(IMPALA-LARGE, with Batchnorm) at ≈ 5.5 test score.

In order to verify that this is inherently a feature learning problem rather than a combinatorial
problem involving objects, such as in [38], we show that state-of-the-art attention mechanisms for
RL such as Relational Memory Core (RMC) using pure attention on raw 32 × 32 pixels does not
perform well here, showing that a large portion of generalization and transfer must be based on
correct convolutional setups.

Architecture
Coinrun-100
(Train, Test)

AlexNet-v2 (10.0, 3.0)

CifarNet (10.0, 3.0)

IMPALA-
LARGE-BN

(10.0, 5.5)

Inception-ResNet-v2 (10.0, 6.5)

Inception-v4 (10.0, 6.0)

MobileNet-v1 (10.0, 5.5)

MobileNet-v2 (10.0, 5.5)

NASNet-
CIFAR

(10.0, 4.0)

NASNet-
Mobile

(10.0, 4.5)

ResNet-v2-50 (10.0, 5.5)

ResNet-v2-101 (10.0, 5.0)

ResNet-v2-152 (10.0, 5.5)

RMC32x32 (9.0, 2.5)

ShakeShake (10.0, 6.0)

VGG-A (9.0, 3.0)

VGG-16 (9.0, 3.0)

Table 1: Raw Network Performance (rounded to nearest 0.5) on CoinRun, 100 levels. Images scaled
to default image sizes (32×32 or 224×224) depending on network input requirement. See Appendix
A5 for training curves.

We provide the training/testing curves for the ImageNet/large convolutional models used. Note the
following:
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1. RMC32x32 projects the native image from CoinRun from 64× 64 to 32× 32, and uses all
pixels as components for attention, after adding the coordinate embedding found in [38].
Optimal parameters were (mem_slots = 4, head_size = 32, num_heads = 4, num_blocks = 2,
gate_style = ’memory’).

2. Auxiliary Loss in ShakeShake was not used during training, only the pure network.
3. VGG-A is a similar but slightly smaller version of VGG-16.

Figure A5: Large Architecture Training/Testing Curves (Smoothed).

A.2.2 Do State-Action Margin Distributions Predict Generalization in RL?

A conceptual difference between CoinRun and our other tasks is due to the discrete action space
of CoinRun. We verify in Figure A6, that indeed, simply measuring the raw norms of the policy
network is a poor way to predict generalization, as it generally increases even as training begins to
plateau. This is inherently because the softmax on the logit output does not penalize arbitrarily high
logit values, and hence proper normalization is needed.

We are curious in measuring the margin distribution of action logits, as this has been used extensively
to empirically predict the generalization properties of classifiers [37, 28]. For a policy, the the margin

distribution will be defined as (s, a) → Fπ(s)a−maxi 6=y Fπ(x)i
Rπ‖S‖

2
/n , where Fπ(s)a is the logit value of

action a given input s, before the softmax, and S is the matrix of states in the replay buffer, and Rπ

is the norm-based Lipschitz bound on the policy network logits. We used the Spectral, Sharpness and

13



Bartlett bounds, for Rπ, and we replace the classical supervised learning pair (x, y) = (s, a) with
the state action pairs found on-policy.

We used the following metrics Rπ (after removing irrelevant constants)

1. Bartlett Bound:
(∏d

i=1 ‖Wi‖
)(∑d

i=1
‖Wi‖2/3

1

‖Wi‖2/3

)3/2

[28]

2. Sharpness Bound:

√
∑d

i=1‖Wi−W 0

i ‖2

F
+ln(2m/δ)

m [39]

3. Spectral Bound:

√
ln(d)

∏d
i=1

‖Wi‖2

2

∑d
j=1

‖Wj−W0

j ‖2

F

‖Wj‖2

2

+ln( 6m
δ )

m [27]

Unlike the other metrics mentioned, the margin distribution converges to a fixed distribution even long
after training has plateaued. However, unlike SL, the margin distribution is conceptually not fully
correlated with RL generalization on the total reward, as a policy overconfident in some state-action
pairs does not imply bad testing performance. This correlation is stronger if there are Lipschitz
assumptions on state-action transitions, as noted in [24]. For empirical datasets such as CoinRun, a
metric-distance between transitioned states is ill-defined however. Nevertheless, the distribution over
the on-policy replay buffer at each policy gradient iteration is a rough measure of overall confidence.

Figure A6: Margin Distributions at the end of training.

We note that there are two forms of modifications, network dependent (explicit modifications to the
policy - norm regularization, dropout, etc.) and data dependent (modifications only to the data in
the replay buffer - action stochasticity, data augmentation, etc.). Ultimately however, we find that
current norm bounds Rπ become too dominant in the fraction, leading to the monotonic decreases in
the means of the distributions as we increase parametrization.
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Figure A7: Margin Distributions at the end of training.

A.2.3 Gym-Retro (Sonic)

In the Gym-Retro benchmark (Sonic), the agent is given 47 training levels with rewards corresponding
to increases in horizontal location. The policy is trained until 5k reward. At test time, 11 unseen
levels are partitioned into starting positions, and the rewards are measured and averaged.

We briefly mention that the agent strongly overfits to the scoreboard (i.e. an artifact correlated with
progress in the level), which may be interpreted as part of the output of gθ(·). In fact, the agent is still
able to train to 5k reward from purely observing the timer as the observation. By blacking out this
scoreboard with a black rectangle, we see an increase in test performance.

Settings IMPALA NatureCNN

Blackout 1250± 40 1141± 40
NoBlackout 1130± 40 1052± 40

Table 2: IMPALA vs NatureCNN test rewards, with and without Blackout. We refer the reader to see
a saliency video of the agent, at https://youtu.be/M-xf1YkHEn0

A.3 Hyperparameters and Exact Setups

A.3.1 Exact infinite LQR

For infinite horizon case, see [40] for the the full solution and notations. Using the same notation
(A,B,Q,R), denote C(K) =

∑
x0∼D x

T
0 PKx0 as the cost and ut = −Kst as the policy, where

PK satisifies the infinite algebraic-Ricatti equation:

PK = Q+KTRK + (A−BK)TPK(A−BK)

15



We may calculate the precise LQR cost by vectorizing (i.e. flattening) both sides and using the
Kroncker product, which leads to a linear regression problem on PK , which has a precise solution,
implementable in TensorFlow:

vec(PK) = vec(Q) + vec(KTRK) + ((A−BK)T ⊗ (A−BK)T ) vec(PK)

(In2 − ((A−BK)T ⊗ (A−BK)T )) vec(PK) = vec(Q) + vec(KTRK)

Parameter Generation

A Sampled uniformly randomly from set of orthogonal matrices on n× n, scaled 0.99
B In
Q In
R In
n 9

Table 3: Hyperparameters for LQR

A.3.2 Projection Method

The basis for producing f, gθ outputs is due to using batch matrix multiplication operations, or "BMV",
where the same network architecture uses different network weights for each batch dimension, and
thus each entry in a batchsize of B will be processed by different network weights. This is to simulate
the effect of gθi - The numeric ID i of the environment is used as an index to collect a specficic set of
network weights θi from a global memory of network weights (e.g. using tensorflow.gather).
We did not use nonlinear activations for the BMV architectures, as they did not change the outcome
of the results.

Architecture Setup

BMV-Deconv (filtersize = 2, stride = 1, outchannel = 8, padding = "VALID")
(filtersize = 4, stride = 2, outchannel = 4, padding = "VALID")
(filtersize = 8, stride = 2, outchannel = 4, padding = "VALID")
(filtersize = 8, stride = 3, outchannel = 3, padding = "VALID")

BMV-Dense f : Dense 30, g : Dense 100

A.3.3 ImageNet Models

For the networks used in the supervised learning tasks, we direct the reader to the follow-
ing repository: https://github.com/tensorflow/models/blob/master/research/slim/
nets/nets_factory.py. We also used the RMC: deepmind/sonnet/blob/master/sonnet/
python/modules/relational_memory.py

A.3.4 PPO Parameters

For the projected gym tasks, we used for PPO2 Hyperparameters:

PPO2 Hyperparameters Values

nsteps 2048

nenvs 16

nminibatches 64

λ 0.95

γ 0.99

noptepochs 10

entropy 0.0

learning rate 3 · 10−4

vf coeffiicent 0.5

max-grad-norm 0.5

total time steps Varying

See [10] for the default parameters used for CoinRun. We only varied nminibatches in order to fit
memory onto GPU.
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A.4 Theoretical (LQR)

In this section, we use notation consistent with [40] for our base proofs. However, in order to avoid
confusion with a high dimensional policy K we described in 3.1, we denote our low dimensional
base policy as P and state as st rather than xt.

A.4.1 Notation and Setting

Let ‖·‖ be the spectral norm of a matrix (i.e. largest singular value). Suppose C(P ) was the infinite
horizon cost for an (A,B,Q,R)-LQR where action at = −P · st, st is the state at time t, state
transition is st+1 = A · st +B · at, and timestep cost is sTt Qst + aTt Rat.

C(P ) for an infinite horizon LQR, while known to be non-convex, still possess the property that
when ∇C(P ∗) = 0, P ∗ is a global minimizer, or the problem statement is rank deficient. To
ensure that our cost C(P ) always remains finite, we restrict our analysis when P ∈ P , where
P = {P : ‖P‖ ≤ α and ‖A−BP‖ ≤ 1} for some constant α, by choosing A,B and the
initialization of P appropriately, using the hyperparameters found in A.3.1. We further define the

observation modified cost as C(K;Wθ) = C

(
K

[
Wc

Wθ

]T)
.

A.4.1.1 Smoothness Bounds

As described in Lemma 16 of [40], we define

TP (X) =

∞∑

t=0

(A−BP )tX[(A−BP )T ]t (1)

and ‖TP ‖ = supX
TP (X)
‖X‖ over all non-zero symmetric matrices X .

Lemma 27 of [40] provides a bound on the difference C(P ′)−C(P ) for two different policies P, P ′

when LQR parameters A,B,Q,R are fixed. During the derivation, it states that when ‖P − P ′‖ ≤
min

(
σmin(Q)µ

4C(P )‖B‖(‖A−BP‖+1) , ‖P‖
)

, then:

C(P ′)− C(P ) ≤ 2 ‖TP ‖ (2 ‖P‖ ‖R‖ ‖P ′ − P‖+ ‖R‖ ‖P ′ − P‖2)+
2 ‖TP ‖2 2 ‖B‖ (‖A−BP‖+ 1) ‖P − P ′‖ ‖P‖2 ‖R‖

(2)

Lemma 17 also states that:

‖TP ‖ ≤ C(P )

µσmin(Q)
(3)

where

µ = σmin(Ex0∼D[x0x
T
0 ]) (4)

Assuming that in our problem setup, x0, Q,R,A,B were fixed, this means many of the parameters
in the bounds are constant, and thus we conclude:

C(P ′)−C(P ) ≤ O
(
C(P )2

[
‖P‖2 ‖P − P ′‖ (‖A−BP‖+ ‖B‖+ 1) + ‖P‖ ‖P − P ′‖2

])
(5)

Since we assumed ‖A−BP‖ ≤ 1 or else TP (X) is infinite, we thus collect the terms:

C(P ′)− C(P ) ≤ O
(
C(P )2

[
‖P‖2 ‖P − P ′‖+ ‖P‖ ‖P − P ′‖2

])
(6)

Since α is a bound on ‖P‖ for P ∈ P , note that

‖P‖2 ‖P − P ′‖+ ‖P‖ ‖P − P ′‖2 = ‖P − P ′‖ (‖P‖2 + ‖P‖+ ‖P − P ′‖) (7)
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≤ ‖P − P ′‖ (‖P‖2 + ‖P‖ (‖P‖+ ‖P ′‖) ≤ (3α2) ‖P − P ′‖ (8)

From (6), this leads to the bound:

C(P ′)− C(P ) ≤ O
(
C(P )2 ‖P − P ′‖

)
(9)

Note that this directly implies a similar bound in the high dimensional observation case - in particular,

if P = K

[
Wc

Wθ

]T
and P ′ = K

[
Wc

Wθ

]T
then ‖P − P ′‖ ≤ ‖K −K ′‖

∥∥∥∥∥

[
Wc

Wθ

]T∥∥∥∥∥ = ‖K −K ′‖.

A.4.2 Gradient Dynamics in 1-Step LQR

We first start with a convex cost 1-step LQR toy example under this regime, which shows that linear

components such as β

[
0
Wθ

]T
cannot be removed from the policy by gradient descent dynamics to

improve generalization. To shorten notation, let Wc ∈ R
n×n and Wθ ∈ R

p×n, where p≪ n. This is

equivalent to setting dsignal = dstate = n and dnoise = p, and thus the policy K ∈ R
n×(n+p).

In the 1-step LQR, we allow s0 ∼ N (0, I), a0 = K

[
Wc

Wθ

]
s0 and s1 = s0 + a0 with cost 1

2 ‖s1‖
2
,

then

C(K;Wθ) = Ex0

[
1

2

∥∥∥∥x0 +K

[
Wc

Wθ

]
x0

∥∥∥∥
2
]
=

1

2

∥∥∥∥I +K

[
Wc

Wθ

]∥∥∥∥
2

F

(10)

and

∇C(K;Wθ) =

(
I +K

[
Wc

Wθ

])[
Wc

Wθ

]T
(11)

Define the population cost as C(K) = EWθ
[C(K;Wθ)].

Proposition 1. Suppose that Wθ ∼ Unif(O(p, n)), where O(p, n) = {X ∈ R
p×n : XTX = I}.

Then

(i) The minimizer of C(K) is unique and given by K⋆ =
[
−WT

c 0
]
.

(ii) Thus, the minimizer cost is C(K⋆) =
5n
2 .

Proof. By standard properties of the Haar measure on O(p, n), we have that E[W0] = 0 and

E[W0W
T

0 ] =
n
p I . Therefore,

C(K) =
n

2
+

1

2
E

[∥∥∥∥K
[
Wc

Wθ

]∥∥∥∥
2

F

]
+ E

[
Tr

(
K

[
Wc

Wθ

])]

=
n

2
+

1

2
Tr

(
KTK

[
I 0
0 n

p I

])
+Tr

(
K

[
Wc

0

])
.

We can now differentiate C(K):

∇C(K) = K

[
I 0
0 n

p I

]
+
[
WT

c 0
]
.

Both claims now follow.

Note that if K = K ′ + β

[
0
Wθ

]T
, then ∇C(K;Wθ) = ∇C(K ′;Wθ) + β

[
0
Wθ

]T
. In particular, if

we perform gradient descent dynamics Kt+1 = Kt − η∇C(K;Wθ), then we can show

Kt = K0(I − ηM)t +B(I − ηM)t−1 + ...+B (12)
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where M =

[
Wc

Wθ

] [
Wc

Wθ

]T
is the Hessian of C(K;Wθ) and B = −η

[
Wc

Wθ

]
. Note that M is has rank

p << n+ p, and thus at a high level, K0(I − ηM)t does not diminish if some additive portion of
K0 lies in the nullspace of M . If the initialization is K0 ∼ N (0, I), then it is highly likely we can
find a subspace Q of the nullspace of M for which K0Q 6= 0.

We show the precise error achieved under gradient descent in the following propositions. Let

W := 1√
2

[
Wc

Wθ

]
. Observe that W ∈ O(n+ p, n). Let W⊥ denote the orthogonal complement of W .

Proposition 2. As long as η < 1/2,

K∞ := lim
t→∞

Kt = K0W⊥W
T

⊥ − 1√
2
W

T

.

Proof. We first show that the series:

B(I − ηM)t−1 +B(I − ηM)t−2 + ...+B

converges to − 1
2

[
Wc

Wθ

]T
as t→ ∞. Note that we can write:

I − ηM = I − 2ηWW
T

= (1− 2η)WW
T

+W⊥W
T

⊥ .

Therefore:

(I − ηM)t = (1− 2η)tWW
T

+W⊥W
T

⊥ .

We can also write B = −
√
2ηW . Therefore, B(I − ηM)t is:

B(I − ηM)t = −
√
2η(1− 2η)tW

T

= −η(1− 2η)t
[
Wc

Wθ

]T
.

This shows that
∑∞

t=0B(I − ηM)t = − 1
2

[
Wc

Wθ

]T
since η

∑∞
t=0(1− 2η)t = 1

2 .

Proposition 3. Suppose that η < 1/2 and each entry of K0 is drawn i.i.d. from N (0, ψ2). We have
that:

EK0
[C(K∞)] =

(
ψ2n2

4
+

n

16

)
(1 + n/p) .

Proof. We write K∞ = K∞,o +K∞,s. With this decomposition and letting R⊥ :=W⊥,

KT

∞K∞ = KT

∞,oK∞,o +KT

∞,oK∞,s +KT

∞,sK∞,o +KT

∞,sK∞,s

= R⊥K
T

0K0R⊥ − 1√
2
R⊥K

T

0W
T − 1√

2
WK0R⊥ +

1

2
WW

T

.

Therefore,

EK0
[K∞] = − 1√

2
W

T

,

EK0
[KT

∞K∞] = ψ2nR⊥ +
1

2
WW

T

.

We have:

EK0
[C(K∞)] =

n

2
+

1

2
Tr(EK0

[KT

∞K∞]

[
I 0
0 n

p I

]
) + Tr(EK0

[K∞]

[
W
0

]
)

=
n

2
+
ψ2n

2
Tr(R⊥

[
I 0
0 n

p I

]
) +

1

4
Tr(WW

T

[
I 0
0 n

p I

]
)− 1√

2
Tr(W

T

[
W
0

]
)

=
ψ2n

2
Tr(R⊥

[
I 0
0 n

p I

]
) +

1

4
Tr(WW

T

[
I 0
0 n

p I

]
)

=
ψ2n

2
Tr(R⊥

[
I 0
0 n

p I

]
) +

1

16
(n+ n2/p) .
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Next we have:

R⊥

[
I 0
0 n

p I

]
= (I − 1

2
WWT)

[
I 0
0 n

p I

]

=

[ 1
2I −n

pWWT

o

− 1
2WoW

T n
p I − n

2pWoW
T

o

]
.

Therefore:

EK0
[C(K∞)] =

ψ2n

2
(
n

2
+
n2

2p
) +

1

16
(n+ n2/p) .

Note that this is clearly a poly(n) difference from C(K⋆), and thus we show a generalization gap
that cannot be removed from using standard gradient descent.

This is a specific example of the general case where if the Hessian of a function f(x) is degenerate
everywhere (e.g. has rank k < n), then a initialized x0 cannot converge under gradient descent to a
minimizer that lives in the span of the Hessian, as the non-degenerate components do not change. In
particular, Proposition 4.7 in [41] points to the exact magnitude of the non-degenerate component in

the relevant subspace Q: Ex∼N (0,I)

[
‖ProjQ(x)‖2

]
= n−k

n

The generalization gap may decrease if the number of level samples was high enough. We de-

fine the sample Hessian as: Ĉ(K) = 1
m

∑m
i=1 C(K;Wθi) is M̂ = 1

m

∑m
i=1Mi where Mi =[

Wc

Wθi

] [
Wc

Wθi

]T
∀i. In particular, as m increases, the rank of M̂ increases, which allows gradient

descent to recover the minimizer K⋆ better.
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