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Abstract

Methods that add random perturbations to estimates before making decisions were
first introduced in online learning where they called FTPL (Follow the Perturbed
Leader) methods. These methods solve decision making problems under uncer-
tainty by repeatedly solving optimization problems on perturbed input instances.
In this paper, we apply this type of perturbation to the design of reinforcement
learning algorithm. We provide the first worst-case regret bound for a perturbation
algorithm under the unichain, infinite horizon, tabular setting. We believe this study
provides a new direction for the analysis of non-optimistic exploration. We also
hope that our work further strengthens the connections between optimization and
reinforcement learning.

1 Introduction

Designing exploration strategies that are both computationally and statistically efficient is an im-
portant problem in reinforcement learning (RL). There have been rich theoretical studies balancing
exploration and exploitation in Markov decision processes (MDPs) with finite state and action space
(i.e., the tabular setting) (Jaksch et al., 2010; Osband and Van Roy, 2017; Dann and Brunskill, 2015;
Kearns and Singh, 2002).

Most previous theoretical analyses utilize optimism in face of uncertainty (OFU), which maintains
a confidence set containing true MDP and optimizes over all MDPs in the set. OFU is difficult
to use in practical RL settings, in which ε-greedy and Boltzmann exploration are commonly used.
Many papers attempt to analyze randomized exploration method without optimism. Osband et al.
(2013); Osband and Van Roy (2017) study posterior sampling algorithm that samples an MDP from
its posterior distribution and executes its optimal policy. They show many advantages over OFU
algorithms in terms of computational efficiency. However, they only give a Bayesian regret bound that
measures expected regret with respect to a prior distribution over MDPs. As far as we know, Russo
(2019) gives the first worst-case regret bound for randomized exploration. They use randomized least
squares value iteration (RLSVI) under episodic MDP setting and the crucial proof step is to show a
significant probability of being optimistic.

Perturbation algorithm adds random perturbation to estimates before solving optimization problem.
As the most straightforward exploration method, there have been many studies on perturbation
methods in the bandit literature (Kalai and Vempala, 2005; Kujala and Elomaa, 2005; Van Erven et al.,
2014), while it has not been studied well in the RL community. The method has low computational
complexity and is closer to commonly used methods in practical settings, i.e. ε-greedy exploration.
Kim and Tewari (2019) gives a general perturbation framework and also shows the importance
of significant probability of optimism. The probability of being optimistic in bandit problems
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corresponds to the tail distribution of the noise that can be easily analyzed, while in RL problems,
perturbed transition probability has a complex effect on the average reward.

Our main contribution is to provide the first worst-case regret bound for infinite horizon unichain
MDPs by directly perturbing the estimate of transition probability toward the same but random
direction for all state-action pairs. Our algorithm, analogous to that of Russo (2019), only perturbs
once and the most crucial step is also to show that under our perturbation there is a significant
probability of being optimistic. We extend the perturbation framework from bandit to RL problems
and we believe this is crucial to analyze more general perturbation methods, for example, posterior
sampling.

2 Background on RL

RL problem. We consider the classical tabular Markov decision process (MDP) setting. Let
M = {S,A, P0, P, r} denote an MDP with a finite state space S, finite action space A, initial
state distribution P0 : ∆(S), transition probability P : S × A 7→ ∆(S) and reward distribution
r : S ×A 7→ ∆([0, 1]), where ∆(S) denotes a distribution over S . An MDP M and an algorithm C
operating on M with initial state s constitute a stochastic process described by the states st visited at
time step t, the actions at chosen by C at step t, and the rewards rt obtained for t = 1, . . . , T .

A policy on an MDP M is a mapping π : S 7→ A. We only consider unichain MDPs, in which under
any policy, any state can be reached (after a finite number of transitions) from any state. Any policy
π on an unichain M generates an ergodic Markov chain with a stationary distribution dπ . An average
reward of a policy is defined as

λ(M,π) =
∑
s∈S

dπ(s)r(s, π(s)).

Let π∗(M) denote an optimal policy from arg maxπ λ(M,π) and let λ∗(M) denote the correspond-
ing average reward. Without further specification, π∗ and λ∗ are those for true MDP M . We call
an policy π ε-optimal, if λ(M,π) > λ∗ − ε. The aim of an algorithm is to find the optimal policy
by balancing exploring new state-action pairs and exploiting existed good policies. We evaluate an
algorithm by total regret defined as RT =

∑T
t=0 λ

∗ − rt.
The following definitions are also needed to demonstrate our results.

Definition 2.1. Given an ergodic Markov chain C, let Ts,s′ = {t > 0 | st = s
′
, s0 = s} be

the first passage time for two states s, s
′
. Furthermore Ts,s is the return time for s. Let TC :=

maxs,s′∈S E (Ts,s′) and, κC := maxs∈S
maxs′ 6=s E(Ts′,s)

2E(Ts,s) . Then the hitting time of a unichain MDP
M is TM := maxπ TCπ , where Cπ is the Markov chain induced by π on M . Furthermore, we set
κM := maxπ κCπ .
Definition 2.2. Let εM = λ∗(M)−maxπ 6=π∗ λ(M,π) be the gap between the average rewards of
optimal policy and sub-optimal policy for M .

3 Algorithm

Most previous algorithms view the problem as achieving optimism in face of uncertainty (OFU).
This class of algorithms maintains a confidence set of MDPs containing the true MDP with high
probability. At start of each episode, the algorithm chooses an MDP with an optimal average reward
higher than that of true MDP. Instead, we use a similar framework but consider an direction-consistent
perturbation (Alg. 1) that perturbs transition probability of all the state-pairs toward the same direction.
This perturbation achieves optimism with a probability of 1/S.

The direction-consistent perturbation is first proposed in Agrawal and Jia (2017), in which it is called
optimistic sampling. The paper uses optimistic sampling as a pre-stage. They optimize average
rewards among Õ(S) MDPs from optimistic sampling, which makes it analogous to the previous
OFU algorithms. We follow the same sampling idea but only sample once and give a worst case
bound on total regret. To ensure that MDP after perturbation is still unichain, we add a small uniform
probability to all directions.
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Algorithm 1 Direction-consistent perturbation

Input: Nk(s, a), Nk(s
′
, s, a) and P̂k(s

′ | s, a) for any s, s
′ ∈ S and a ∈ A; current time step tk;

ρ ∈ (0, 1).
Let P−k (· | s, a) = P̂k(· | s, a)−∆k(· | s, a), where

∆k(· | s, a) = min{

√
3P̂k(i | s, a) log(2AStk/ρ)

Nk(s, a)
+

3 log(2AStk/ρ)

Nk(s, a)
, P̂k(i | s, a)}, i ∈ S. (1)

Let δk = mins,a

√
3S log(2AStk/ρ)

Nk(s,a)
. Let zk be a random vector sampled uniformly at random from

{11, . . .1S}, where 1i is the vector with 1 on dimension i and 0’s on the other dimensions. Let 1
be the vector with all the elements as 1. Set M̃k with the transition probability,

P̃k(· | s, a) = P−k (· | s, a) + (
∑
i

∆k(i | s, a)− δk)zk +
δk
S
1.

Output: M̃k

Another difference is the length of episodes. Previous methods mainly use doubling trick which ends
an episode when visit number of some state and action pair doubles. It can be shown that doubling
trick fails in our perturbation scenario. Thus, we consider a fixed number of steps for each episode.
We assume 2TM ≤ H in our proof. The whole algorithm is shown in Alg. 2.

Algorithm 2 Perturbation algorithm for reinforcement learning (PRL)
procedure PERTURBATION ALGORITHM(ρ ∈ (0, 1),S, A and H)

Initialization: Set t := 1, and observe the initial state s1.
for episodes k = 1, 2, . . . do

Initialize episode k:
1. Set the start time of episode k, tk := t.
2. For all s, s

′ ∈ S, a ∈ A, set the state-action counts prior to episode k,

Nk(s, a) := #{τ < tk : sτ = s, aτ = a},
Nk(s, a, s′) := #{τ < tk : sτ = s, aτ = a, sτ+1 = s′}.

Compute estimates P̂k(s′ | s, a) := Nk(s,a,s
′)

max{1,Nk(s,a)} .

Compute and execute policy πk:
3. Sample a MDP M̃k from algorithm 1 and compute its optimal policy πk.
4. Execute policy πk for H steps.

end for
end procedure

4 Main results

We give a logarithmic in T , gap-dependent regret bound with polynomial dependence on
S,A, TM , κM that is common in bandit literature .

Theorem 4.1. With probability of at least 1− ρ, it holds that for any initial state s ∈ S , any T > 1,
the regret of PRL on M is bounded by

RT = O(
AS5TMκ

2
M log(SAT/ρ)

ε2M
), (2)

if H > 2TM and M is an unichain with finite state and action space.
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4.1 Proof of Theorem 4.1

We prove Theorem 4.1 by constructing a perturbation bound for both λ(M̃k, πk) and λ(M̃k, π
∗). If

width of both decrease to ε/2, πk is an ε-optimal policy. Our proof mainly consists of bounding the
regrets caused by the episodes when the two bounds are wider than ε/2 and the regrets of failing the
confidence bounds.

Perturbation bound for average reward. Cho and Meyer (2001) gives a perturbation bound on
the stationary distribution between two Markov chains. We extend it to MDP setting.

Lemma 4.2. For a given policy π, letM(P̂ , π, εp) be a set of MDPs defined as

{M : ‖P (·|s, π(s))− P̂ (·|s, π(s)) ‖1 ≤ εp,∀s ∈ S}.
Then for any two MDPs, M1 and M2, |λ(M1, π)− λ(M2, π)| ≤ SεpκM1

.

We fix ε = εM and a policy π an ε-known policy at the start of episode k, if for any s ∈ S,

Lpk(s, π(s)) ≤ εp :=
ε

2SκM
, where Lpk(s, a) :=

√
12S log(2AST/ρ)

Nk(s, a)
. (3)

A plausible episode satisfies the following two conditions: (1) πk and π∗ are both ε-known; (2) both
P and P̃k are in the plausible set ∩π∈{πk,π∗}M(P̂k, π, L

p
k(s, π(s))). By Lemma 4.2, with the two

conditions satisfied, the optimal policy is achieved, i.e. πk = π∗.

Therefore, our proof mainly consists of bounding the regret when πk or π∗ is not ε-known and
bounding the episodes when P or P̃k is not in the plausible set. Let Ak denote the event that πk is
ε-known at the start of k and Bk denote the event that π∗ is ε-known at the start of k.

Regret due to unknown πk. Similar to Auer and Ortner (2007), we first bound the regret caused
by episodes running under unknown policies, i.e. Ack holds. For some s ∈ S and a ∈ A, let m(s, a)
be the number of the episodes with Lpk(s, a) ≥ εp. Since the mean passage time between any state
s′′ and s is upper bounded by TM , the probability that it takes more than 2TM steps to reach s from
s′′ is 1

2 by Markov’s inequality. Since we assume H > 2TM , let β = H/TM
bH/2TMc and separate each

round i into b H
βTM
c intervals of length ≥ 2TM , in each of which the visiting probability on state s is

at least 1
2 . We may lower bound the number of visits Ns,a(n) in (s, a) within n such intervals by an

application of Chernoff-Hoeffding’s inequality:

P{Ns,a(n) ≥ n

2
−

√
n log(

SA

ρ
)} ≥ 1− ρ

SA
. (4)

If Nt(s, a) > 12S log(2AST/ρ)
ε2p

, (3) holds for every step. Combined with (4), we have

m(s,a)∑
i=1

b H

βTM
c = O(

S log(2SAT/ρ)

ε2p
), (5)

with probability 1− ρ
SA . Summing over (s, a), with probability 1− ρ, we have

T/K∑
k=1

1Ack
H ≤

∑
s∈S,a∈A

m(s,a)∑
i=1

H = O(
AS2TM log(2SAT/ρ)

ε2p
) =: NAc . (6)

It remains to bound the regrets caused by episodes with Ak ∩Bck.

Regret due to unknown π∗. We first introduce the lemma on the probability of optimism under
direction-consistent perturbation, whose proof is shown in Appendix A.
Lemma 4.3. (Agrawal and Jia, 2017) In each episode k, with probability 1

2S , ∃ik ∈ S , when zk = ik,
λ(M̃k, π

∗) > λ(M,π∗)− δkS2κM . If πk is ε-known, λ(M̃k, π
∗) > λ(M,π∗)− ε/2.
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Let Ek be the event that we choose zk = ik in episode k. Note that Ek ∩Ak indicates that πk is π∗,
which means π∗ is ε-known Thus, Ek ∩Ak ∩Bck = ∅ and Ak ∩Bck can only happen when Eck holds.
We have

#(Ak ∩Bck) ≤ #(Eck ∩Bck) =: N1, and N2 := #(Ek ∩Bck) = #(Ack ∩Bck) ≤ #(Ack).

Given a fixed N2, N1 ∼ NB(N2, 1− 1
2S ) is a negative binomial distribution. By some tail bound of

negative binomial distribution (Klar, 2000), we have Lemma 4.4. The proof is shown in Appendix B.
Lemma 4.4. With probability at least 1− ρ,

HN1 < max{SN2H,S
2 log(1/ρ)H} = O(SNAc). (7)

Applying this Lemma, the total regret in episodes when Ak ∩ Bck happens is O(SNAc). With the
confidence bound containing both true MDP M and perturbed MDP M̃k at the start of each episode,
the total regret is O(SNAc).

Deal with failing confidence set Finally, we have to take into account the error probabilities, with
which in each round a transition probability is not contained in its confidence interval.

By Weissman et al. (2003),

P {‖p̂(·)− p(·)‖1 ≥ α} ≤ (2m − 2) exp

(
−nα

2

2

)
.

Apply this bound between empirical and true distribution on transition probability. Since√
2

n
log(

2SASt6

ρ
) ≤

√
12S

n
log(

2ASt

ρ
),

we have∑
s,a

∑
t

P

{
‖P̂t(· | s, a)− Pt(· | s, a)‖1 ≥

√
12S

Nt(s, a)
log

(
2ASt

ρ

)}
≤
∑
s,a

∑
t

ρ

t6SA
= O(ρ).

(8)

For P̃k and any policy π, we have as long as 3S log(2AStk/ρ) < N(s, π(s)),

S∑
i=1

∆k(i | s, π(s))−δk ≤

√
3S log(2AStk/ρ)

Nk(s, π(s))
+

3S log(2AStk/ρ)

Nk(s, π(s))
≤ 2

√
3S log(2Atk/ρ)

Nk(s, π(s))
≤ Lpk(s, π(s)).

It holds when π is ε-known. Putting (7), (6) and (8) together, Theorem 4.1 follows.

5 Discussion and open problems

Our analysis shows that a sufficient condition to have a worst-case bound is to have a significant
probability of being optimistic in each episode. The probability for direction-consistent perturbation
is 1/S. However, more general perturbation scenarios, for example, posterior sampling, need to be
studied. The other promising extension is to consider communicating setting and episodic setting.

A Proof of Lemma 4.3

Let P̃ 1
k (· | s, a) = P−k (· | s, a) + (

∑
i ∆k(i | s, a)) and P̃ 2

k (· | s, a) = P 1
k (· | s, a) − δkzk + δk.

With some abuse of notations, we omit subscriptions for k and fix a state and action pair.
Lemma A.1. For any fixed h ∈ [0, D]S , we have

P̃ 1Th ≥ PTh,

with probability at least Ω(1/S)
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Define αi := P̂ (i)− P (i) (and hence
∑
i αi = 0). By multiplicative Chernoff bounds (Kleinberg

et al., 2008), with probability 1− ρ
SAt , |αi| ≤

√
3P̂ (i) log(2ASt/ρ)

N + 3 log(2ASt/ρ)
N , and with probability

1− ρ
At , it holds for any i ∈ S. Note that ∆i ≥ αi. With probability 1/S, z = i is picked such that

hi = D. So with probability at least 1
2S ,

∑
i

P̃ 1(i)h(i) =
∑
i

P (i)−h(i) +D

1−
∑
j

P (j)−

 =
∑
i

P (i)−h(i) +D
∑
j

∆(j)

=
∑
i

(
P̂ (i)−∆(i)

)
h(i) +D∆(i) =

∑
i

P̂ (i)h(i) + (D − h(i)) ∆(i)

≥
∑
i

P̂ (i)h(i) + (D − h(i))α(i) =
∑
i

(
P̂ (i)− α(i)

)
hi +Dα(i)

=
∑
i

P (i)h(i) +D
∑
i

α(i) =
∑
i

P (i)h(i)

By Agrawal and Jia (2017) (Lemma 4.2), λ(M̃1, π∗) ≥ λ(M,π∗) with probability at least 1/2S.
Applying perturbation bound again, λ(M̃2, π∗) ≥ λ(M,π∗)− δS2κM .

B Proof of Lemma 4.4

Lemma B.1. By Klar (2000) (Proposition 1), suppose X has a negative binomial distribution with
parameters r and p, where r > 0, and 0 < p < 1; fx is the density function. If r > 1 and n ≥ rq/p,

1

p
fn < P (X ≥ n) <

(
1− n+ r

n+ 1
q

)−1
fn.

Applying Lemma B.1, with c ≥ 2S,

Pr(N1 ≥ cN2) ≤ [1− (1 + c)N2

cN2 + 1

S

S + 1
]−1
(

(1 + c)N2 − 1
cN2

)
(

1

S + 1
)N2(1− 1

S + 1
)cN2

(Using 1− (1 + c)N2

cN2 + 1

S

S + 1
≥ 1− 1 + c

c

S

S + 1
≥ 1

2(S + 1)
)

≤ 2(S + 1)

(
(1 + c)N2 − 1

cN2

)
(

1

S + 1
)N2(1− 1

S + 1
)cN2

≤ 2(S + 1)(1− F (N2, (1 + c)N2,
1

S + 1
)),

where F (k, n, p) is the cdf of binomial distribution of B(n, p). By Hoeffding’s inequality, choosing
cN2 ≥ S2 log(2(S + 1)/ρ),

2(S + 1)F (N2, (1 + c)N2,
1

S + 1
) ≤ 2(S + 1) exp

(
−2

((1 + c)N2/S −N2)2

(1 + c)N2

)
≤ 2(S + 1) exp

(
−2

(1 + c)N2

S2

)
≤ ρ

Thus, P (N1 > max{2SN2, S
2 log(2(S + 1)/ρ)}) ≤ 1− ρ.
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