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Abstract

We propose optimization-based techniques for off-policy evaluation, confidence
intervals (CIs), and learning in contextual bandits, using the framework of empirical
likelihood (EL). Each of these is empirically evaluated to show good performance
against strong baselines in finite sample regimes.

1 Introduction

Contextual Bandits [ACFS02, LZ07] are now in widespread practical use ([LCLS10, CABJ17,
PGC+14]). Key to their value is the ability to do counterfactual estimation [HT52] of the value of
any policy enabling sound train/test regimes similar to supervised learning. A limiting factor on the
lower (data) scale of application is the variance of counterfactual estimation. How can we find the
tightest-possible CI on counterfactual estimates? And since tight CIs are deeply dependent on the
form of their estimate, how can we find a tight estimate? And given what we discover, how can we
leverage this for improved learning algorithms?

We discover good answers to these questions through the application of EL [Owe01].

Applying this first to estimation, we construct a simply-specified estimator in section 2.1 by solving a
low dimensional convex problem. The estimator has substantially lower mean squared error than
widely used alternatives and the gap is most pronounced in regimes where the number of samples
n is of the same order as the smallest inverse probability 1/p of an action. Next we elaborate a
computationally tractable asymptotically exact CI in section 2.2. Typically confidence intervals are
either small but undercover, or guarantee prescribed coverage but are too wide to be useful. Our
interval is both small and (despite having only an asymptotic guarantee) empirically honors prescribed
coverage. Turning to learning in section 2.3, we use our CI to construct a robust counterfactual
learning objective with which we experiment in section 3.

Our contributions: The estimator, CI, and learning objective presented here are all new. Of these,
the estimator and learning objective are useful improvements, while the CI is a large improvement
over previous approaches as shown in figure 1.

1.1 Related Work

The EL framework [Owe01] forms the basis for our approach. It is a non-parametric maximum
likelihood approach that treats the sample as a realization from a multinomial distribution with an
infinite number of categories. Surprisingly, EL results in both efficient algorithms and efficient
estimators with guarantees similar to those of parametric maximum likelihood with a well specified
model. Precise asymptotic optimality statements are in [Owe01] section 13.5 and [Kit01].

There are many previous estimators for contextual bandits. The simplest one is the "Inverse Propen-
sity Score" (IPS) approach [HT52] which is unbiased, but suffers from high variance. The Self-
Normalized IPS (SNIPS) [SJ15b] estimate is a simple modification which is biased but has superior
mean squared error. An orthogonal way to reduce variance is to incorporate a reward estimator. This
can be done via doubly robust (DR) estimation [RR95, DLL11] which is unbiased and has lower
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(b) Empirical coverage @ 95% nominal
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Figure 1: A comparison of CIs on contextual bandit data. The MLE CI is dramatically tighter than
an approach based on a binomial CI while avoiding chronic undercoverage as per the asymptotic
Gaussian CI. Note that in some regimes, the asymptotic Gaussian CI both undercovers and has greater
average width. This is possible as the MLE CI has a different functional form than a multiplier on
the Gaussian CI. On the left, shaded area represents 90% of the empirical distribution indicating the
MLE CI width varies less over realizations. On the right, shaded area represents 4 times the standard
error of the mean indicating coverage differences are everywhere statistically significant.

variance when the reward estimator is good. The SWITCH estimator [WAD17] provides a method
for switching between a DR estimator and direct application of a reward estimator to optimize mean
square error. The estimator presented here is a natural alternative to IPS and SNIPS, can be seamlessly
combined with DR or SWITCH (replacing their IPS part), and provides lower mean squared error.
We briefly discuss how to incorporate a reward predictor.

There is less work on CIs for contextual bandits. A simple asymptotically motivated approach fits
the observations to a normal distribution and uses the CI for the normal [LCKG15]. This results in a
too-tight interval, e.g., when all observed rewards are zero. Our CIs are also asymptotically motivated
but we incorporate missing mass to empirically mitigate undercoverage.

There are many contextual bandit learning algorithms including theoretical [ACFS02, LZ07], reduc-
tion oriented [DLL11], optimization-based [SJ15a], and Bayesian style [MKLL12] algorithms. A
recent paper about empirical contextual bandit learning [BAL18] informs our experiments.

Ideas from EL have been applied to robust supervised learning [DGN16]. Our combination of CIs with
learning is a contextual bandit analogue to robust supervised learning. Regularizing counterfactual
learning via lower-bound optimization has also been previously considered [SJ15a, SLA+15, KL02].

2 Empirical Likelihood Applications to Contextual Bandits

We consider the standard contextual bandit problem, with contexts x ∈ X , a finite set of actions A,
and bounded rewards r ∈ A→ [rmin, rmax]. The environment generates (x, r) ∼ D i.i.d. and reveals
x to the policy, the policy samples a ∈ A from a context-conditional distribution π : X → P(A) and
observes reward r(a). We denote the all ones vector as ~1 and the indicator function as 1.

2.1 Off-Policy Evaluation

We assume a dataset {(xn, an, r(a)n)}n∈N , generated from a fixed historical policy h, with which
we want to estimate the value of another fixed policy π. The value of π is V (π) = E(x,r)∼D

a∼π(x)
[r(a)] =

E(x,r)∼D
a∼h(x)

[
π(a|x)
h(a|x)r(a)

]
, where π(a|x) = Ea′∼π(x)[1a=a′ ] and analogously for h(a|x). Define w .

=

π(a|x)
h(a|x) , and assume the joint distribution of w and r has (possibly infinite) discrete support.1 Then we

1This is for ease of exposition; EL is applicable to data coming from continuous distributions.
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can represent the joint distribution of w and r for data generated from h as a matrix Q via

Qw,r
.
= E(x,r)∼D

a∼h

[
1
w=

π(a|x)
h(a|x)

1ra=r

]
, V (π) =

∑
w,r

wQw,rr = ~w>Q~r.

We assume w is bounded in [wmin, wmax]; given h and π these limits are easily determined in
practice.2 We assume 0 ≤ wmin < 1 and wmax > 1. This precludes wmin = wmax = 1, which is
the case of on-policy evaluation. To estimate V we first estimate Q and then use V̂ (π) = w>Q̂r. To
estimate Q we solve the following empirical maximum likelihood optimization:

max
Q�0

∑
n

log(Qwn,rn), (1)

subject to ~w>Q~1 = 1, (β)
~1>Q~1 = 1. (γ)

We defer the motivation for this procedure to section 2.2. The dual variable for each constraint is
shown in parentheses. The constraints (β) and (γ) respectively normalize the counterfactual and
factual distribution. Theorem 1 characterizes the solution.

Theorem 1. The solution to equation (1) satisfies for every observed (w, r) pair

Q̂w,r =
∑
n

1w=wn,r=rn

β∗(wn − 1) +N
, (2)

where β∗ is the solution to the dual problem

sup
β

∑
n

log (β(wn − 1) +N) subject to ∀w : β(w − 1) +N ≥ 0. (3)

Moreover, if wmin or wmax are not observed the solution to (1) puts mass on these according to the
solution of the non-negative linear feasibility program

wminq̂min + wmaxq̂max = 1−
∑
n

wn
β∗(wn − 1) +N

, q̂min + q̂max = 1−
∑
n

1

β∗(wn − 1) +N
,

where q̂min ≥ 0 and q̂max ≥ 0 are associated with wmin and wmax respectively. This additional
mass can be distributed arbitrarily over r ∈ [rmin, rmax], implying the value estimate is an interval.

Proof. See appendix A.1.

When EL estimators are subject to additional constraints they can place mass on unobserved
data[GŠ+17]. In our case the additional mass is due to the β constraint. Once both wmin and
wmax have been observed, all mass is placed upon the sample. Until then, it might be possible to
increase the likelihood of the observed data while satisfying the constraint by placing mass on an
unobserved extreme value. The dual is a one dimensional convex problem which we solve to accuracy
ε in O(N log(Nε )) time via bisection3 within ( N

1−wmax
, N
1−wmin

). The resulting value estimate is

V̂ (MLE) = ρ+
∑
n

wn(rn − ρ)

β∗(wn − 1) +N
, (4)

where ρ ∈ [rmin, rmax] is arbitrary and only affects V̂ (MLE) if mass is placed outside the sample.

Comparing the MLE with the standard IPS [HT52] and SNIPS [SJ15b] estimates in the same notation,

V̂ (IPS) =
∑
n

wnrn
N

, V̂ (SNIPS) =
∑
n

wnrn∑
m wm

,

2For example, if π is deterministic, then wmin = 0 and wmax = 1
minx,a h(a|x) .

3The factor N can be refined to be the size of a histogram of (w, r) pairs. On a laptop, a C++ implementation
finds the MLE of a histogram with N = 108 in a second (to single precision).
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and assuming q̂max = q̂min = 0, reveals that IPS corresponds to β∗ = 0. This implies the β constraint
is not active at the optimum, i.e., IPS is the MLE when the sum of the importance weights of the
realization equals the number of examples. In that case SNIPS is also the MLE.

Incorporating a reward predictor The MLE estimator is analogous to the IPS estimator, which can
be augmented with a reward predictor via the DR estimator [DLL11]. Analogues to the DR predictor
exist in the EL literature [LYLL16]. The simplest approach is to apply EL on the residual, and then
add back the expected shift. Given predictor r̂ : X ×A→ [rmin, rmax], we construct data

(wn, r̃n)←
(
π(an|xn)

h(an|xn)
, rn − r̂(xn, an)

)
,

apply the MLE on this data (with modified r̃min and r̃max), and then adjust the result via

V̂ (rpmle) = V̂ (mle) +
∑
n

∑
a

π(an|xn)r̂(xn, an).

2.2 Confidence Intervals

The MLE comes with an asymptotically exact coverage interval defined by a likelihood level set. Let

logRw = sup
Q

{∑
n

log(NQwn,rn)

∣∣∣∣~w>Q~1 = 1,~1>Q~1 = 1

}

logRwr(v) = sup
Q

{∑
n

log(NQwn,rn)

∣∣∣∣~w>Q~1 = 1,~1>Q~1 = 1, ~w>Q~r = v

}
withQ(prof) the maximizer of logRwr(V (π)) andQ(mle) the maximizer of logRw. Then we can apply
Theorem 3.5 of [Owe01] which states that −2(logRwr(V (π))− logRw)→ χ2

(1) in distribution as

n → ∞. Letting χ2,(1−α)
(1) be the 1 − α quantile of the χ-squared distribution with one degree of

freedom, we have that for all α

lim
n→∞

Pr

(∑
n

logQ(mle)
wn,rn −

∑
n

logQ(prof)
wn,rn ≤

1

2
χ
2,(1−α)
(1)

)
= 1− α

To get the lower bound of the CI for V (π) we just search for the minimum possible V̂ (π) that still
respects the prescribed coverage 1− α. This leads to the optimization problem

min
Q�0

~w>Q~r, (5)

subject to ~w>Q~1 = 1, (β)
~1>Q~1 = 1, (γ)

∆ +
∑
n

logQwn,rn ≥
∑
n

logQ(mle)
wn,rn , (κ)

where ∆ should asymptotically be 1
2χ

2,1−α
(1) . Considerations from the proof in [Owe01] suggest that

setting ∆ to be half the 1− α quantile F 1−α
(1,N−1) of the corresponding F -distribution leads to better

coverage for small samples. Theorem 2 characterizes the solution.
Theorem 2. The solution to equation (5) satisfies for every observed (w, r) pair

Q̂w,r = κ∗
∑
n

1w=wn,r=rn

γ∗ + β∗wn + wnrn
, (6)

where (κ∗, β∗, γ∗) is the solution to the dual problem

sup
β,γ

N exp

(
−∆

N
+

1

N

∑
n

log
γ + βwn + wnrn
β(mle)(wn − 1) +N

)
− γ − β, (7)

subject to ∀w, r : γ + βw + wr ≥ 0,

κ = exp

(
−∆

N
+

1

N

∑
n

log
γ + βwn + wnrn
β(mle)(wn − 1) +N

)
.
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where β(mle) is the solution of (3). Mass may be allocated to unobserved extreme values (wmin, rmin)
and (wmax, rmin) according to the solution of the linear feasibility program

wminq̂min + wmaxq̂max = 1−
∑
n

κ∗wn
γ∗ + β∗wn + wnrn

, q̂min + q̂max = 1−
∑
n

κ∗

γ∗ + β∗wn + wnrn
,

where q̂min ≥ 0 and q̂max ≥ 0 correspond to (wmin, rmin) and (wmax, rmin) respectively.

Proof. See appendix A.3.

Given (κ∗, β∗, γ∗) from Theorem 2, the lower bound is

V (lb)(π) = rmin + κ∗
∑
n

wn(rn − rmin)

γ∗ + β∗wn + wnrn
.

For the upper bound, we apply Theorem 2 to −r placing additional mass at rmax instead of rmin.

2.3 Learning From Logged Bandit Feedback

Here the goal is to learn a policy π based upon a dataset {(xn, an, h(an|xn), r(a)n)}n∈N generated
from a fixed historical policy h, i.e., without interacting with the data generating process. One
strategy is to leverage a counterfactual estimator to reduce policy learning to optimization [LCKG15],
suggesting the use of the MLE estimator in the objective. We can go one step further and use the
lower bound of the MLE CI as the objective that policy π should maximize. This is similar to recent
work which employs regularized learning, e.g., based upon empirical Bernstein bounds [SJ15a] or
divergence-based trust regions [SLA+15, KL02, DGN16].

Suppose π is parameterized by θ. For each θ, π induces a set of importance weights wn(θ) and
solving (7) gives optimal values (κ∗(θ), β∗(θ), γ∗(θ)). Reward lower bound maximization becomes:

sup
θ

rmin + κ∗(θ)
∑
n

wn(θ)(rn − rmin)

γ∗(θ) + β∗(θ)wn(θ) + wn(θ)rn
, (8)

subject to wn(θ) =
π(an|xn; θ)

h(an|xn)
,

We can view lower bound optimization as a game between two players: one controlling the distribution
Q via the dual variables (κ, β, γ) and one controlling the policy π. Theorem 2 shows how to
implement the first player given any policy π. The second player can be implemented by a learning
algorithm that searches for the policy with the best reward under Q. Optimizing the MLE policy
value estimate is analogous but leveraging the dual equation (3).

3 Experiments

Our code is available at http://github.com/pmineiro/elfcb. All details are in the appendix.

Off Policy Evaluation, Synthetic Data Here we first sample an environment, a set of examples is
sampled from that environment, and the squared error of the value estimate is computed. Figure 2
shows the mean squared error (MSE) over 10,000 environments for various estimators: The best
constant predictor of 1/2 (“Constant”), the DR estimator with a constant predictor of 1/2 clipped to
[0, 1] (“ClippedDR”), the self-normalized IPS estimator (“SNIPS”), and the MLE. When a small
number of large importance weight events is expected (n ≈ wmax), both ClippedDR and SNIPS
suffer due to their poor handling of the E[w] = 1 constraint. Asymptotically all estimators are similar.

Off Policy Evaluation, Realistic Data We compare the mean square error of MLE, IPS, and SNIPS
on 40 datasets from OpenML [VvRBT13]; using the true value of π on the evaluation set (available
because the underlying dataset is fully observed and the action distribution of π is known). For each
dataset we evaluate multiple times, with different actions chosen by the historical policy h. Table 1
shows the results of a paired t-test per dataset and 95% confidence level: “tie” indicates null result,
and “win” or “loss” indicates significantly better or worse. IPS is clearly dominated, The MLE is
overall superior. Additional details and results are presented in Table ?? of appendix B.2.
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Figure 2: Mean squared error of MLE and
other estimators on synthetic data. Asymp-
totics are similar while MLE dominates in the
small sample regime. Line width is 4 times
the standard error of the population mean.

MLE vs. Exploration Wins Ties Losses

IPS
ε = 0.25 28 9 3
bags=10 13 19 8
cover=10 16 16 9

SNIPS
ε = 0.25 2 37 1
bags=10 7 30 3
cover=10 7 33 0

Table 1: Off-policy evaluation results where ε =
0.25 is ε-greedy exploration, bags=10 is bootstrap
exploration with 10 replicas, and cover=10 is online
cover [AHK+14] with 10 policies.

Confidence Intervals, Synthetic Data Figure 1 shows the mean width and empirical coverage over
10,000 environment samples for various CIs at 95% nominal coverage. Binomial CI is the Clopper
Pearson interval on the random variable w

wmax
R. Asymptotic Gaussian is standard interval motivated

by the central limit theorem and typically violates nominal coverage. The MLE interval is narrow and
obeys nominal coverage despite only having asymptotic guarantees. Once again estimation is most
challenging when n ≈ wmax Appendix B.3 contains further details and two additional figures. The
first shows that the MLE CI width does not depend upon the cardinality of the support. The second
demonstrates that the MLE CI width adapts to the difficulty of the problem.

Table 2: Off-Policy Confidence Intervals

Technique Coverage Width Ratio
(Average) (Median)

MLE 0.975 n/a

Binom 0.996 2.89

AG 0.912 0.99

Confidence Intervals, Realistic Data We use the same
datasets mentioned above. The Binomial Confidence
Interval (Binom) overcovers and has wider intervals.
MLE widths are comparable to asymptotic Gaussian
(AG) on this data, but AG undercovers. A 95% binomial
CI on the coverage of AG is [90.0%, 92.3%], effectively
concluding undercoverage.

Learning From Logged Bandit Feedback We heuris-
tically alternate between solving the dual problem with
the policy fixed and then optimizing the policy with the dual variables fixed. When we optimize
the policy we supply different importance weights on each example depending upon the learning
objective. Specifically we use importance weights:

νn(θ) = wn(θ), (baseline)

νn(θ) =
wn(θ)

β∗(θ)(wn(θ)− 1) +N
, (MLE)

νn(θ) =
κ∗(θ)wn(θ)

γ∗(θ) + β∗(θ)wn(θ) + wn(θ)rn
, (CI LB)

with wn(θ) = π(an|xn;θ)
h(an|xn) . Details are in appendix B.5.

Table 3 in the appendix shows the results of a paired t-test with 95% confidence level: “tie” indicates
null result, and “win” or “loss” indicates significantly better or worse evaluation value for CI lower
bound or MLE. Using the CI lower bound overall yields superior results. Using the MLE estimate
also provides some lift but is less effective than using the CI lower bound.
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A Off-Policy Evaluation

A.1 Proof of Theorem 1

Theorem 1. The solution to equation (1) satisfies for every observed (w, r) pair

Q̂w,r =
∑
n

1w=wn,r=rn

β∗(wn − 1) +N
, (2)

where β∗ is the solution to the dual problem

sup
β

∑
n

log (β(wn − 1) +N) subject to ∀w : β(w − 1) +N ≥ 0. (3)

Moreover, if wmin or wmax are not observed the solution to (1) puts mass on these according to the
solution of the non-negative linear feasibility program

wminq̂min + wmaxq̂max = 1−
∑
n

wn
β∗(wn − 1) +N

, q̂min + q̂max = 1−
∑
n

1

β∗(wn − 1) +N
,

where q̂min ≥ 0 and q̂max ≥ 0 are associated with wmin and wmax respectively. This additional
mass can be distributed arbitrarily over r ∈ [rmin, rmax], implying the value estimate is an interval.

Mass on the Realization Starting from equation (1) we construct the Lagrangian:

L(Q, β, γ) = β(~w>Q~1− 1) + γ(~1Q~1− 1) +
∑
n

− log(Qwn,rn).

The Lagrange dual function is

g(β, γ) = inf
Q≥0

L(Q, β, γ) = inf
Q≥0

β(~wQ~1− 1) + γ(~1>Q~1− 1) +
∑
n

− log(Qwn,rn)

= −β − γ + inf
Q≥0

∑
(w,r)

(
(βw + γ)Qw,r −

∑
n

1w=wn,r=rn log(Qw,r)

)
.

This is a separable optimization and each term can be optimized separately. Observe that for c ≥ 0
and y ≥ 0

inf
q≥0

yq − c log(q) = c− c log(c) + c log(y), (9)

with the infimum attained at q∗ = c/y (and unbounded if y < 0). This, together with later
simplifications establishes the form of Q. Using cw,r =

∑
n 1w=wn,r=rn and (9) leads to

g(β, γ) =

{
−β − γ +N −

∑
(w,r) cw,r log(cw,r) +

∑
n log(wnβ + γ) if ∀w : βw + γ ≥ 0

−∞ otherwise
.

The dual for equation (1) follows directly from this and strong duality. Ignoring constants yields

sup
β,γ
−β − γ +

∑
n

log(wnβ + γ) subject to ∀w : βw + γ ≥ 0.

γ can be eliminated by summing the KKT stationarity conditions. For this we introduce dual variables
φ � 0 corresponding to Q � 0, and leverage complementary slackness and primal feasibility:∑

n

1wn=w,rn=r

Qw,r
= φw,r + wβ + γ (KKT stationarity),

⇒
∑
w,r

Qw,r
∑
n

1wn=w,rn=r

Qw,r
=
∑
w,r

Qw,rφw,r + β ~w>Q~1 + γ~1>Q~1,

N =
∑
w,r

Qw,rφw,r + β ~w>Q~1 + γ~1>Q~1

= 0 + β ~w>Q~1 + γ~1>Q~1 (complementary slackness)
= β + γ. (primal feasibility)

9



Substitution results in:

sup
β
−N +

∑
n

log(wnβ + (N − β)) subject to ∀w : βwn +N − β ≥ 0.

which ignoring constants gives

sup
β

∑
n

log((wn − 1)β +N) subject to ∀w : β(wn − 1) +N ≥ 0,

as per equation (3). Equation (2) follows from the KKT stationarity conditions.

Additional Mass For an unobserved (w, r) pair with Qw,r > 0 we have

0 = φw,r + wβ + γ (KKT stationarity)
= wβ + γ (complementary slackness)
= (w − 1)β +N, (dual variable relationship)

which due to the inequality constraints can only occur for a single value of w, either the smallest
value wmin if β > 0 or the largest value wmax if β < 0; unless β = 0 in which case 1>Q1 = 1 and
there is no missing mass.

If (w, r) is observed than

0 <
∑
n

1wn=w,rn=r

Qw,r
(primal feasibility)

= φw,r + wβ + γ (KKT stationarity)
= φw,r + (w − 1)β +N (dual variable relationship)
= (w − 1)β +N, (complementary slackness)

therefore additional mass can only be assigned to an unobserved importance weight. The distribution
over r for this w is not determined, resulting in an interval corresponding to extreme values of r.

A.2 Primal Recovery

Given the dual optimum β∗ of equation (3) we can determine the mass assigned to unobserved w via
primal feasibility. Introducing qmin and qmax to represent the mass at wmin and wmax respectively,
we have

max
qmin≥0,qmax≥0

1 (10)

subject to wminqmin + wmaxqmax = 1−
∑
n

wn
β∗(wn − 1) +N

,

qmin + qmax = 1−
∑
n

1

β∗(wn − 1) +N
.

Because the dual optimum is determined to finite precision, in practice (10) can be infeasible.
Therefore we actually solve the non-negative least squares problem

min
qmin≥0,qmax≥0

∥∥∥∥( 1 1
wmin wmax

)(
qmin

qmax

)
−
(

1−
∑
n

1
β∗(wn−1)+N

1−
∑
n

wn
β∗(wn−1)+N

)∥∥∥∥2 ,
which is equivalent when (10) is feasible but otherwise is more robust.

A.3 Proof of Theorem 2

Theorem 2. The solution to equation (5) satisfies for every observed (w, r) pair

Q̂w,r = κ∗
∑
n

1w=wn,r=rn

γ∗ + β∗wn + wnrn
, (6)

10



where (κ∗, β∗, γ∗) is the solution to the dual problem

sup
β,γ

N exp

(
−∆

N
+

1

N

∑
n

log
γ + βwn + wnrn
β(mle)(wn − 1) +N

)
− γ − β, (7)

subject to ∀w, r : γ + βw + wr ≥ 0,

κ = exp

(
−∆

N
+

1

N

∑
n

log
γ + βwn + wnrn
β(mle)(wn − 1) +N

)
.

where β(mle) is the solution of (3). Mass may be allocated to unobserved extreme values (wmin, rmin)
and (wmax, rmin) according to the solution of the linear feasibility program

wminq̂min + wmaxq̂max = 1−
∑
n

κ∗wn
γ∗ + β∗wn + wnrn

, q̂min + q̂max = 1−
∑
n

κ∗

γ∗ + β∗wn + wnrn
,

where q̂min ≥ 0 and q̂max ≥ 0 correspond to (wmin, rmin) and (wmax, rmin) respectively.

Mass on the Realization The Lagrangian for equation (5) is
L(β, γ, κ,Q)

= ~w>Q~r + κ

(
−∆−

∑
n

logQwn,rn +
∑
n

logQ(mle)
wn,rn

)
+ γ

(
~1>Q~1− 1

)
+ β

(
~w>Q~1− 1

)
= κ

(
−∆ +

∑
n

logQ(mle)
wn,rn

)
− γ − β

+
∑
w,r

(
−κ

(∑
n

1w=wn,r=rn

)
log (Qw,r) + (γ + βw + wr)Qw,r

)
,

implying dual boundedness (primal feasibility) requires ∀w, r : γ + βw + wr ≥ 0. Setting the
derivative w.r.t. Qw,r to 0 gives us

Qw,r =
κ
∑
n 1w=wn,r=rn

γ + βw + wr

Substituting back in, we get:

inf
Q�0

L(β, γ, κ,Q) = L(β, γ, κ,Q)

∣∣∣∣
Qw,r=

κ
∑
n 1w=wn,r=rn
γ+βw+wr

= κ (−∆ +N −N log κ)− γ − β + κ
∑
n

(
logQ(mle)

wn,rn − log

∑
m 1wn=wm,rn=rm

γ + βwn + wnrn

)

= N

(
−κ log κ− γ + β

N
+ κ

(
−∆

N
+ 1 +

1

N

∑
n

log
γ + βwn + wnrn
β(mle)(wn − 1) +N

))
.

Finally, we partially optimize over κ analytically resulting in equation (7).

Additional Mass If the realization is empty, a solution with the smallest possible lower bound can
be constructed by placing mass solely on the 2 extreme values of (wmin, rmin) and (wmax, rmin).
Therefore assume the realization is not empty.

Introducing dual variables φ � 0 corresponding to Q � 0, for an unobserved (w, r) pair with
Qw,r > 0 we have

0 = γ + βw + wr + φw,r (KKT stationarity)
= γ + βw + wr. (complementary slackness).

This condition can only exist at extreme points because γ + βw + wr is linear in w and r and
γ + βw + wr ≥ 0 implies that the only points with equality can be on the boundary of the allowed
set of w and r. When w > 0, only rmin is eligible, whereas for w = 0 all values of r are equivalent
for the objective; there only considering rmin is sufficient.
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Primal Recovery Given the dual optimum (β∗, γ∗, κ∗) of equation (7) we can determine the mass
assigned to unobserved (w, r) via primal feasibility by solving a linear program. Again, due to finite
precision, non-negative least squares is recommended in practice.

B Experiments

Replication instructions and scripts are available at http://github.com/pmineiro/elfcb.

Our experimental design is inspired by the operational cycle of the Decision Service [ABC+16], in
which an initial policy is deployed to a production endpoint which makes (randomized) decisions
and collects rewards; the resulting data is used to produce a new policy initialized at the previous
policy and trained via learning from logged bandit feedback; and then the new policy is optionally
deployed if off-policy evaluation on additional collected data compares favorably with the initial
policy. Consequently, each dataset is split into Initialize, Learn, and Evaluate sets. The Initialize set
is used to produce a plausible initial policy; we use on-policy learning to achieve this. The Learn set
corresponds to the off-policy step used to produce a new policy. The Evaluate set corresponds to the
gated deployment step.

B.1 Off-Policy Evaluation, Synthetic Data

First, an environment is sampled. For all environments, the historical logging policy is ε-greedy with
possible importance weights (0, 2, 1000). We choose π to induce the maximum entropy distribution
over importance weights consistent with E[w2] = 100. Rewards are binary with the conditional
distribution of reward varying per environment draw such that the value of π is uniformly distributed
on [0, 1]. Once an environment is drawn a set of examples is sampled from that environment, and the
squared error of the value estimate is computed.

B.2 Off-Policy Evaluation, Realistic Data

.

We use the following 40 datasets from OpenML [VvRBT13] identified by their OpenML dataset
id: 1216, 1217, 1218, 1233, 1235, 1236, 1237, 1238, 1241, 1242, 1412, 1413, 1441, 1442, 1443,
1444, 1449, 1451, 1453, 1454, 1455, 1457, 1459, 1460, 1464, 1467, 1470, 1471, 1472, 1473, 1475,
1481, 1482, 1483, 1486, 1487, 1488, 1489, 1496, 1498. For each dataset we convert to Vowpal
Wabbit format, shuffle the dataset, and utilize up to the first 10,000 examples as data. We utilize
a 20%/60%/20% Initialize/Learn/Evaluate split sequentially by line number. Note the shuffle and
split is done only once per dataset. We apply a supervised-to-bandit transform as in [DLL11]. We
create a historical policy h using on-policy learning on the Initialize dataset, and then learn a new
policy π on the Learn dataset using off-policy learning with data drawn from h. These Initialize and
Learn steps are done once per dataset. Only the off-policy evaluation step is done multiple times per
dataset, and the random variations are due to the different actions selected by h over the Evaluate
set. For each evaluation, we compute the squared error of the different predictors, i.e., the squared
difference between the off-policy value estimate and the true value of π. Note the true value of π can
be computed (and is independent of the choices of h on the evaluation set) because the underlying
datasets are fully observed. Using the squared error as the random variable, we apply a paired t-test
between MLE and the other predictors to determine win, loss, or tie for each dataset. We use default
settings for Vowpal Wabbit except for the choice of exploration strategy.

B.3 Confidence Intervals, Synthetic Data

We use the same synthetic ε-greedy data as described above.

Figure 3 demonstrates additional interesting properties of the MLE CI.

First, by holding the number of examples fixed but drawing examples from the maximum entropy
distribution satisfying different E[w2], we can change the statistical difficulty of the problem. Larger
E[w2] implies (slightly) more frequent use of the largest importance weight and (more pronounced)
less frequent use of the smallest non-zero importance weight. Essentially the policy whose value is
being estimated is “more off-policy” when E[w2] increases, and the MLE CI width is larger.
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Figure 3: Additional properties of the MLE CI. Left: The MLE CI adapts to the statistical difficulty
of the problem, while the Binomial CI does not. Right: The MLE CI does not depend upon the
cardinality of the support despite having an equal number of latent parameters.

Second, by adding small magnitude noise to a dataset we can create a family of datasets that are
nearly equivalent in all moments but have any desired cardinality. Under these conditions the MLE CI
width does not degrade, indicating no fundamental dependence upon the cardinality of the support.

B.4 Confidence Intervals, Realistic Data

We use the same datasets mentioned above, but produce a 95% CI for off-policy evaluation rather
than the maximum likelihood estimate. With 40 datasets and 60 evaluations per dataset we have 2400
CIs from which we compute the coverage and the ratio of the width of the interval to the MLE.

B.5 Learning from Logged Bandit Feedback

We use the same 40 datasets as above, but with a 20%/20%/60% Initialize/Learn/Evaluate split. For
optimizing the policy parameters and the distribution dual variables, we alternate between solving
the dual problem with the policy fixed and then optimizing the policy with the dual variables fixed.
To optimize the policy we do a single pass over the data using Vowpal Wabbit as a black-box oracle
for learning, supplying different importance weights on each example depending upon the learning

Exploration CI LB MLE

Wins Ties Losses Wins Ties Losses

ε = 0.05 greedy 16 18 6 11 26 3
ε = 0.1 greedy 16 19 5 13 24 3
ε = 0.25 greedy 15 22 3 3 34 3

bagging, 10 bags 21 18 1 11 28 1
bagging, 32 bags 4 26 10 7 31 2

cover, 10 policies 18 21 1 6 30 4
cover, 32 policies 9 29 2 6 34 0

Table 3: Learning From Logged Bandit Feedback. “CI LB” uses the lower bound dual problem of
equation (7), while “MLE” uses the estimation dual problem of equation (3).
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objective. Specifically we use importance weights:

νn(θ) = wn(θ), (baseline)

νn(θ) =
wn(θ)

β∗(θ)(wn(θ)− 1) +N
, (MLE)

νn(θ) =
κ∗(θ)wn(θ)

γ∗(θ) + β∗(θ)wn(θ) + wn(θ)rn
, (CI LB)

with wn(θ) = π(an|xn;θ)
h(an|xn) . We use ∆ = 0.5F 0.95

(1,N−1) when solving (7). We do 4 passes over the
learning set and update the dual variables before each pass.

The Initialize step is done once per dataset, then the Learn and Evaluate steps are done multiple
times per dataset. Note the Evaluate step here is using the true value of π, i.e., is deterministic and
independent of h given π. Using the evaluation score as the random variable, we apply a paired t-test
between MLE and the other predictors to determine win, loss, or tie for each dataset. We use Vowpal
Wabbit in IPS learning mode with default settings, and do 4 passes over the data. At the beginning
of each pass, we optimize the dual variables holding the policy fixed, then use the resulting dual
variables during the learning pass to compute importance weights.
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