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Abstract

In Path Integral control problems a representation of an optimally controlled dy-
namical system can be formally computed and serve as a guidepost to learn a
parametrized policy. The Path Integral Cross-Entropy (PICE) method tries to
exploit this, but is hampered by poor sample efficiency. We propose a model-free
algorithm called ASPIC (Adaptive Smoothing of Path Integral Control) that applies
an inf-convolution to the cost function to speedup convergence of policy optimiza-
tion. We identify PICE as the infinite smoothing limit of such technique and show
that the sample efficiency problems that PICE suffers disappear for finite levels
of smoothing. For zero smoothing this method becomes a greedy optimization of
the cost, which is the standard approach in current reinforcement learning. We
show analytically and empirically that intermediate levels of smoothing are optimal,
which renders the new method superior to both PICE and direct cost-optimization.

1 Introduction

Optimal control of non-linear dynamical systems that are continuous in time and space is hard.
Methods that have proven to work well introduce a parametrized policy like a neural network [15, 4]
and directly optimize the expected cost using gradient descent [24, 17, 19, 9]. To achieve a robust
decrease of the expected cost, it is important to ensure that at each step the policy stays in the
proximity of the old policy [4]. This can be achieved by enforcing a trust region constraint [16, 19]
or using adaptive regularization [9]. However the applicability of these methods is limited, as in each
iteration of the algorithm, samples from the controlled system have to be computed. We want to
increase the convergence rate of policy optimization to reduce the number of simulations needed.

To this end we consider Path Integral control problems [10, 11], that offer an alternative approach to
direct cost optimization and explore if this allows to speed up policy optimization. This class of control
problems permits arbitrary non-linear dynamics and state cost, but requires a linear dependence of
the control on the dynamics and a quadratic control cost [10, 1, 22]. These restrictions allow to
obtain an explicit expression for the probability-density of optimally controlled system trajectories.
Through this, an information-theoretical measure of the deviation of the current control policy from
the optimal control can be calculated. The Path Integral Cross-Entropy (PICE) method [12] proposes
to use this measure as a pseudo-objective for policy optimization.

In this work we analyze a new kind of smoothing technique for the cost function based on recently
proposed smoothing techniques to speed up convergence in deep neural networks [3]. We adapt this
technique to Path Integral control problems and show that (i), in contrast to [3], smoothing in Path
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Integral control can be solved analytically, providing an expression of the gradient that can directly
be computed from Monte Carlo samples and (ii), we can interpolate between direct cost optimization
and the PICE objective. Remarkably, the parameter governing the smoothing can be determined
independently of the number of samples.

Based on these results, we introduce the ASPIC (Adaptive Smoothing of Path Integral Control)
algorithm, a model-free algorithm that uses cost smoothing to speed up policy optimization. ASPIC
adjusts the smoothing parameter in each step to keep the variance of the gradient estimator at a
predefined level.

2 Path Integral Control Problems

Consider the (multivariate) dynamical system

ẋt = f(xt, t) + g(xt, t) (u(xt, t) + ξt) , (1)

with initial condition x0. The control policy is implemented in the control function u(x, t), which
is additive to the white noise ξt which has variance ν

dt . Given a control function u and a time
horizon T , this dynamical system induces a probability distribution pu(τ) over state trajectories
τ = {xt|∀t : 0 < t ≤ T} with initial condition x0.

We define the regularized expected cost

C(pu) = 〈V (τ)〉pu + γKL(pu||p0), (2)

with V (τ) =
∫ T

0
V (xt, t)dt, where the strength of the regularization KL(pu||p0) is controlled by

the parameter γ.

The Kullback-Leibler divergence KL(pu||p0) puts high cost to controls u that bring the probability
distribution pu far away from the uncontrolled dynamics p0 where u(xt, t) = 0. We can also rewrite
the regularizer KL(pu||p0) directly in terms of the control function u by using the Girsanov theorem,
c.f., [22]: log pu(τ)

p0(τ) = 1
ν

∫ T
0

(
1
2u(xt, t)

Tu(xt, t) + u(xt, t)
T ξt
)
dt. The regularization then takes the

form of a quadratic control cost

KL(pu||p0)=

〈
1

ν

∫ T

0

(
1

2
u(xt, t)

Tu(xt, t) + u(xt, t)
T ξt

)
dt

〉
pu

=

〈
1

ν

∫ T

0

1

2
u(xt, t)

Tu(xt, t)dt

〉
pu

,

where we used that
〈
u(xt, t)

T ξt
〉
pu

= 0. This shows that the regularization KL(pu||p0) puts higher
cost for large values of the controller u.

The Path Integral control problem is to find the optimal control function u∗ that minimizes

u∗ = arg min
u

C(pu). (3)

For a more complete introduction to Path Integral control problems, see [22, 12].

−Direct cost optimization using gradient descent: A standard approach to find an optimal control
function is to introduce a parametrized controller uθ(xt, t) [9, 24, 19]. This parametrizes the path
probabilities puθ and allows to optimize the expected cost C(puθ ) (2) using stochastic gradient
descent on the cost function:

∇θC(puθ ) =
〈
Sγpuθ

(τ)∇θ log puθ (τ)
〉
puθ

, (4)

with the stochastic cost Sγpuθ (τ) := V (τ) + γ log
puθ (τ)

p0(τ) (see App. A for details).

−The Path Integral Cross-Entropy method: An alternative approach to direct cost-optimization
was introduced in [12], and takes advantage of the analytical expression for pu∗ , the probability density
of state trajectories induced by a system with the optimal controller u∗, pu∗ = arg minpu C(pu) with
C(pu) given by Eq. (2). Finding pu∗ is an optimization problem over probability distributions pu that
are induced by the controlled dynamical system (1). It has been shown [1, 22] that we can solve this
by replacing the minimization over pu with a minimization over all path probability distributions p:

pu∗ ≡ p∗ := arg min
p

C(p) = arg min
p
〈V (τ)〉p + γKL(p||p0) =

1

Z
p0(τ) exp

(
− 1

γ
V (τ)

)
. (5)
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with the normalization constant Z =
〈

exp
(
− 1
γV (τ)

)〉
p0

. Note that the above is not a trivial

statement, as we now take the minimum also over non-Markovian processes with non-Gaussian noise.

The PICE algorithm [12], instead of directly optimizing the expected cost, it minimizes the KL-
divergence KL (p∗||puθ ) which measures the deviation of a parametrized distribution puθ from the
optimal one p∗. Although direct cost optimization and PICE are different methods, their global
minimum is the same if the parametrization of uθ can express the optimal control u∗ = uθ∗ . The
parameters θ∗ of the optimal controller are found using gradient descent:

∇θKL (p∗||puθ ) =
1

Zpuθ

〈
exp

(
− 1

γ
Sγpuθ

(τ)

)
∇θ log puθ (τ)

〉
puθ

, (6)

where Zpuθ :=
〈

exp
(
− 1
γS

γ
puθ

(τ)
)〉

puθ

.

That PICE uses the optimal density as a guidepost for the policy optimization might give it an
advantage compared to direct cost-optimization. In practice however, this method only works
properly if the initial guess of the controller uθ does not deviate too much from the optimal control,
as a high value of KL (p∗||puθ ) leads to a high variance of the gradient estimator and results in
bootstrapping problems of the algorithm [18, 21]. In the next section, we introduce a method that
interpolates between direct cost-optimization and the PICE method, allowing us to take advantage of
the analytical optimal density without being hampered by the same bootstrapping problems as PICE.

3 Interpolating Between Methods: Smoothing Stochastic Control Problems

Cost function smoothing was recently introduced as a way to speed up optimization of neural
networks [3]: Optimization of a general cost function f(θ) can be speeded up by smoothing f(θ)
using an inf-convolution with a distance kernel d(θ′, θ). The smoothed function

Jα(θ) = inf
θ′
αd(θ′, θ) + f(θ′) (7)

preserves the global minima of the function f(θ). To apply gradient descent based optimization on
Jα(θ) instead of f(θ) may significantly speed up convergence [3].

We want to use this accelerative effect to find the optimal parametrization of the controller uθ.
Therefore, we smooth the cost function C(puθ ) as a function of the parameters θ. As C(puθ ) =
〈V (τ)〉puθ + γKL(puθ ||p0) is a functional on the space of probability distributions puθ , the natural
“distance” is the KL-divergence KL(puθ′ ||puθ ). So we replace

f(θ)→ C(puθ )

d(θ′, θ)→ KL(puθ′ ||puθ ),

and obtain the smoothed cost Jα(θ) as

Jα(θ) = inf
θ′
αKL(puθ′ ||puθ ) + C(puθ′ ) = inf

θ′
αKL(puθ′ ||puθ ) + γKL(puθ′ ||p0) + 〈V (τ)〉pu

θ′
.

(8)

Note the different roles of α and γ: the parameter α penalizes the deviation of puθ′ from puθ , while
the parameter γ penalizes the deviation of puθ′ from the uncontrolled dynamics p0.

− Computing the smoothed cost and its gradient: The smoothed cost Jα is expressed as a
minimization problem that has to be solved. Here we show that for Path Integral control problems
this can be done analytically. To do this we first show that we can replace infθ′ → infp′ and then
solve the minimization over p′ analytically. We replace the minimization over θ′ by a minimization
over p′ in two steps: first we state an assumption that allows us to replace infθ′ → infu′ and then
proof that for Path Integral control problems we can replace infu′ → infp′ .

We assume that for every uθ and any α > 0, the minimizer θ∗α,θ over the parameter space

θ∗α,θ := arg min
θ′

αKL(puθ′ ||puθ ) + C(puθ′ ) (9)
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is the parametrization of the minimizer u∗α,θ over the function space

u∗α,θ := arg min
u′

αKL(pu′ ||puθ ) + C(pu′),

such that u∗α,θ ≡ uθ∗α,θ . We call this assumption full parametrization. Naturally it is sufficient for full
parametrization if uθ(x, t) is a universal function approximator with a fully observable state space x
and the time t as input, although this may be difficult to achieve in practice. With this assumption
we can replace infθ′ → infu′ . Analogously, we replace infu′ → infp′ : in App. B.1 we proof that
for Path Integral control problems the minimizer u∗α,θ over the function space induces the minimizer
p∗α,θ over the space of probability distributions

p∗α,θ := arg min
p′

αKL(p′||puθ ) + C(p′), (10)

such that p∗α,θ ≡ pu∗α,θ . This step is similar to the derivation of of Eq. (5) in Section 2, but now we
have added an additional term αKL(pu′ ||puθ ).

Hence, given a Path Integral control problem and a controller uθ that satisfies full parametrization,
we can replace infθ′ → infp′ and Eq. (8) becomes

Jα(θ) = inf
p′
αKL(p′||puθ ) + γKL(p′||p0) + 〈V (τ)〉p′ . (11)

This can be solved directly: first we compute the minimizer (see App. B.2)

p∗α,θ(τ) =
1

Zαpuθ
puθ (τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
, Zαpuθ

=

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

.

(12)

We plug this back in Eq. (11) and get the smoothed cost and its gradient (see App. B.3)

Jα(θ) = − (γ + α) log

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

(13)

∇θJα(θ) = − α

Zαpuθ

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)
∇θ log puθ (τ)

〉
puθ

. (14)

Both can be estimated by samples from the distribution puθ .

4 The ASPIC Algorithm

In this section, we derive an iterative algorithm that takes a parametrized control function uθ and
performs smooth parameter updates starting from initial parameters θ0. We focus on the effect that
a finite α > 0 has on the iterative optimization of the control uθ for a fixed value of γ. For our
theoretical results, we refer the reader to App. C, where we identify several existing settings as
limiting cases of the parameters α and γ, and to App. D, where we proof that smooth updates are
optimal in two-step sequential decision problems.

To simplify notation, we overload puθ → θ so that we get C(puθ )→ C(θ) and KL(puθ′ ||puθ )→
KL(θ′||θ). We use a trust region constraint to robustly optimize the policy, c.f., [16, 19, 8]. We
define the smoothed update with stepsize E as an update θ → θ′ with θ′ = ΘJα

E (θ) and

ΘJα

E (θ) := arg min
θ′

s.t. KL(θ′||θ)≤E

Jα(θ′). (15)

−Smoothed and direct updates using natural gradients: We first express the constraint optimiza-
tion (15) as an unconstrained optimization problem introducing a Lagrange multiplier β

θn+1 = arg min
θ′

Jα(θ′) + βKL(θ′||θn). (16)

Following [19] we assume that the trust region size E is small. For E � 1 we get β � 1 and can
expand Jα(θ′) to first and KL(θ′||θn) to second order (see App. E.1 for the details). This gives

θn+1 = θn − β−1F−1 ∇θ′Jα(θ′)|θ′=θn , (17)
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a natural gradient update with the Fisher-matrix F = ∇θ∇TθKL(θ′||θn)
∣∣
θ′=θn

(we use the conjugate
gradient method to approximately compute the natural gradient for high dimensional parameter
spaces. See App. E.2 or [19] for details). Parameter β is determined using a line search such that

KL(θn||θn+1) = E . (18)

Note that for direct updates this derivation is the same, just replace Jα by C.

−Reliable gradient estimation using adaptive smoothing: To compute smoothed updates using
Eq. (17) we need the gradient of the smoothed cost. We assume full parametrization and use Eq. (14),
which can be estimated using N weighted samples drawn from the distribution puθ :

∇θJα(θ) ≈ α
N∑
i=1

wi log puθ (τ
i). (19)

The weights are given by

wi =
1

Z̃
exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
, Z̃ =

N∑
i=1

exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
.

The variance of this estimator depends sensitively on the entropy of the weights HN (w) =

−
∑N
i=1 w

i log(wi). If the entropy is low, the total weight is concentrated on a few particles. This
results in a poor gradient estimator where only a few of the particles actually contribute. This concen-
tration is dependent on the smoothing parameter α: for small α, the weights are very concentrated in
a few samples, resulting in a large weight-entropy and thus a high variance of the gradient estimator.
As small α corresponds to strong smoothing, we want α to be as small as possible, but large enough
to allow a reliable gradient estimation. Therefore, we set a bound to the weight entropy HN (w). To
get a bound that is independent of the number of samples N , we use that in the limit of N →∞ the
weight entropy is monotonically related to the KL-Divergence KL(p∗α,uθ ||puθ )

KL(p∗α,uθ ||puθ ) = lim
N→∞

logN −HN (w)

(see App. E.3). This provides a method for choosing α independently of the number of samples: we
set the constraint KL(p∗α,uθ ||puθ ) ≤ ∆ and determine the smallest α that satisfies this condition by
using a line search. Large values of ∆ correspond to small values of α (see App. E.4) and therefore
strong smoothing, we thus call parameter ∆ the smoothing strength.

−A model-free algorithm: We can compute the gradient (19) and the KL-divergence while treating
the dynamical system as a black-box. For this we write the probability distribution puθ over trajec-
tories τ as a Markov process puθ (τ) =

∏
0<t<T puθ (xt+dt|xt, t), where the product runs over the

time t, which is discretized with time step dt. We define the noisy action at = u(xt, t) + ξt and
formulate the transitions puθ (xt+dt|xt) for the dynamical system (1) as

puθ (xt+dt|xt) = δ (xt+dt −F (xt, at, t)) · πθ(at|t, xt),
with δ(·) the Dirac delta function. This splits the transitions up into the deterministic dynamical
system F (xt, at, t) and a Gaussian policy πθ(at|t, xt) = N

(
at|uθ(xt, t), νdt

)
with mean uθ(xt, t)

and variance ν
dt . Using this we get a simplified expression for the gradient of the smoothed cost (19)

that is independent of the system dynamics, given the samples drawn from the controlled system puθ :

∇θJα(θ) ≈ α
N∑
i=1

∑
0<t<T

wi∇θ log πθ(a
i
t|t, xit).

Similarly we obtain an expression for the estimator of the KL divergence KL(θn||θn+1) ≈
1
N

∑N
i=1

∑
0<t<T log

πθn (ait|t,x
i
t)

πθn+1
(ait|t,xit)

. With this we formulate ASPIC (Algorithm 1) which optimizes

the parametrized policy πθ by iteratively drawing samples from the controlled system.

5 Numerical Experiments

We compare experimentally the convergence speed of policy optimization with and without smoothing.
For the optimization with smoothing, we use ASPIC and for the optimization without smoothing, we
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Figure 1: Smoothed cost-optimization exhibits faster convergence than direct cost-optimization in a
variety of tasks. Plots show mean and standard deviation of the cost per iteration for 10 runs of the
algorithm. For pendulum and acrobot tasks, we used ∆ = 0.5 and E = 0.1 whereas for the walker,
we used ∆ = 0.05 logN and E = 0.01. See App. F for more details.

use a version of ASPIC where we replaced the gradient of the smoothed cost with the gradient of
the cost itself. We consider three non-linear control problems, which violate the full parametrization
assumption (pendulum swing-up task, Acrobot, and 2D walker). The latter was simulated using
OpenAI gym [2]. For pendulum swing-up and the Acrobot tasks we used time-varying linear feedback
controllers, whereas for the 2D walker task we parametrized the control uθ using a neural network.
We provide more details about the experimental settings and additional results in App. F.

−Convergence rate of policy optimization: Fig. 1 shows the comparison of ASPIC algorithm with
smoothing against direct-cost optimization. In all three tasks, smoothing improves the convergence
rate of policy optimization. Smoothed cost optimization requires less iterations to achieve the same
cost reduction as direct cost-optimization, with only a negligible amount of additional computational
steps that do not depend on the complexity of the simulation runs.

We can thus conclude that even in cases when the parametrized controller does not strictly meet
the requirement of full parametrization needed to derive the gradient of the smoothed cost, a strong
performance boost can also be achieved.

6 Discussion

Many policy optimization algorithms update the control policy based on a direct optimization of
the cost; examples are Trust Region Policy Optimization (TRPO) [19] or the Path-Integral Relative
Entropy Policy Search (PIREPS) [8], where the later is particularly developed for Path Integral control
problems. The main novelty of this work is the application of the idea of smoothing as introduced in
[3] to Path Integral control problems. This allows to outperform direct cost-optimization and achieve
faster convergence rates with only a negligible amount of computational overhead.

This procedure bears similarities to an adaptive annealing scheme, with the smoothing parameter
playing the role of an artificial temperature. However in contrast to classical annealing schemes, such
as simulated annealing, changing the smoothing parameter does not change the optimization target:
the minimum of the smoothed cost remains the optimal control solution for all levels of smoothing.

In the weak smoothing limit, ASPIC directly optimizes the cost using trust region constrained
updates, similar to the TRPO algorithm [19]. TRPO differs from ASPIC’s weak smoothing limit by
additionally using certain variance reduction techniques for the gradient estimator: They replace the
stochastic cost in the gradient estimator by the easier-to-estimate advantage function, which has a
state dependent baseline and only takes into account future expected cost. Since this depends on the
linearity of the gradient in the stochastic cost and this dependence is non-linear for the gradient of the
smoothed cost, we cannot directly incorporate these variance reduction techniques in ASPIC.

In the strong smoothing limit ASPIC becomes a version of PICE [12] that—unlike the plain PICE
algorithm—uses a trust region constraint to achieve robust updates. The gradient estimation problem
that appears in the PICE algorithm was previously addressed in [18]: they proposed a heuristic that
allows to reduce the variance of the gradient estimator by adjusting the particle weights used to
compute the policy gradient. In [18] this heuristic is introduced as an ad hoc fix of the sampling
problem and the adjustment of the weights introduces a bias with possible unknown side effects.
Our study sheds a new light on this, as adjusting the particle weights corresponds to a change of the
smoothing parameter in our case.
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A Derivation of the policy gradient

Here we derive Eq. (4). We write C(puθ ) =
〈
Sγuθ (τ)

〉
puθ

, with Sγuθ (τ) := V (τ) + γ log
puθ (τ)

p0(τ) and
take the derivative of Eq. (2):

∇θ
〈
Sγuθ (τ)

〉
puθ

= ∇θ
〈
V (τ) + γ log

puθ (τ)

p0(τ)

〉
puθ

(20)

Now we introduce the importance sampler puθ′ and correct for it.

∇θ
〈
Sγuθ (τ)

〉
puθ

= ∇θ
〈
puθ (τ)

puθ′ (τ)

(
V (τ) + γ log

puθ (τ)

p0(τ)

)〉
pu
θ′

(21)

This is true for all θ′ as long as puθ (τ) and puθ′ (τ) are absolutely continuous to each other. Taking
the derivative we get:

=

〈
∇θpuθ (τ)

puθ′ (τ)

(
V (τ) + γ log

puθ (τ)

p0(τ)

)〉
pu
θ′

+

〈
puθ (τ)

puθ′ (τ)

(
γ

1

puθ (τ)
∇θpuθ (τ)

)〉
pu
θ′

(22)

=

〈
(∇θ log puθ (τ))

(
V (τ) + γ log

puθ (τ)

p0(τ)

)〉
puθ

+ γ∇θ
〈

1

puθ′ (τ)
puθ (τ)

〉
pu
θ′

(23)

=
〈
Sγuθ (τ)∇θ log puθ (τ)

〉
puθ

+ γ∇θ 〈1〉puθ (24)

=
〈
Sγuθ (τ)∇θ log puθ (τ)

〉
puθ

. (25)

B Smoothing Stochastic Control Problems

B.1 Replacing Minimization over u by Minimization over p′

Here we show that for

Jα(θ) = inf
u′
αKL(pu′ ||puθ ) + γKL(pu′ ||p0) + 〈V (τ)〉p′ (26)

we can replace the minimization over u by a minimization over p′ to obtain Eq. (11). For this, we
need to show that the minimizer p∗α,θ of Eq. (11) is induced by u∗α,θ, the minimizer of Eq. (26):

p∗α,θ ≡ pu∗α,θ .

8



The solution to (11) is given by (see App. B.2)

p∗α,θ =
1

Z
puθ (τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
=

1

Z
puθ (τ)

(
p0(τ)

puθ (τ)

) γ
γ+α

exp

(
− 1

γ + α
V (τ)

)
.

(27)

We rewrite

p0(τ)

(
puθ (τ)

p0(τ)

)1− γ
γ+α

= p0(τ) exp

((
1− γ

γ + α

)∫ T

0

(
1

2
uθ(xt, t)

Tuθ(xt, t) + uθ(xt, t)
T ξt

)
dt

)
,

where we used the Girsanov theorem [1, 22] (and set ν = 1 for simpler notation). With ũθ(xt, t) :=(
1− γ

γ+α

)
uθ(xt, t) this gives

p0(τ)

(
puθ (τ)

p0(τ)

)1− γ
γ+α

= p0(τ) exp

(∫ T

0

(
1

2
ũθ(xt, t)

T ũθ(xt, t) + ũθ(xt, t)
T ξt

)
dt

)
·

· exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)

= pũθ (τ) exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)
.

So we get

p∗α,θ =
1

Z
pũθ (τ) exp

(∫ T

0

(
1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)

)
dt

)
exp

(
− 1

γ + α
V (τ)

)
. (28)

This has the form of an optimally controlled distribution with dynamics

ẋt = f(xt, t) + g(xt, t) (ũθ(xt, t) + û(xt, t) + ξt) (29)

and cost〈∫ T

0

1

γ + α
V (xt, t)−

1

2

γ

α
ũθ(xt, t)

T ũθ(xt, t)dt+

∫ T

0

(
1

2
û(xt, t)

T û(xt, t) + û(xt, t)
T ξt

)
dt

〉
pû

.

(30)

This is a Path Integral control problem with state cost
∫ T

0
1

γ+αV (xt, t)− 1
2
γ
α ũθ(xt, t)

T ũθ(xt, t)dt

which is well defined with ũθ(xt, t) =
(

1− γ
γ+α

)
uθ(xt, t).

Let û∗ be the optimal control of this Path Integral control problem. Then p∗α,θ is induced by Eq. (29)
with û = û∗. This is equivalent to say that p∗α,θ is induced by Eq. (1) As p∗α,θ is the density that
minimizes Eq. (11), ũθ + û∗ is minimizing Eq. (26).

B.2 Minimizer of smoothed cost

Here we want to proof Eq. (12):

p∗α,θ(τ) := arg min
p′

αKL(p′||puθ ) +
〈
Sγpuθ

(τ)
〉
p′

(31)

= arg min
p′

〈
α log

p′(τ)

puθ (τ)
+ V (τ) + γ log

p′(τ)

p0(τ)

〉
p′
. (32)

For this we take the variational derivative and set it to zero:

0 =
δ

δp′(τ)

〈
α log

p′(τ)

puθ (τ)
+ V (τ) + γ log

p′(τ)

p0(τ)
+ κ

〉
p′

∣∣∣∣∣
p′=p∗α,θ

, (33)
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where we added a Lagrange multiplier κ to ensure normalization. We get

0 = α log
p′(τ)

puθ (τ)
+ V (τ) + γ log

p′(τ)

p0(τ)
+ κ

∣∣∣∣
p′=p∗α,θ

, (34)

from which follows

p∗α,θ(τ) = exp

(
κ

α+ γ

)
puθ (τ)

α
α+γ p0(τ)

γ
α+γ exp

(
− 1

γ + α
V (τ)

)
(35)

= exp

(
κ

α+ γ

)
puθ (τ) exp

(
− 1

γ + α
V (τ)− γ

α+ γ
log

puθ (τ)

p0(τ)

)
(36)

= exp

(
κ

α+ γ

)
puθ (τ) exp

(
− 1

γ + α
Sγpuθ

(τ)

)
, (37)

where κ is chosen such that the distribution is normalized.

B.3 Derivation of the gradient of the smoothed cost function

Here we derive Eq. (14) by taking the derivative of Eq. (13):

∇θJα(θ) = − (γ + α)∇θ log

〈
exp

(
− 1

γ + α

(
V (τ) + γ log

puθ (τ)

p0(τ)

))〉
puθ

(38)

= −γ + α

Zαpuθ
∇θ
〈

exp

(
− 1

γ + α

(
V (τ) + γ log

puθ (τ)

p0(τ)

))〉
puθ

. (39)

Now we introduce the importance sampler puθ′ and correct for it.

∇θJα(θ) = −γ + α

Zαpuθ
∇θ
〈
puθ (τ)

puθ′ (τ)
exp

(
− 1

γ + α

(
V (τ) + γ log

puθ (τ)

p0(τ)

))〉
pu
θ′

(40)

= −γ + α

Zαpuθ
∇θ

〈
p0(τ)

γ
γ+α

puθ′ (τ)
(puθ (τ))

α
γ+α exp

(
− 1

γ + α
V (τ)

)〉
pu
θ′

(41)

= − α

Zαpuθ

〈
1

puθ′ (τ)

(
puθ (τ)

p0(τ)

)− γ
γ+α

exp

(
− 1

γ + α
V (τ)

)
∇θpuθ

〉
pu
θ′

(42)

= − α

Zαpuθ

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)
∇θ log puθ (τ)

〉
puθ

. (43)

C PICE, Direct Cost-Optimization and Risk Sensitivity as Limiting Cases of
Smoothed Cost Optimization

The smoothed cost and its gradient depend on the two parameters α and γ, which come from the
smoothing Eq. (7) and the definition of the control problem (2) respectively. Although at first glance
the two parameters seem to play a similar role, they change different properties of the smoothed cost
Jα(θ) when they are varied.

In the expression for the smoothed cost (13), the parameter α only appears in the sum γ +α. Varying
it changes the effect of the smoothing but leaves the optimum θ∗ = arg minθ J

α(θ) of the smoothed
cost invariant. Here we show that smoothing leaves the global optimum of the cost C(puθ ) invariant.
As KL(puθ′ ||puθ ) ≥ 0 we have that

Jα(θ) = inf
θ′
C(puθ′ ) + αKL(puθ′ ||puθ ) ≥ inf

θ′
C(puθ′ ) = C(puθ∗ ).

To show that the global minimum θ∗ of C is also the global minimum of Jα, it is thus sufficient to
show that

Jα(θ∗) ≤ C(puθ∗ ).
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We have

Jα(θ∗) = inf
θ′
C(puθ′ ) + αKL(puθ′ ||puθ∗ ).

Using that the minimum of a sum of terms is never larger than the sum of the minimum of terms, we
get

Jα(θ∗) ≤
(

inf
θ′
C(puθ′ )

)
+

(
inf
θ′
αKL(puθ′ ||puθ∗ )

)
= C(puθ∗ ) + αKL(puθ∗ ||puθ∗ )

= C(puθ∗ ).

We also expect local maxima to be also preserved for large-enough smoothing parameter α. This
would correspond to small time smoothing by the associated Hamilton-Jacobi partial differential
equation [3].

We therefore call α the smoothing parameter. The larger α, the weaker the smoothing; in the limiting
case α→∞, smoothing is turned off as we can see from Eq. (13): for very large α, the exponential
and the logarithmic function linearise, Jα(θ) → C(puθ ) and we recover direct cost-optimization.
For the limiting case α→ 0, we recover the PICE method: the optimizer p∗α,θ becomes equal to the
optimal density p∗ and the gradient on the smoothed cost (14) becomes proportional to the PICE
gradient (6):

lim
α→0

1

α
∇θJα(θ) = ∇θKL(p∗||puθ ).

Varying γ changes the control problem and thus its optimal solution. For γ → 0, the control cost
becomes zero. In this case the cost only consists of the state cost and arbitrary large controls are
allowed. We get

Jα(θ) = −α log

〈
exp

(
− 1

α
V (τ)

)〉
puθ

.

This expression is identical to the risk sensitive control cost proposed in [5, 6, 23]. Thus, for γ = 0,
the smoothing parameter α controls the risk-sensitivity, resulting in risk seeking objectives for α > 0
and risk avoiding objectives for α < 0. In the limiting case γ →∞, the problem becomes trivial; the
optimal controlled dynamics becomes equal to the uncontrolled dynamics: p∗ → p0, c.f., Eq. (5),
and u∗ → 0.

If both parameters α and γ are small, the problem is hard (see [18, 21]) as many samples are needed
to estimate the smoothed cost. The problem becomes feasible if either α or γ is increased. Increasing
γ however, changes the control problem, while increasing α weakens the effect of smoothing.

D The effect of cost function smoothing on policy optimization

We introduced smoothing as a way to speed up policy optimization compared to a direct optimization
of the cost. In this section we analyse policy optimization with and without smoothing and show
analytically how smoothing can speed up policy optimization. To simplify notation, we overload
puθ → θ so that we get C(puθ )→ C(θ) and KL(puθ′ ||puθ )→ KL(θ′||θ).

We use a trust region constraint to robustly optimize the policy, c.f., [16, 19, 8]. There are two options.
On the one hand, we can directly optimize the cost C:
Definition 1. We define the direct update with stepsize E as an update θ → θ′ with θ′ = ΘC

E (θ) and

ΘC
E (θ) := arg min

θ′

s.t. KL(θ′||θ)≤E

C(θ′). (44)

The direct update results in the minimal cost that can be achieved after one single update. We define
the optimal one-step cost

C∗E(θ) := min
θ′

s.t. KL(θ′||θ)≤E

C(θ′).

11
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Θ’

θ θ
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Figure 2: Illustration of optimal two-step updates compared with two consecutive direct updates.
Illustrated is a two-dimensional cost landscape C(θ) parametrized by θ. Dark colors represent
low cost, while light colors represent high cost. Green dots indicate the optimal two-step update
θ → Θ′ → Θ′′ while red dots indicates two consecutive direct updates θ → θ′ → θ′′ with
θ′ = ΘC

E (θ) and θ′′ = ΘC
E′(θ

′). The dashed circles indicate trust regions. θ′, θ′′ and Θ′′ are the
minimizers of the cost in the trust regions around θ, θ′ and Θ′ respectively. Θ′ is chosen such that
the cost C(Θ′′) after the subsequent direct update is minimized. In both panels, the final cost after
an optimal two-step update C(Θ′′) is smaller than the final cost after two direct updates C(θ′′). (A)
Equal sizes of the update steps, E = E ′. (B) When the size of the second step becomes small E ′ � E ,
the smoothed update θ → Θ′ becomes more similar to the direct update θ → θ′.

On the other hand we can optimize the smoothed cost Jα:
Definition 2. We define the smoothed update with stepsize E as an update θ → θ′ with θ′ = ΘJα

E (θ)
and

ΘJα

E (θ) := arg min
θ′

s.t. KL(θ′||θ)≤E

Jα(θ′). (45)

While a direct update achieves the minimal cost that can be achieved after a single update, we show
below that a smoothed update can result in a faster cost reduction if more than one update step is
performed.
Definition 3. We define the optimal two-step update θ → Θ′ → Θ′′ as an update that results in the
lowest cost that can be achieved with a two-step update θ → θ′ → θ′′ with fixed stepsizes E and E ′
respectively:

Θ′,Θ′′ := arg min
θ′,θ′′

s.t. KL(θ′′||θ′)≤E′
KL(θ′||θ)≤E

C(θ′′)

and the corresponding optimal two-step cost

C∗E,E′(θ) := min
θ′

s.t. KL(θ′||θ)≤E

min
θ′′

s.t. KL(θ′′||θ′)≤E′
C(θ′′) = min

θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E′(θ

′)
)
. (46)

In Fig. 2 we illustrate how such an optimal two-step update leads to a faster decrease of the cost than
two consecutive direct updates.
Theorem 1. Statement 1: For all E , α there exists an E ′, such that a smoothed update with stepsize
E followed by a direct update with stepsize E ′ is an optimal two-step update:

Θ′ = ΘJα

E (θ)

Θ′′ = ΘC
E′(Θ

′)

⇒ C (Θ′′) = C∗E,E′(θ)

12



The size of the second step E ′ is a function of θ and α.

Statement 2: E ′ is monotonically decreasing in α.

While it is evident from Eq. (46) that the second step of the optimal two-step update must be a direct
update, the statement that the first step is a smoothed update is non-trivial.

We split the proof into three subsections: in the first subsection, we state and proof a lemma that we
need to proof statement 1. In the second subsection, we proof statement 1 and in the third subsection,
we proof statement 2.

D.1 Lemma

Lemma 1. With θ∗α,θ defined as in Eq. (9) and Eα(θ) = KL
(
θ∗α,θ||θ

)
we can rewrite Jα(θ):

Jα(θ) = C
(
ΘC
E′(θ)

)∣∣
E′=Eα(θ)

+ αEα(θ). (47)

Proof. With the definition of θ∗α,θ as the minimizer of C(θ′) + αKL(θ′||θ) (see (9)) we have

Jα(θ) = C
(
θ∗α,θ

)
+ αKL(θ∗α,θ||θ)

= C
(
θ∗α,θ

)
+ αEα(θ).

What is left to show is that

θ∗α,θ ≡ ΘC
Eα(θ)(θ).

As ΘC
Eα(θ)(θ) is the minimizer of the cost C within the trust region defined by

{θ′ : KL(θ′||θ) ≤ Eα(θ)} we have to show that

1. θ∗α,θ lies within this trust region,

2. C
(
θ∗α,θ

)
is a minimizer of the cost C within this trust region.

The first point is trivially true as KL(θ∗α,θ||θ) = Eα(θ) by definition. Hence θ∗α,θ lies at the boundary
of this trust region and therefore in it, as the boundary belongs to the trust region. The second point
we proof by contradiction: Given θ∗α,θ is not minimizing the cost within the trust region, then there
exists a θ̂ with C(θ̂) < C(θ∗α,θ) and KL(θ̂||θ) ≤ Eα(θ) = KL(θ∗α,θ||θ). Therefore it must hold that

C(θ̂) + αKL(θ̂||θ) < C(θ∗α,θ) + αKL(θ∗α,θ, θ)

which is a contradiction, as θ∗α,θ is the minimizer of C(θ′) + αKL(θ′||θ).

D.2 Proof of Statement 1

Here we show that for every α and θ there exists an E ′ = E∗α(θ) such that

C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

= C∗E,E′
∣∣
E′=E∗α(θ)

. (48)

Proof. As Jα(θ) is the infimum of C(θ′) + αKL(θ′||θ), we have for any E ′ > 0

Jα(θ) ≤ C
(
ΘC
E′(θ)

)
+ αKL

(
ΘC
E′(θ)||θ

)
.

Further, as ΘC
E′(θ) lies in the trust region {θ′ : KL(θ′||θ) ≤ E ′} we have that KL

(
ΘC
E′(θ)||θ

)
≤ E ′,

so we can write

C
(
ΘC
E′(θ)

)
+ αKL

(
ΘC
E′(θ)||θ

)
≤ C

(
ΘC
E′(θ)

)
+ αE ′

and thus

Jα(θ) ≤ C
(
ΘC
E′(θ)

)
+ αE ′.
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Next we minimize both sides of this inequality within the trust region {θ′ : KL(θ′||θ) ≤ E}. We use
that

Jα
(

ΘJα

E (θ)
)

= min
θ′

s.t. KL(θ′||θ)≤E

Jα(θ′)

and get

Jα
(

ΘJα

E (θ)
)
≤ min

θ′

s.t. KL(θ′||θ)≤E

(
C
(
ΘC
E′(θ

′)
)

+ αE ′
)
. (49)

Now we use Lemma 1 and rewrite the left hand side of this inequality.

Jα
(

ΘJα

E (θ)
)

= C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

+ αE∗α(θ)

with E∗α(θ) := Eα(ΘJα

E (θ)). Plugging this back to (49) we get

C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

+ αE∗α(θ) ≤ min
θ′

s.t. KL(θ′||θ)≤E

(
C
(
ΘC
E′(θ

′)
)

+ αE ′
)
.

As this inequality holds for any E ′ > 0 we can plug in E∗α(θ) on the right hand side of this inequality
and obtain

C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

+ αE∗α(θ) ≤ min
θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E′(θ

′)
)∣∣
E′=E∗α(θ)

+ αE∗α(θ).

We subtract αE∗α(θ) on both sides

C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

≤ min
θ′

s.t. KL(θ′||θ)≤E

C
(
ΘC
E′(θ

′)
)∣∣
E′=E∗α(θ)

.

Using Eq. (46) gives

C
(

ΘC
E′
(

ΘJα

E (θ)
))∣∣∣
E′=E∗α(θ)

≤ C∗E,E′(θ)
∣∣
E′=E∗α(θ)

,

which concludes the proof.

D.3 Proof of Statement 2

Here we show that E ′ = E∗α(θ) is a monotonically decreasing function of α. E∗α(θ) is given by

E∗α(θ) = Eα
(

ΘJα

E (θ)
)

= KL(θ∗α,θ′ ||θ′)
∣∣
θ′=RJ

α
E (θ)

.

We have(
αKL(θ∗α,θ′ ||θ′) + C

(
θ∗α,θ′

))∣∣
θ′=RJ

α
E (θ)

=

(
inf
θ′′
αKL(θ′′||θ′) + C(θ′′)

)∣∣∣∣
θ′=RJ

α
E (θ)

= min
θ′

s.t. KL(θ′||θ)≤E

inf
θ′′
αKL(θ′′||θ′) + C(θ′′).

For convenience we introduce a shorthand notation for the minimizers

θα := ΘJα

E (θ)

θ′α := θ∗α,θ′ |θ′=ΘJ
α
E (θ).

We compare α1 ≥ 0 with E∗α1
(θ) := KL(θ′α1

||θα1) and α2 ≥ 0 with E∗α2
(θ) := KL(θ′α2

||θα2) and
assume that E∗α1

(θ) < E∗α2
(θ). We show that from this it follows that α1 > α2.
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Proof. As θ′α1
,θα1 minimize α1KL(θ′||θ) + C(θ′) we have

α1KL(θ′α1
||θα1

) + C(θ′α1
) ≤ α1KL(θ′α2

||θα2
) + C(θ′α2

)

⇒ α1Eα1
(θ) + C(θ′α1

) ≤ α1Eα2
(θ) + C(θ′α2

)

and analogous for α2

α2KL(θ′α1
||θα1

) + C(θ′α1
) ≥ α2KL(θ′α2

||θα2
) + C(θ′α2

)

⇒ α2Eα1
(θ) + C(θ′α1

) ≥ α2Eα2
(θ) + C(θ′α2

)

With Eα1
(θ) < Eα2

(θ) we get

α1 ≥
C(θ′α1

)− C(θ′α2
)

Eα2(θ)− Eα1(θ)
≥ α2.

We showed that from Eα1
(θ) < Eα2

(θ) it follows that α1 ≥ α2 which proofs that Eα(θ) is
monotonously decreasing in α.

Direct updates are myopic and do not take into account successive steps and are thus suboptimal
when more than one update is needed. Smoothed updates on the other hand, as we see on theorem 1,
anticipate a subsequent step and minimize the cost that results from this this two-step update. Hence
smoothed updates favour a greater cost reduction in the future over maximal cost reduction in the
current step. The strength of this anticipatory effect depends on the smoothing strength, which is
controlled by the smoothing parameter α: For large α, smoothing is weak and the size E ′ of this
anticipated second step becomes small. Fig. 2 B illustrates that for this case, when E ′ becomes small,
smoothed updates become more similar to direct updates. In the limiting case α→∞ the difference
between smoothed and direct updates vanishes completely, as Jα(θ)→ C(θ) (see section C).

We expect that also with multiple update steps due to this anticipatory effect, iterating smoothed
updates leads to a faster decrease of the cost than iterating direct updates. We will confirm this by
numerical studies. Furthermore, we expect that this accelerating effect of smoothing is stronger for
smaller values of α. On the other hand, as we will discuss in the next section, for smaller values of α
it is harder to accurately perform the smoothed updates. Therefore we expect an optimal performance
for an intermediate value of α. Based on this we build an algorithm in the next section that aims to
accelerate policy optimization by cost function smoothing.

E Additional Theoretical Results for Section 4

E.1 Smoothed Updates for Small Update Steps E

We want to compute Eq. (16) for small E which corresponds to large β. Assuming a smooth
dependence of puθ on θ, bounding KL(θ||θn) to a very small value allows us to do a Taylor
expansion which we truncate at second order:

arg min
θ′

Jα(θ′) + βKL(θ′||θn) ≈ (50)

≈ arg min
θ′

(θ′ − θn)T∇θ′Jα(θ′) +
1

2
(θ′ − θn)T (H + βF ) (θ′ − θn) (51)

= θn − β−1F−1 ∇θ′Jα(θ′)|θ′=θn +O(β−2) (52)

with

H = ∇θ′∇Tθ′Jα(θ′)
∣∣
θ′=θn

F = ∇θ′∇Tθ′KL(θ′||θn)
∣∣
θ′=θn

.

See also [14]. We used that E � 1 ⇔ β � 1. With this the Fisher information F dominates over
the Hessian H and thus the Hessian does not appear anymore in the update equation. This defines a
natural gradient update with stepsize β−1.

15



E.2 Inversion of the Fisher matrix

We compute an approximation to the natural gradient gf = F−1g by approximately solving the linear
equation Fgf = g using truncated conjugate gradient. With the normal gradient g and the Fisher
matrix F = ∇θ∇TθKL(puθ ||puθn ) (see App. E.1).

We use an efficient way to compute the Fisher vector product Fy [19] using an automated differentia-
tion package: First for each rollout i and timepoint t the symbolic expression for the gradient on the
KL multiplied by a vector y is computed:

ai,t(θn+1) =

(
∇Tθn+1

log
πθn(ait|t, xit)
πθn+1(ait|t, xit)

)
y.

Then we take the second derivative on this scalar quantity, sum over all times and average over the
samples. This gives then the Fisher vector

Fy =
1

N

N∑
i=1

∑
0<t<T

∇θn+1
ai,t(θn+1).

For practical reasons, we reverse the arguments of the KL, since it is easier to estimate it from samples
drawn from the first argument. For very small values, the KL is approximately symmetric in its
arguments. Also, the equality in (18) differs from [19], which optimizes a value function within the
trust region, e.g., KL(θn||θn+1) ≤ E .

E.3 Proof for equivalence of weight entropy and KL-divergence

We want to show that

lim
N→∞

logN −HN (w) = lim
N→∞

logN +

N∑
i=1

wi log(wi)

=KL(p∗α,θ||puθ ).

Where the samples i are drawn from puθ and the wi are given by

wi =
1∑N

i exp
(
− 1
γ+αSpuθ (τ i)

) exp

(
− 1

γ + α
Spuθ (τ i)

)
,
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We get

lim
N→∞

logN +

N∑
i=1

wi log(wi) =

= lim
N→∞

logN +

N∑
i=1

1∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
= lim
N→∞

logN +
1

N

N∑
i=1

1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1
N

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
= lim
N→∞

1

N

N∑
i=1

1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
·

· log

 1

1
N

∑N
i exp

(
− 1
γ+αS

γ
puθ

(τ i)
) exp

(
− 1

γ + α
Sγpuθ

(τ i)

)
Now we replace in the limit N →∞, 1

N

∑N
i → 〈〉puθ :

=

〈
1〈

exp
(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)
·

· log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

Using Eq. (12) this gives

=

〈
log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
p∗α,θ

=

〈
log

 1〈
exp

(
− 1
γ+αS

γ
puθ

(τ)
)〉

puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)
puθ (τ)

puθ (τ)

〉
p∗α,θ

=

〈
log

p∗α,θ(τ)

puθ (τ)

〉
p∗α,θ

=KL(p∗α,θ||puθ ).

E.4 The Smoothness Parameter ∆ is monotonic in α

Now we show that

∆ = KL(p∗α,θ||puθ )
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is a monotonic function of α.
∂

∂α
KL(p∗α,θ||puθ ) =

∂

∂α

〈
ln
p∗α,θ
puθ

〉
p∗α,θ

=
∂

∂α

〈
p∗α,θ
puθ

ln
p∗α,θ
puθ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+

〈
p∗α,θ
puθ

∂

∂α
ln
p∗α,θ
puθ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+

〈
1

puθ

∂

∂α
p∗α,θ

〉
puθ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

+
∂

∂α
〈1〉p∗α,θ

=

〈(
∂

∂α

p∗α,θ
puθ

)
ln
p∗α,θ
puθ

〉
puθ

.

Now let us look at

∂

∂α

p∗α,θ
puθ

=
∂

∂α

(
1

Zαpuθ
exp

(
− 1

γ + α
Sγpuθ

(τ)

))

Zαpuθ
=

〈
exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

.

we get

∂

∂α

p∗α,θ
puθ

=
1

(γ + α)
2S

γ
puθ

(τ)
p∗α,θ
puθ
−
p∗α,θ
puθ

1

Zαpuθ

∂

∂α
Zαpuθ

∂

∂α
Zαpuθ

=

〈
1

(γ + α)
2S

γ
puθ

exp

(
− 1

γ + α
Sγpuθ

(τ)

)〉
puθ

.

and thus
∂

∂α

p∗α,θ
puθ

=
1

(γ + α)
2S

γ
puθ

(τ)
p∗α,θ
puθ
−
p∗α,θ
puθ

1

(γ + α)
2

〈
Sγpuθ

〉
p∗α,θ

=
1

(γ + α)
2

p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)
.

So finally we get

∂

∂α
KL(p∗α,θ||puθ ) =

1

(γ + α)
2

〈
p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)
ln
p∗α,θ
puθ

〉
puθ

=
1

(γ + α)
2

〈
p∗α,θ
puθ

(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)(
− 1

γ + α
Sγpuθ

(τ)− logZαpuθ

)〉
puθ

=
1

(γ + α)
2

〈(
Sγpuθ

(τ)−
〈
Sγpuθ

〉
p∗α,θ

)(
− 1

γ + α
Sγpuθ

(τ)− logZαpuθ

)〉
p∗α,θ

= − 1

(γ + α)
3

(〈(
Sγpuθ

)2
〉
p∗α,θ

−
〈
Sγpuθ

〉2

p∗α,θ

)

= − 1

(γ + α)
3 Var

(
Sγpuθ

)
≤ 0.
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Algorithm 1 ASPIC - Adaptive Smoothing of Path Integral Control
Require: State cost function V (x, t)

control cost parameter γ
base policy that defines uncontrolled dynamics π0

simulator of system dynamics with a parametrized policy πθ
trust region sizes E
smoothing strength ∆
number of samples N

initialize θ0

n = 0
repeat

draw samples τ i, with i = 1, . . . , N , from simulator controlled by parametrized policy πθn
for each sample i compute Sγpuθn

(τ i) =
∑

0<t<T V (xit, t) + γ log
πθn (ait|t,x

i
t)

π0(ait|t,xit)
{Find minimal α such that KL ≤ ∆}
α← 0
repeat

increase α
Siα ← Sγpuθn

(τ i) · 1
γ+α

compute weights wi ← exp(−Siα)
normalize weights wi ← wi∑

i(wi)

compute sample size independent weight entropy KL← logN +
∑
i wi log(wi)

until KL ≤ ∆
{whiten the weigths}
ŵi ← wi−mean(wi)

std(wi)

{compute the gradient on the smoothed cost}
g ←

∑
i

∑
t ŵi

∂
∂θ log πθ(a

i
t|t, xit)

∣∣
θ=θn

{compute Fisher matrix}
use conjugate gradient descent to compute an approximate solution to the natural gradient
gF = F−1g (see App. E.2)
do line search to compute step size η such KL(θn||θn+1) = E .
update parameters θn+1 ← θn + η · gF
n = n+ 1

until convergence

Therefore

∆ = KL(p∗α,θ||puθ )

is a monotonically decreasing function of α.

F Experimental Details and Additional Results

Algorithm 1 summarizes ASPIC. We first analyze the behavior of ASPIC in a simple linear-quadratic
control problem, F.1,F.2. We then look at the dependence on the number of rollouts per iteration N
in F.3 and the interplay between smoothing strength ∆ and trust region size E in F.4. Finally, we
describe the parameter settings for all tasks in F.5.

F.1 A Simple Linear-Quadratic Control Problem: Brownian Viapoints

We analyse the convergence speed for different values of the smoothing strength ∆ in the task of
controlling a one-dimensional Brownian particle

ẋ = u(x, t) + ξ. (53)

We define the state cost as a quadratic penalty for deviating from the viapoints xi at the different
times ti: V (x, t) =

∑
i δ (t− ti) (x−xi)2

2σ2 with σ = 0.1. As a parametrized controller we use a time
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Figure 3: LQ control problem: Brownian viapoints. For each iteration we used N = 100 rollouts to
compute the gradient. A) Number of iterations needed for the cost to cross a threshold C ≤ 2 · 104

versus the smoothing strength ∆. For ∆ = 0 there is no smoothing. Increasing the smoothing
strength results in a faster decrease of the cost; when ∆ is increased further the performance decreases
again. Errorbars denote mean and standard deviation over 10 runs of the algorithm. B) Cost versus
the iterations of the algorithm. Direct optimization of the cost exhibits a slower convergence rate than
optimization of the smoothed cost with ∆ = 0.2 log 100.

varying linear feedback controller, i.e., uθ(x, t) = θ1,tx+ θ0,t. This controller fulfils the requirement
of full parametrization for this task (see App. F.2). For further details of the numerical experiment
see appendix F.5.

We apply ASPIC to this control problem and compare its performance for different sizes of the
smoothing strength ∆ (see Fig. 3). The results confirm our expectations from our theoretical analysis.
As predicted by theory we observe an acceleration of the policy optimization when smoothing is
switched on. This acceleration becomes more pronounced when ∆ is increased, which we attribute
to an increase of the anticipatory effect of the smoothed updates as smoothing becomes stronger (see
section D). When ∆ is too large the performance of the algorithm deteriorates again, which is in line
with our discussion of gradient estimation problems that arise for strong smoothing.

F.2 Full parametrization in LQ problem

Here we discuss why for a linear quadratic problem a time varying linear controller is a full
parametrization. We want to show that for every

p∗α,θ0 =
1

Z
pu0

(τ) exp

(
− 1

γ + α
Sγpuθ0

(τ)

)
(54)

there is a time varying linear controller uθ∗α,θ0 such that puθ∗
α,θ0

= p∗α,θ0 . We assume that uθ0 is

a time varying linear controller. In App. B.1 we have shown that u∗α,θ0 is the solution to the Path
Integral control problem with dynamics

ẋt = f(xt, t) + g(xt, t) (ũ(xt, t) + û(xt, t) + ξt)

and cost〈∫ T

0

1

γ
V (xt, t)−

1

2

γ

α
ũ(xt, t)

T ũ(xt, t)dt+

∫ T

0

(
1

2
û(xt, t)

T û(xt, t) + û(xt, t)
T ξt

)
dt

〉
pû

,

(55)

with ũ =
(

1− γ
γ+α

)
uθ0(xt, t).
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Figure 4: Performance as a function of the number of iterations for different values of N ∈
{50, 100, 500} in the Pendulum swing-up task. Dashed lines denote the solution for a total fixed
budget of 25K rollouts, i.e., 500, 250, and 50 iterations, respectively. In this case, N = 50 achieves
near optimal performance whereas using larger values of N leads to worse solutions.

It is now easy to see that if uθ0 is a time varying linear controller, thus a linear function of the state,
the cost is a quadratic function of the state x (note that V (xt, t) is quadratic in the LQ case). Thus for
all values of α, u∗α,θ0 is the solution to a linear quadratic control problem and thus a time varying
linear controller (see e.g. [13]). Therefore a time varying linear controller is a full parametrization.

F.3 Dependence on the Number of Rollouts per Iteration N

We now analyze the dependence of the performance of ASPIC on the number of rollouts per
iteration N . In general, using larger values of N allows for more reliable gradient estimates and
achieves convergence in fewer iterations. However, too large N may be inefficient and lead to
suboptimal solutions in the presence of a fixed budget of rollouts.

Figure 4 illustrates this trade-off in the Pendulum swing-up task for three values of N . For a total
budget of 25K rollouts (dashed lines), the lowest value of N = 50 achieves near optimal performance
and is preferable to the other choices, despite resulting in higher variance estimates and requiring more
iterations until convergence. In particular, the solutions achieved using N = 500 have cost > 350,
while for N = 50, all solutions have cost < −50.

F.4 Interplay Between Smoothing Strength ∆ and Trust Region Size E

To understand better the relation between the smoothing strength and the trust region sizes, we analyze
empirically the performance of ASPIC as a function of both ∆ and E parameters. We focus on the
Acrobot task and in the setting of N = 500 and intermediate smoothing strength, when smoothing is
most beneficial.

Figure 5 shows the cost as a function of ∆ and E averaged over the first 500 iterations of the
algorithm, and for 10 different runs. Larger (averaged) costs correspond runs where the algorithm
fails to converge. Conversely, the lower cost, the fastest the convergence. In general, larger values of
E lead to faster convergence. However, the convergence is less stable for smaller values of ∆. For
stronger smoothing, the algorithm is more sensitive to E .

F.5 Details of Numerical Experiments

Linear-Quadratic control Task

Dynamics: The dynamics are ODEs integrated by an Euler scheme (see section F.1). The differential
equation is initialized at x = 0. dt = 0.1

Control problem: γ = 1. Time-Horizon T = 10s. State-Cost function: see section F.1.
(x0, t0) = (−10, 1), (x1, t1) = (10, 2),(x2, t2) = (−10, 3), (x3, t3) = (−20, 4),
(x4, t4) = (−100, 5), (x5, t5) = (−50, 6), (x6, t6) = (10, 7), (x7, t7) = (20, 8),
(x8, t8) = (30, 9). Variance of uncontrolled dynamics ν = 1.
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Figure 5: Solution cost as a function of the smoothing strength ∆ and the trust region size ε in the
Acrobot task. Shown is the cost averaged over the first 500 iterations of the algorithm, and for 10
different runs. Blue indicates failure to convergence. White indicates the solutions which converged
fastest.

Algorithm: Batchsize: N = 100. E = 0.1. ∆ = 0.2 log 100. Conjugate gradient iterations: 2 (for
each time step separately). The parametrized controller was initialized at θ = 0.

Pendulum Task

Dynamics: The differential equation for the pendulum is:

ẍ+ cω0ẋ+ ω2
0 sin(x) = λ (u+ ξ)

with

• cω0 = 0.1 [s−1]
• ω2

0 = 10. [s−2]
• λ = 0.2

We implemented this differential equation as a first order differential equation and integrated
it with an Euler scheme with dt = 0.01. The pendulum is initialized resting at the bottom:

ẋ = 0, x = 0.

As a parametrized controller we use a time varying linear feedback controller:

uθ(x, ẋ, t) = θ3,t cos(x) + θ2,t sin(x) + θ1,tẋ+ θ0,t.

The parametrized controller was initialized at θ = 0.

Control-problem: γ = 1.. T = 3.0s. The State-Cost function has End-Cost only:

V (x, ẋ, t) = δ(t− T )
(
−500Y + 10ẋ2

)
with Y = − cos(x) (height of tip). Variance of uncontrolled dynamics ν = 1

Algorithm: Batchsize: N = 500. E = 0.1. ∆ = 0.5. The Fisher-matrix was inverted for each time
step separately using the scipy pseudo-inverse with rcond=1e-4.

Acrobot Task

Dynamics: We use the definition of the acrobot as in [20]. The differential equations for the acrobot
are:

d11(x)ẍ1 + d12(x)ẍ2 + h1(x, ẋ) + φ1(x) = 0

d21(x)ẍ1 + d22ẍ2 + h2(x, ẋ) + φ2(x) = λ · (u+ ξ)
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with
d11 = m1l

2
c1 +m2

(
l21 + l2c2 + 2l1lc2 cos(x2)

)
+ I1 + I2

d12 = m2

(
l2c2 + l1lc2 cos(x2)

)
+ I2

d21 = d12

d22 = m2l
2
c2 + I2

h1 = −m2l1lc2 sin(x2)
(
ẋ2

2 + 2ẋ1ẋ2

)
h2 = m2l1lc2 sin(x2)ẋ2

1

φ2 = m2lc2G cos (x1 + x2)

φ1 = (m1lc1 +m2l1)g cos (x1) + φ2

with the parameter values
• G = 9.8
• l1 = 1. [m]
• l2 = 2. [m]
• m1 = 1. [kg] mass of link 1
• m2 = 1. [kg] mass of link 2
• lc1 = 0.5 [m] position of the center of mass of link 1
• lc2 = 1.0 [m] position of the center of mass of link 2
• I1 = 0.083 moments of inertia for both links
• I2 = 0.33 moments of inertia for both links
• λ = 0.2

We implemented this differential equation as a first order differential equation and integrated
it with an Euler scheme with dt = 0.01. The acrobot is initialized resting at the bottom:

ẋ1 = 0, ẋ2 = 0, x1 = −1

2
π, x2 = 0.

As a parametrized controller we use a time varying linear feedback controller:
uθ(x, ẋ, t) =θ8,t cos(x1) + θ7,t sin(x2) + θ6,t cos(x2) + θ5,t sin(x2)+

+ θ4,t sin(x1 + x2) + θ3,t cos(x1 + x2) + θ2,tẋ1 + θ1,tẋ2 + θ0,t.

The parametrized controller was initialized at θ = 0.
Control-problem: γ = 1.. Time-Horizon: T = 3.0s. The State-Cost function has End-Cost only:

V (x, ẋ, t) = δ(t− T )
(
−500Y + 10(ẋ1

2 + ẋ2
2)
)

with Y = −l1 cos(x1)− l2 cos(x1 + x2) (height of tip). Variance of uncontrolled dynamics
ν = 1.

Algorithm: Batchsize: N = 500. E = 0.1. ∆ = 0.5. The Fisher-matrix was inverted for each time
step separately using the scipy pseudo-inverse with rcond=1e-4.

Walker
Dynamics: For dynamics and the state cost function we used "BipedalWalker-v2" from the OpenAI

gym [2]. The policy was a Gaussian policy, with static variance σ = 1. The state dependent
mean of the Gaussian policy was a neural network controller with two hidden layers with
32 neurons, each. The activation function is a tanh. For the initialization we used Glorot
Uniform (see [7]). The inputs to the neural network was the observation space provided by
OpenAI gym task "BipedalWalker-v2": State consists of hull angle speed, angular velocity,
horizontal speed, vertical speed, position of joints and joints angular speed, legs contact
with ground, and 10 lidar rangefinder measurements.

Control-problem: γ = 0. Time-Horizon: defined by OpenAI gym task “BipedalWalker-v2”. State-
Cost function defined by OpenAI gym task "BipedalWalker-v2": Reward is given for moving
forward, total 300+ points up to the far end. If the robot falls, it gets -100. Applying motor
torque costs a small amount of points, more optimal agent will get better score.

Algorithm: Batchsize: N = 100. E = 0.01. ∆ = 0.05 log 100. Conjugate gradient iterations: 10.
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