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Abstract

Trust region policy optimization (TRPO) is a popular and empirically successful
policy search algorithm in Reinforcement Learning (RL) in which a surrogate
problem, that restricts consecutive policies to be ‘close’ to one another, is iter-
atively solved. Nevertheless, TRPO has been considered a heuristic algorithm
inspired by Conservative Policy Iteration (CPI). We show that the adaptive scal-
ing mechanism used in TRPO is in fact the natural “RL version" of traditional
trust-region methods from convex analysis. We first analyze TRPO in the planning
setting, in which we have access to the model and the entire state space. Then,
we consider sample-based TRPO and establish Õ(1/

√
N) convergence rate to the

global optimum. Importantly, the adaptive scaling mechanism allows us to analyze
TRPO in regularized MDPs for which we prove fast rates of Õ(1/N), much like
results in convex optimization. This is the first result in RL of better rates when
regularizing the instantaneous cost or reward.

1 Introduction

The field of Reinforcement learning (RL) [Sutton and Barto, 2018] tackles the problem of learning
how to act optimally in an unknown dynamic environment. The agent is allowed to apply actions
on the environment, and by doing so, to manipulate its state. Then, based on the rewards or costs it
accumulates, the agent learns how to act optimally.

Trust Region Policy Optimization (TRPO): Trust region methods are a popular class of techniques
to solve an RL problem and span a wide variety of algorithms including Non-Euclidean TRPO
(NE-TRPO) [Schulman et al., 2015] and Proximal Policy Optimization [Schulman et al., 2017]. In
these methods a sum of two terms is iteratively being minimized: a linearization of the objective
function and a proximity term which restricts two consecutive updates to be ‘close’ to one another, as
in Mirror Descent (MD) [Beck and Teboulle, 2003]. Despite their popularity, much less is understood
in terms of their convergence guarantees and they are considered heuristics [Schulman et al., 2015,
Papini et al., 2019] (see Figure 1).

TRPO and Regularized MDPs: Trust region methods are often used in conjunction with regular-
ization. This is commonly done by adding the negative entropy to the instantaneous cost [Nachum
et al., 2017, Schulman et al., 2017]. The intuitive justification for using entropy regularization is that
it induces inherent exploration [Fox et al., 2016], and ‘softens’ the Bellman equation [Chow et al.,
2018, Dai et al., 2018]. Recently, Ahmed et al. [2019] empirically observed that adding entropy
regularization leads to faster convergence when the learning rate is chosen more aggressively. Yet,
to the best of our knowledge, there is no finite-sample analysis that exhibits faster convergence
rates for regularized MDPs. This comes in stark contrast to well established faster rates for strongly
convex objectives w.r.t. convex ones [Nesterov, 1998]. In this work we refer to regularized MDPs as
describing a more general case in which a strongly convex function is added to the immediate cost.
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Figure 1: The adaptive TRPO: a solid line implies a
formal relation; a dashed line implies a heuristic relation.

Method Sample Complexity

TRPO
(this paper)

C2
ω,1A

2C4
max(S+log 1

δ )
(1−γ)3ε4

Regularized
TRPO

(this paper)

C2
ω,1Cω,2A

2C4
max,λ(S+log 1

δ )
λ(1−γ)4ε3

CPI
(Kakade and

Langford)

A2C4
max(S+log 1

δ )
(1−γ)5ε4

Table 1: The sample complexity of Sample-Based
TRPO (TRPO) and CPI. For TRPO, the best policy so
far is returned, where for CPI, the last policy πN is
returned.

The goal of this work is to bridge the gap between the practicality of trust region methods in RL and
the scarce theoretical guarantees for standard (unregularized) and regularized MDPs. To this end, we
revise a fundamental question in this context:

What is the proper form of the proximity term in trust region methods for RL?

In Schulman et al. [2015], two proximity terms are suggested which result in two possible versions
of trust region methods for RL. The first (Schulman et al., 2015, Algorithm 1) is motivated by
Conservative Policy Iteration (CPI) [Kakade et al., 2003] and results in an improving and thus
converging algorithm in its exact error-free version. Yet, it seems computationally infeasible to
produce a sample-based version of this algorithm. The second algorithm, with an adaptive proximity
term which depends on the current policy (Schulman et al., 2015, Equation 12), is described as a
heuristic approximation of the first, with no convergence guarantees, but leads to NE-TRPO, currently
among the most popular algorithms in RL (see Figure 1).

In this work, we study a general TRPO method which uses the latter adaptive proximity term.
Unlike the common belief, we show this adaptive scaling mechanism is ‘natural’ and imposes the
structure of RL onto traditional trust region methods from convex analysis. We refer to this method
as adaptive TRPO, and analyze two of its instances: NE-TRPO (Schulman et al., 2015, Equation 12)
and Projected Policy Gradient (PPG) (see Figure 1). In Section 3, we derive the linearized objective
functions for (regularized) RL. In Section 4, using the linearized objective, we formulate Uniform
TRPO, which assumes simultaneous access to the state space and that a model is given. In Section 5,
we relax these assumptions and study Sample-Based TRPO. The main contributions of this paper are:

• We establish an Õ(1/
√
N) convergence rate to the global optimum for Sample-Based TRPO,

which gives formal grounds for the NE-TRPO algorithm.

• We prove a faster rate of Õ(1/N) for regularized MDPs using Sample-Based TRPO.
• The analysis of Sample-Based TRPO, unlike CPI, does not rely on improvement arguments.

This allows to choose more aggressive learning rates which lead to better sample complexity.

2 Preliminaries and Notations
We consider an infinite-horizon discounted MDP which is defined as the 5-tuple (S,A, P, C, γ)
[Sutton and Barto, 2018], where S and A are finite state and action sets with cardinality of S = |S|
and A = |A|. The transition kernel is P ≡ P (s′|s, a), C ≡ c(s, a) is a cost† function bounded in
[0,Cmax], and γ ∈ (0, 1) is a discount factor. Let π : S → ∆S

A be a stationary policy, where ∆A is
the set probability distributions on A. Let vπ ∈ RS be the value of a policy π, with its s ∈ S entry
given by vπ(s) := Eπ[

∑∞
t=0 γ

tr(st, π(st)) | s0 = s]. It is known that vπ =
∑∞
t=0 γ

t(Pπ)tcπ =
(I−γPπ)−1cπ, with the component-wise values [Pπ]s,s′ := P (s′ | s, π(s)) and [cπ]s := c(s, π(s)).
Our goal is to find π∗ yielding the optimal value v∗, v∗ = minπ(I−γPπ)−1cπ = (I−γPπ∗)−1cπ

∗
.

A large portion of this paper is devoted to analysis of regularized MDPs: A regularized MDP is
an MDP with a shaped cost denoted by cπλ for λ > 0. Specifically, the cost of a policy π on
†We work with costs instead of rewards to comply with convex analysis. All results are valid for rewards.
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a regularized MDP translates to cπλ(s) := cπ(s) + λω (s;π) where ω (s;π) := ω(π(· | s)) and
ω : ∆A → R is a 1-strongly convex function. We denote ω(π) ∈ RS as the corresponding state-wise
vector. For λ = 0, the cost cπ is recovered. We consider two choices of ω: the euclidean case
ω (s;π) = 1

2 ‖π(· | s)‖22 and non-euclidean case ω (s;π) = H(π(· | s)) + logA. By this choice
we have that 0 ≤ cπλ(s) ≤ Cmax,λ, where with some abuse of notation we omit ω from Cmax,λ. The
value of a stationary policy π on the regularized MDP is vπλ = (I − γPπ)−1cπλ. The optimal value
v∗λ, optimal policy π∗λ and Bellman operators of the regularized MDP are generalized as follows,
v∗λ = minπ(I−γPπ)−1cπλ = (I−γPπ∗λ)−1c

π∗λ
λ , and Tπλ v = cπλ +γPπv. The q-function of a policy

π for a regularized MDP is defined as qπλ(s, a) = c(s, a) + λω (s;π) + γ
∑
s′ p

π(s′ | s)vπλ(s′).

A Bregman distance w.r.t. to ω is defined as Bω (x, y) = ω(x) − ω(y) − 〈∇ω(y), x − y〉. Given
two policies π1, π2, we denote their Bregman distance as Bω (s;π1, π2) := Bω (π1(· | s), π2(· | s))
and Bω (π1, π2) ∈ RS is the corresponding state-wise vector. The euclidean choice for ω leads
to Bω (s;π1, π2) = 1

2 ‖π1(· | s)− π2(· | s)‖22, and the non-euclidean choice to Bω (s;π1, π2) =
dKL(π1(· |s)||π2(· |s)). Here, we always choose the regularization function ω to be associated with
the proximity term, Bω . This simplifies the analysis as cπλ is λ-strongly convex w.r.t. Bω by definition.
For more details about MD, Bregman distances and the underlying mechanism of regularization using
strongly convex functions, refer to Appendix C.

The proposed algorithms always initialize π0, the policy at the first iteration, to be a uniform
distribution. For brevity, we omit constant and logarithmic factors when using O(·), and omit any
factors other than non-logarithmic factors in N , when using Õ(·).

3 Linear Approximation of a Policy’s Value

A crucial step in adapting MD to solve MDPs is studying the linear approximation of the objective,
〈∇f(x), x′ − x〉, i.e., the directional derivative in the direction of an element from the convex set. In
this work we consider the following objectives:

min
π∈∆S

A

(I − γPπ)−1cπλ, (1)

min
π∈∆S

A

Es∼µ[vπλ(s)] = min
π∈∆S

A

µvπλ . (2)

Thus, we study 〈∇vπλ , π′ − π〉 and 〈∇µvπλ , π′ − π〉 in the following proposition:

Proposition 1 (Linear Approximation of a Policy’s Value). Let π, π′ ∈ ∆S
A. Then,

〈∇πvπλ , π′ − π〉 = (I − γPπ)−1
(
Tπ
′

λ vπλ − vπλ − λBω (π′, π)
)
, (3)

〈∇πµvπλ , π′ − π〉 =
1

1− γ
dµ,π

(
Tπ
′

λ vπλ − vπλ − λBω (π′, π)
)
. (4)

The proof is supplied in Appendix D. Importantly, the linear approximation is scaled by (I − γPπ)−1

or 1
1−γ dµ,π , where dµ,π = µ(I − γPπ)−1 is the discounted visitation frequencies. In what follows,

we use this understanding to properly choose an adaptive scaling for the proximity term of TRPO,
which allows us to use methods from convex optimization.

4 Uniform Trust Region Policy Optimization

In this section we formulate Uniform TRPO, a trust region planning algorithm with an adaptive
proximity term by which (1) can be solved, i.e., an optimal policy which jointly minimizes the vector
vπλ is acquired. We show that the presence of the adaptive term simplifies the update rule of Uniform
TRPO and then analyze its performance for the unregularized (λ = 0) and regularized (λ > 0) cases.
Despite the fact (1) is not a convex optimization problem, the presence of the adaptive term allows us
to use techniques applied for MD in convex analysis to establish convergence to the global optimum
with rates of Õ(1/

√
N) and Õ(1/N) for the unregularized and regularized cases, respectively.

Uniform TRPO repeats the following iterates

πk+1 ∈ arg minπ∈∆S
A
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk) . (5)
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This update rule resembles MD’s updating-rule (see Appendix C). The updated policy minimizes
the linear approximation while being not ‘too-far’ from the current policy due to the presence of
Bω (π, πk). However, and unlike MD’s update rule, the Bregman distance is scaled by the adaptive
term (I − γPπk)−1. Applying Proposition 1, we see why this adaptive term is so natural for RL,

πk+1 ∈arg minπ∈∆S
A

(I − γPπk)−1
(
Tπλ v

πk
λ − v

πk
λ +

(
1/tk − λ

)
Bω(π, πk)

)︸ ︷︷ ︸
(∗)

. (6)

Because (I−γPπk)−1 ≥ 0 component-wise, minimizing (6) is equivalent to minimizing the vector
(∗). This results in a simplified update rule: instead of minimizing over ∆S

A we minimize over ∆A
for each s ∈ S independently (see Appendix E.1). Meaning, the updated policy for all s ∈ S is

πk+1(· | s) ∈ arg minπ∈∆A tkT
π
λ v

πk
λ (s) + (1− λtk)Bω (s;π, πk) , (7)

which is the update rule of Uniform TRPO (see Algorithm 1 in Appendix A). Importantly, this update
rule is a direct consequence of choosing the adaptive scaling for the Bregman distance in (5), and
without it, the trust region problem would involve optimizing over ∆S

A. The following theorem
formalizes the convergence of the unregularized and regularized cases of Uniform TRPO, to the same
rates of MD for the convex and strongly convex cases, respectively:

Theorem 2 (Convergence of Uniform TRPO in simplified form). Let {πN}N≥0 be the sequence
generated by Uniform TRPO. Then, for a proper choice of step size, for all N ≥ 1, The unregularized
and regularized versions of Uniform TRPO converge with rates of ‖vπN − v∗‖∞ ≤ Õ(1/

√
N) and

‖vπNλ − v∗λ‖∞ ≤ Õ(1/N), respectively. The full version is given in Appendix F, Theorem 11.

Theorem 2 establishes that regularization allows a faster rate of Õ(1/N ). Note that using such
regularization leads to a ‘biased’ solution: Generally

∥∥vπ∗λ − v∗∥∥∞ > 0, i.e., the optimal policy of
the regularized MDP evaluated on the original MDP is not necessarily optimal. Yet, regularizing the
problem can make it easier to solve, in the sense Uniform TRPO converges faster.

5 Sample-Based TRPO

In the previous section we analyzed Uniform TRPO, which uniformly minimizes the vector vπ.
However, in case of a large state space it can be computationally infeasible to apply Uniform TRPO
as it requires access to the entire state space and to a model of the environment, which is usually
absent. In this work, we construct a sample-based algorithm which minimizes a scalar objective of
the form minπ∈∆S

A
µvπλ (2), which is widely used in the RL literature [Sutton et al., 2000, Kakade

and Langford, 2002, Schulman et al., 2015], instead of a vector in (1). Using this objective, one
wishes to find a policy π which minimizes the expectation of vπλ(s) under a probability measure µ.

Starting from the seminal work on CPI, it is common to assume access to the environment in the form
of a ν-restart model. Using a ν-restart model, the algorithm interacts with an MDP in an episodic
manner. In each episode k, the starting state is sampled from the initial distribution s0 ∼ ν, and the
algorithm samples a trajectory (s0, r0, s1, r1, ...) by following a policy πk. As mentioned in Kakade
et al. [2003], a ν-restart model is a weaker assumption than an access to the true model or a generative
model, and a stronger assumption than the case where no restarts are allowed.

To establish global convergence guarantees, we make the following assumption, similarly to CPI:

Assumption 1 (Finite Concentrability Coefficient). Cπ
∗

:=
∥∥∥dµ,π∗ν ∥∥∥

∞
= maxs∈S

∣∣∣dµ,π∗ (s)

ν(s)

∣∣∣ <∞.
The term Cπ

∗
is known as a concentrability coefficient and appears often in the analysis of policy

search algorithms [Kakade and Langford, 2002, Scherrer and Geist, 2014]. Interestingly, Cπ
∗

is
considered the ‘best’ one among all other existing concentrability coefficients in approximate Policy
Iteration schemes [Scherrer, 2014], in the sense it can be finite when the rest of them are infinite.

In this section, we derive Sample-Based TRPO, and establish high-probability convergence guarantees
in a batch setting. Sample-Based TRPO assumes access to a ν-restart model. Meaning, it can only
access sampled trajectories and restarts according to the distribution ν. Importantly, on expectation,
its updating rule is exactly the update rule used in NE-TRPO (Schulman et al., 2015, Equation 12),
which uses the adaptive proximity term, and is described there as a heuristic.
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Sample-Based TRPO samples Mk trajectories per episode. In every trajectory of the k-th episode, it
first samples sm ∼ dν,πk and takes an action am ∼ U(A) where U(A) is the uniform distribution
on the set A. Then, by following the current policy πk, it estimates qπkλ (sm, am) using a rollout
(possibly truncated). We denote this estimate as q̂πkλ (sm, am,m) and observe it is (nearly) an unbiased
estimator of qπkλ (sm, am). We assume that each rollout runs sufficiently long so that the bias is small
enough. The sampling process is fully described in Appendix F.2. Based on this data, Sample-Based
TRPO updates the policy at the end of the k-th episode, by the following proximal problem,

πk+1 ∈ arg min
π∈∆S

A

1

M

∑M

m=1
〈∇̂νvπkλ [m], π(· |sm)− πk(· |sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) , (8)

where the gradient is estimated by ∇̂νvπkλ [m] := 1
1−γ (Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk)).

The following proposition shows the expectation of the proximal objective of Sample-Based TRPO (8)
is the proximal objective of Uniform TRPO (5), scaled by the measure ν. This fact motivates us to
study this algorithm, anticipating it inherits the convergence guarantees of Uniform TRPO,
Proposition 3 (Uniform to Sample-Based Updates). Let Fk be the σ-field containing all events until
the end of the k − 1 episode. Then, for any π, πk ∈ ∆S

A and every sample m,

ν
(
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

)
= E

[
〈∇̂νvπkλ [m], π(· | sm)− πk(· | sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
.

Like Uniform TRPO, Sample-Based TRPO has a simpler update rule, in which the optimization
takes place on every visited state at the k-th episode. This comes in contrast to Uniform TRPO which
requires access to all states in S, and is possible due to the sample-based adaptive scaling of the
Bregman distance: due to the sampling process, the estimated gradient and the Bregman distance at a
state s are scaled by the empirical frequency of visits to s, which is on expectation dν,πk , the scaling
term observed in (4). Let SkM be the set of visited states at the k-th episode, n(s, a) the number of
times (sm, am) = (s, a) at the k-th episode, and q̂πkλ (s, a) = A∑

a n(s,a)

∑n(s,a)
i=1 q̂πkλ (s, a,mi), is the

empirical average of all rollout estimators for qπkλ (s, a) gathered in the k-th episode (mi is the episode
in which (sm, am) = (s, a) for the i-th time). For any non-visited state-action pair, q̂πkλ (s, a) = 0.
Thus, Sample-Based TRPO updates the policy for all s ∈ SkM by a simplified update rule:

πk+1(· | s) ∈ arg minπ∈∆A tk〈q̂
πk
λ (s, ·) + λ∇ω (s;πk) , π〉+Bω (s;π, πk).

The full algorithm is found in Appendix A (Alg. 2). Instantiating the PolicyUpdate procedure is
equivalent to choosing ω and the induced Bregman distance Bω: In the euclidean case, ω(·) = 1

2 ‖·‖
2
2,

we get the PPG variant (Alg. 3) and in the non-euclidean case, ω(·) = H(·), we get NE-TRPO (Alg. 4).
This comes in complete analogy to the fact that Projected Gradient Descent and Exponentiated
Gradient Descent are instances of MD with similar ω choices. Generalizing the proof technique
of Uniform TRPO and using standard concentration inequalities, we derive a high-probability
convergence guarantee for Sample-Based TRPO (for the proof see Appendix F):
Theorem 4 (Convergence Rate: Sample-Based TRPO). Let {πk}k≥0 be the sequence generated

by Sample-Based TRPO, using Mk ≥ O
(
A2 C2

max,λ(S log 2A+log 1/δ)

(1−γ)2ε2

)
samples in each iteration, and

{µvkbest,λ}k≥0 be the sequence of best achieved values, µvNbest,λ := arg mink=0,...,N µv
πk
λ − µv∗λ.

Then, with probability greater than 1− δ for every ε > 0 the following holds for all N ≥ 1:

1. (Unregularized) µvNbest − µv∗ ≤ O
(
Cω,1 Cmax

(1−γ)2
√
N

+ Cπ
∗
ε

(1−γ)2

)
, for stepsize tk = (1−γ)

Cω,1 Cmax
√
k+1

.

2. (Regularized) µvNbest,λ − µv∗λ ≤ O
(
C2
ω,1Cω,2 Cmax,λ

2

λ(1−γ)3N + Cπ
∗
ε

(1−γ)2

)
, for stepsize tk = 1

λ(k+2) .

In the euclidean case Cω,1 =
√
A,Cω,2 = 1 and in the non-euclidean case Cω,1 = 1, Cω,2 = A2.

Similarly to Uniform TRPO, the convergence rates are Õ(1/
√
N) and Õ(1/N) for the unregularized

and regularized cases, respectively. However, the Sample-Based TRPO converges to an approximate
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solution, similarly to CPI. The sample complexity required for a Cπ
∗
ε

(1−γ)2 error, the same as the
error of CPI, is given in Table 1. Interestingly, Sample-Based TRPO has better polynomial sample
complexity in (1− γ)−1 relatively to CPI. Importantly, the regularized versions have a superior
sample-complexity in ε, which can explain the empirical success of using regularization.
Remark 1 (Optimization Perspective). CPI can be interpreted as a sample-based Conditional Gra-
dient Descent for solving MDPs [Scherrer and Geist, 2014]. With this in mind, the two analyzed
instances of Sample-Based TRPO establish the convergence of sample-based projected and expo-
nentiated gradient descent methods for solving MDPs: PPG and NE-TRPO. It is well known that
a convex problem can be solved with either of the three aforementioned methods. The convergence
guarantees of CPI together with the ones of Sample-Based TRPO establish the same holds for RL.
Remark 2 (Is Improvement Needed?). Unlike CPI, Sample-Based TRPO does not rely on improve-
ment arguments. Even so, its asymptotic performance is equivalent to CPI, and its sample complexity
has better polynomial dependence in (1−γ)−1. This questions the necessity of ensuring improvement
for policy search methods, heavily used in the analysis of these methods, yet less used in practice.

6 Related works

The empirical success of policy search and regularization techniques in RL [Peters and Schaal, 2008,
Mnih et al., 2016, Schulman et al., 2015, 2017] led to non-negligible theoretical analysis of these
methods. Gradient based policy search methods were mostly analyzed in the function approximation
setting [Sutton et al., 2000, Bhatnagar et al., 2009, Pirotta et al., 2013, Dai et al., 2018, Papini
et al., 2019]. There, convergence to a local optimum was established under different conditions and
several aspects were investigated. In this work, we study a trust-region based, as opposed to gradient
based, policy search method in tabular RL and establish global convergence guarantees. Regarding
regularization in TRPO, in Neu et al. [2017] the authors analyzed entropy regularized MDPs from a
linear programming perspective for average-reward MDPs. Yet, convergence rates were not provided.

Geist et al. [2019] addressed regularized MDPs using MD-like updates in an approximate PI scheme.
The authors focused on update rules which require uniform access to the state space of the form
πk+1 = arg minπ∈∆S

A
〈qk, π − πk〉+Bω (π, πk), similarly to Uniform TRPO (7) with a fixed learn-

ing rate, tk = 1. In this paper, we argued in favor of viewing this update rule as an instance of the
more general update rule (5), i.e., MD with an adaptive proximity term. This view allowed us to
analyze adaptive Sample-Based TRPO, which does not require uniform access to the state space.
Also, we proved Sample-Based TRPO inherits the same asymptotic performance guarantees of CPI:
the quality of the policy Sample-Based TRPO outputs depends on Cπ

∗
. The results of Geist et al.

[2019] in the approximate setting led to worse concentrability coefficients, Ciq , which can be infinite
even when Cπ

∗
is finite [Scherrer, 2014] and depends on the worst case of all policies.

Recently, Agarwal et al. [2019] analyzed a variant of PPG under the assumption of exact gradients
and uniform access to the state space. Their proven convergence rate depends on both S and Cπ

∗

whereas Sample-Based TRPO with exact gradients (ε = 0) does not depend on S nor on Cπ
∗
. Also,

the authors did not establish faster rates for regularized MDPs. Importantly, their PPG algorithm
is different than the one we study, which can explain the discrepancy between our results: It uses
the update πk+1 ∈ P∆S

A
(πk − η∇µvπk), whereas, the PPG studied in this work applies a different

update rule using adaptive scaling of the Bregman distance (see (7), (8), in the exact euclidean case).

7 Conclusions

We analyzed the Uniform and Sample-Based TRPO methods. The first is a planning, trust region
method with an adaptive proximity term, and the latter is an RL sample-based version of the first.
Different choices of the proximity term led to two instances of the TRPO method: PPG and NE-TRPO.
For both, we proved Õ(1/

√
N) convergence rate to the global optimum, and a faster Õ(1/N) rate for

regularized MDPs. Although Sample-Based TRPO does not necessarily output an improving sequence
of policies, as CPI does, its best policy in hindsight does improve. Furthermore, the asymptotic
performance of Sample-Based TRPO is equivalent to that of CPI, and its sample complexity exhibits
better dependence in (1 − γ)−1. These results establish the popular NE-TRPO [Schulman et al.,
2015] should not be interpreted as an approximate heuristic to CPI but as a viable alternative.
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A Algorithms

By instantiating the PolicyUpdate procedure with Algorithms 3 and 4 we get the PPG and NE-TRPO instances of Uniform and
Sample-Based TRPO. The algorithms are discussed and analyzed in the following sections: Algorithm 1 is described Section 4
and analyzed Appendix E; Algorithm 2 is described in Section 5 and analyzed in Appendix F; Algorithms 3 and 4 are analyzed
in Appendix E.2.

Algorithm 1 Uniform TRPO

Initialize: tk, γ, λ, π0 is the uniform policy.
for k = 0, 1, ... do
vπk = (I − γPπ)−1cπλ
for ∀s ∈ S do

for ∀a ∈ A do
qπkλ (s, a)← cπλ(s, a) + γ

∑
s′ p(s

′|s, a)vπkλ (s′)
end for
πk+1(·|s)← PolicyUpdate(πk(·|s), qπkλ (s, ·), tk, λ)

end for
end for

Algorithm 2 Sample-Based TRPO

Initialize: tk, γ, λ, π0, ε, δ > 0
for k = 0, 1, ... do
SkM = {},∀s, a, q̂πkλ (s, a) = 0, nk(s, a) = 0

Mk ≥ Õ(
A2 C2

max,λ(S log 2A+log 1/δ)

(1−γ)2ε2 ) # See Appendix F.5
# Sample Trajectories
for m = 1, ..,Mk do

Sample sm ∼ dν,πk(·)
Sample am ∼ U(A)
q̂πkλ (sm, am,m)=Truncated Rollout of qπkλ (sm, am)
q̂πkλ (sm, am)← q̂πkλ (sm, am) + q̂πkλ (sm, am,m)
nk(sm, am)← nk(sm, am) + 1
SkM = SkM ∪ {sm}

end for
# Update Next Policy
for ∀s ∈ SkM do

for ∀a ∈ A do
q̂πkλ (s, a)← Aq̂

πk
λ (s,a)∑
a nk(s,a)

end for
πk+1(·|s)← PolicyUpdate(πk(·|s), q̂πkλ (s, ·), tk, λ)

end for
end for

Algorithm 3 PolicyUpdate: PPG

input: π(· | s), q(s, ·), tk, λ
for a ∈ A do
π(a|s)← π(a | s)− tk

1−λtk q(s, a)
end for
π(·|s)← P∆A(π(· | s))

return π(· | s)

Algorithm 4 PolicyUpdate: NE-TRPO

input: π(· | s), q(s, ·), tk, λ
for a ∈ A do
π(a|s)← π(a|s)e−tk(q(s,a)+λ log π(a|s))∑

a′∈A
π(a′|s)e−tk(q(s,a′)+λ log π(a′|s))

end for
return π(· | s)
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B Detailed Notations

In this section we elaborate more than the notation section (Section 2) in main body of the paper.

We consider the infinite-horizon discounted MDP which is defined as the 5-tuple (S,A, P, C, γ) [Sutton and Barto, 2018],
where S and A are finite state and action sets with cardinality of S = |S| and A = |A|, respectively. The transition kernel is
P ≡ P (s′|s, a), C ≡ c(s, a) is a cost function bounded in [0,Cmax]†, and γ ∈ (0, 1) is a discount factor. Let π : S → ∆S

A be a
stationary policy, where ∆A is the set probability distributions onA. Let vπ ∈ RS be the value of a policy π, with its s ∈ S entry
given by vπ(s) := Eπ[

∑∞
t=0 γ

tr(st, π(st)) | s0 = s], and Eπ[· | s0 = s] denotes expectation w.r.t. the distribution induced by
π and conditioned on the event {s0 = s}. It is known that vπ =

∑∞
t=0 γ

t(Pπ)tcπ = (I − γPπ)−1cπ, with the component-wise
values [Pπ]s,s′ := P (s′ | s, π(s)) and [cπ]s := c(s, π(s)). Our goal is to find a policy π∗ yielding the optimal value v∗ such
that

v∗ = min
π

(I − γPπ)−1cπ = (I − γPπ
∗
)−1cπ

∗
. (9)

This goal can be achieved using the classical operators:

∀v, π, Tπv = cπ + γPπv, and ∀v, Tv = min
π
Tπv, (10)

where Tπ is a linear operator, T is the optimal Bellman operator and both Tπ and T are γ-contraction mappings w.r.t. the
max-norm. The fixed points of Tπ and T are vπ and v∗.

A large portion of this paper is devoted to analysis of regularized MDPs: A regularized MDP is an MDP with a shaped cost
denoted by cπλ for λ ≥ 0. Specifically, the cost of a policy π on a regularized MDP translates to cπλ(s) := cπ(s) + λω (s;π)
where ω (s;π) := ω(π(· | s)) and ω : ∆A → R is a 1-strongly convex function. We denote ω(π) ∈ RS as the corresponding
state-wise vector. See that for λ = 0, the cost cπ is recovered. In this work we consider two choices of ω: the euclidean case
ω (s;π) = 1

2 ‖π(· | s)‖22 and non-euclidean case ω (s;π) = H(π(· | s)) + logA. By this choice we have that 0 ≤ cπλ(s) ≤
Cmax,λ where Cmax,λ = Cmax +λ and Cmax,λ = Cmax +λ logA, for the euclidean and non-euclidean cases, respectively. With
some abuse of notation we omit ω from Cmax,λ.

The value of a stationary policy π on the regularized MDP is vπλ = (I − γPπ)−1cπλ. Furthermore, the optimal value v∗λ, optimal
policy π∗λ and Bellman operators of the regularized MDP are generalized as follows,

v∗λ = min
π

(I − γPπ)−1cπλ = (I − γPπ
∗
λ)−1c

π∗λ
λ , (11)

∀v, π, Tπλ v = cπλ + γPπv, and ∀v, Tλv = min
π
Tπλ v.

As Bellman operators for MDPs, both Tπλ , T are γ-contractions with fixed points vπλ , v
∗
λ [Geist et al., 2019]. Denoting

cπλ(s, a) = c(s, a) + λω (s;π), the q-function of a policy π for a regularized MDP is defined as

qπλ(s, a) = cπλ(s, a) + γ
∑

s′
pπ(s′ | s)vπλ(s′),

When the state space is small, both criteria (9), (11), can be solved using DP approaches. However, in case of a large state space
it is expected to be computationally infeasible to apply such algorithms as they require access to the entire state space and to a
model of the environment, which is usually absent. In this work, we relax these assumptions, and construct a sample-based
algorithm which minimizes a scalar objective instead of a vector in (9), (11), of the following form,

min
π∈∆S

A

Es∼µ[vπλ(s)] = min
π∈∆S

A

µvπλ ,

where µ(·) is a probability measure over the state space. Using this objective, one wishes to find a policy π which minimizes
the expectation of vπλ(s) under a measure µ. This objective is widely used in the RL literature [Sutton et al., 2000, Kakade and
Langford, 2002, Schulman et al., 2015].

Here, we always choose the regularization function ω to be associated with the Bregman distance used, Bω. This simplifies
the analysis as cπλ is λ-strongly convex w.r.t. Bω by definition. Given two policies π1, π2, we denote their Bregman distance as
Bω (s;π1, π2) := Bω (π1(· | s), π2(· | s)) andBω (π1, π2)∈RS is the corresponding state-wise vector. The euclidean choice for
ω leads to Bω (s;π1, π2)= 1

2 ‖π1(· | s)− π2(· | s)‖22, and the non-euclidean choice to Bω (s;π1, π2)=dKL(π1(· |s)||π2(· |s)).

†We work with costs instead of rewards to comply with convex analysis. All results are valid to the case where a reward is used.
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In the results we use the following ω-dependent constant, Cω,1 =
√
A in the euclidean case, and Cω,1 = 1 in the non-euclidean

case.

The proposed algorithms always initialize π0, the policy at the first iteration, to be a uniform distribution. For brevity, we
omit constant and logarithmic factors when using O(·), and omit any factors other than non-logarithmic factors in N , when
using Õ(·). For x, y ∈ RS×A, the state-action inner product is 〈x, y〉 =

∑
s,a x(s, a)y(s, a), and the fixed-state inner product is

〈x(s, ·), y(s, ·)〉 =
∑
a x(s, a)y(s, a). Lastly, when x ∈ RS×S×A (e.g., first claim of Proposition 1) the inner product 〈x, y〉 is a

vector in RS where 〈x, y〉(s) := 〈x(s, ·, ·), y〉 =
∑
s′,a x(s, s′, a)y(s, a), with some abuse of notation.

C Mirror Descent in Convex Optimization

This section serves as a background section about the Mirror Descent algorithm. We recommend reading this short brief in order
to understand the basis of the regularization mechanism used in this paper for regularized MDPs, and its relation to the Convex
Optimization literature.

Mirror descent (MD) [Beck and Teboulle, 2003] is a well known first-order trust region optimization method for solving
constrained convex problems, i.e, for finding

x∗ ∈ arg min
x∈C

f(x), (12)

where f is a convex function and C is a convex compact set. In each iteration, MD minimizes a linear approximation of the
objective function, using the gradient∇f(xk), together with a proximity term by which the updated xk+1 is ‘close’ to xk. Thus,
it is considered a trust region method, as the iterates are ‘close’ to one another. The iterates of MD are

xk+1 ∈ arg min
x∈C

〈∇f(xk), x− xk〉+
1

tk
Bω (x, xk) , (13)

where Bω (x, xk) := ω(x)−ω(xk)−〈∇ω(xk), x−xk〉 is the Bregman distance associated with a strongly convex ω and tk is a
stepsize (see Appendix C.1). In the general convex case, MD converges to the optimal solution of (12) with a rate of Õ(1/

√
N),

where N is the number of MD iterations [Beck and Teboulle, 2003, Juditsky et al., 2011], i.e., f(xk)− f∗ ≤ Õ(1/
√
k), where

f∗ = f(x∗).

The convergence rate can be further improved when f is a part of special classes of functions. One such class is the set of
λ-strongly convex functions w.r.t. the Bregman distance. We say that f is λ-strongly convex w.r.t. the Bregman distance if
f(y) ≥ f(x) + 〈∇f(x), y − x〉 + λBω (y, x). For such f , improved convergence rate of Õ(1/N) can be obtained [Juditsky
et al., 2011, Nedic and Lee, 2014]. Thus, instead of using MD to optimize a convex f , one can consider the following regularized
problem,

x∗ = arg min
x∈C

f(x) + λg(x), (14)

where g is a strongly convex regularizer with coefficient λ > 0. Define Fλ(x) := f(x) + λg(x), then, each iteration of MD
becomes,

xk+1 = arg min
x∈C

〈∇Fλ(xk), x− xk〉+
1

tk
Bω (x, xk) . (15)

Solving (15) allows faster convergence, at the expense of adding a bias to the solution of (12). Trivially, by setting λ = 0, we go
back to the unregularized convex case.

In the following, we consider two common choices of ω which induce a proper Bregman distance: (a) The euclidean case, with
ω(·) = 1

2 ‖·‖
2
2 and the resulting Bregman distance is the squared euclidean norm Bω (x, y) = 1

2 ‖x− y‖
2
2. In this case, (13)

becomes the Projected Gradient Descent algorithm (Beck, 2017, Section 9.1), where in each iteration, the update step goes along
the direction of the gradient at xk, ∇f(xk), and then projected back to the convex set C, xk+1 = Pc (xk − tk∇f(xk)) , where
Pc(x) = miny∈C

1
2 ‖x− y‖

2
2 is the orthogonal projection operator w.r.t. the euclidean norm.

(b) The non-euclidean case, where ω(·) = H(·) is the negative entropy, and the Bregman distance then becomes the Kullback-
Leibler divergence, Bω (x, y) = dKL(x||y). In this case, MD becomes the Exponentiated Gradient Descent algorithm. Unlike
the euclidean case, where we need to project back into the set, when choosing ω as the negative entropy, (13) has a closed form
solution (Beck, 2017, Example 3.71), xik+1 =

xike
−tk∇if(xk)∑

j x
j
ke
−tk∇jf(xk) , where xik and∇if are the i-th coordinates of xk and ∇f .
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C.1 Assumptions of Mirror Descent

Assumption 2 (properties of Bregman distance).

(A) ω is proper closed and convex.

(B) ω is differentiable over dom(∂ω).

(C) C ⊆ dom(ω)

(D) ω + δC is σ-strongly convex (σ > 0)

Assumption 2 is the main assumption regarding the underlying Bregman distance used in Mirror Descent. In our analysis, we
have two common choice of ω: a) the negative entropy function, denoted as H(·), for which the corresponding Bregman distance
is Bω (·, ·) = dKL(·||·). b) the euclidean norm ω(·) = 1

2 ‖·‖
2, for which the resulting Bregman distance is the euclidean distance.

The convex optimization domain C is in our case ∆S
A, the state-wise unit simplex over the space of actions. For both choices, the

assumption holds. Finally, δC(x) is an extended real valued function which describes the optimization domain C. It is defined as
follows: For x ∈ C, δC(x) = 0. For x /∈ C, δC(x) =∞. For more details, see [Beck, 2017].

We go on to define the second assumption regarding the optimization problem:
Assumption 3.

(A) f : E→ (−∞,∞] is proper closed.

(B) C ⊆ E is nonempty closed and convex.

(C) C ⊆ int(dom(f)).

(D) The optimal set of (P) is nonempty.

D Policy Gradient, and Directional Derivatives for Regularized MDPs

In this section we re-derive the Policy Gradient Theorem [Sutton et al., 2000] for regularized MDPs when tabular representation
is used. Meaning, we explicitly calculate the derivative∇πvπλ(s). Based on this result, we derive the directional derivative, or
the linear approximation of the objective functions, 〈∇πvπλ(s), π − π′〉, 〈∇πµvπλ(s), π − π′〉.

D.1 Extended Value Functions

To formally study ∇πvπλ(s) we need to define value functions vπ when π is outside of the simplex ∆S
A, since when π(a | s)

changes infinitesimally, π(· | s) does not remain a valid probability distribution. To this end, we study extended value functions
denoted by v(y) ∈ RS for y ∈ RS×A, and denote vs(y) as the component of v(y) which corresponds to the state s. Furthermore,
we define the following cost and dynamics,

cyλ,s :=
∑
a′

y(a′ | s)(c(s, a) + λωs(y)),

pys,s′ :=
∑
a′

y(a′ | s)p(s′ | s, a′),

where ωs(y) := ω(y(· | s)) for ω : RA → R, py ∈ RS×S and cyλ ∈ RS .

Definition 1 (Extended value and q functions.). An extended value function is a mapping v : RS×A → RS , such that for
y ∈ RS×A

v(y) :=

∞∑
t=0

γt(py)tcyλ, (16)

13



Similarly, an extended q-function is a mapping q : RS×A → RS×A, such that its s, a element is given by

qs,a(y) := c(s, a) + λωs(y) + γ
∑
s′

p(s′ | s, a)vys′ , (17)

When y ∈ ∆S
A is a policy, π, we denote v(π) := vπλ ∈ RS , q(π) = qπλ ∈ RS×A.

Note that in this section we use different notations than the rest of the paper, in order to generalize the discussion and keep it out
of the regular RL conventions.

The following proposition establishes that v(y) the fixed point of a corresponding Bellman operator when y is close to the
simplex component-wise.

Lemma 5. Let y ∈ {y′ ∈ RS×A : ∀s,
∑
a |y′(a | s)| <

1
γ }. Define the operator T y : RS → RS , such that for any v ∈ RS ,

(T yv)s := cyλ,s + γ
∑
s′

pys,s′vs′ .

Then,

1. T y is a contraction operator in the max norm.

2. Its fixed-point is v(y) and satisfies vs(y) = (T yv(y))s.

Proof. We start by proving the first claim. Unlike in classical results on MDPs, y is not a policy. However, since it is not ‘too far’
from being a policy we get the usual contraction property by standard proof techniques.

Let v′, v ∈ RS , and assume (T yv′)s ≥ (T yv)s.

(T yv′)s − (T yv)s = γ
∑
a

y(a | s)
∑
s′

p(s′ | s, a)(v′s′ − vs′)

≤ γ
∑
a

y(a | s)
∑
s′

p(s′ | s, a) ‖v′s′ − vs′‖∞

= γ ‖v′s′ − vs′‖∞
∑
a

y(a | s)

≤ γ ‖v′s′ − vs′‖∞
∑
a

|y(a | s)|

< ‖v′s′ − vs′‖∞ .

In the fourth relation we used the assumption that γ
∑
a |y(a | s)| < 1. Repeating the same proof for the other case where

(T yv′)s < (T yv)s, concludes the proof of the first claim.

To prove the second claim, we use the definition of v(y).

v(y) :=

∞∑
t=0

γt(py)tcyλ

= cyλ +

∞∑
t=1

γt(py)tcyλ

= cyλ + γpy

( ∞∑
t=0

γt(py)tcyλ

)
= cyλ + γpyv(y).

In the third relation we used the distributive property of matrix multiplication and in the forth relation we used the definition of
v(y). Thus, v(y) = T yv(y), i.e., v(y) is the fixed point of the operator T y .
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D.2 Policy Gradient Theorem for Regularized MDPs

We now derive the Policy Gradient Theorem for regularized MDPs for tabular policy representation. Specifically, we use the
notion of an extended value function and an extended q-functions defined in the previous section.
Lemma 6. Let y ∈ {y′ ∈ RS×A : ∀s,

∑
a |y′(a | s)| <

1
γ }. Then,

vs(y) =
∑
a′

y(a′ | s)qs,a′(y)

Proof. Using (17), we get∑
a′

y(a′ | s)qs,a′(y) =
∑
a′

y(a′ | s)(c(s, a) + λωs(y)) + γ
∑
s′

p(s′ | s, a′)vs′(y)

= cyλ,s + γ
∑
s′

p(s′ | s, a′)vs′(y) = vs(y),

where the last equality is by the fixed-point property of Lemma 5.

We now derive the Policy Gradient Theorem for extended (regularized) value functions.
Theorem 7 (Policy Gradient for Extended Regularized Value Functions). Let y ∈ {y : ∀s,

∑
a |y(a | s)| < 1

γ }. Furthermore,
consider a fixed s, a and s̄. Then,

∂ys̄,āvs(y) =

∞∑
t=0

γtpyt (st | s)δs̄,st

(
qs,ā(y) + λ∂ys,āωs(y)

(∑
a′

y(a′ | s)

))
,

where py(st | s) =
∑
s1,..,st

py(st | st−1) · · · py(s1 | s), and pyt (s0 | s) = 1.

Proof. Following similar derivation to the original Policy Gradient Theorem [Sutton et al., 2000], for every s,

∂ys̄,āvs(y)

=
∑
a′

(∂ys̄,āy(a′ | s))qs,a′(y) + y(a′ | s)∂ys̄,āqs,a′(y)

=
∑
a′

δs,s̄δa′,āqs,a′(y) + y(a′ | s)∂ys̄,āqs,a′(y).

We now explicitly write the last term,

∂ys̄,āqs,a′(y)

= ∂ys̄,ā

(
c(s, a′) + λωs(y) + γ

∑
s′

p(s′ | s, a′)vs′(y)

)
= λδs,s̄∂ys,āωs(y) + γ

∑
s′

p(s′ | s, a′)∂ys̄,āvs′(y).

Plugging this back yields,

∂ys̄,āvs(y)

=
∑
a′

δs,s̄δa′,āqs,a′(y) + λy(a′ | s)δs,s̄∂ys,āωs(y)

+ γ
∑
s′

∑
a′

y(a′ | s)p(s′ | s, a′)∂ys̄,āvs′(y)

=
∑
a′

δs,s̄δa′,āqs,a′(y) + λy(a′ | s)δs,s̄∂ys,āωs(y) + γ
∑
s′

py(s′ | s)∂ys̄,āvs′(y).
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Iteratively applying this relation yields

∂ys̄,āvs(y) =

∞∑
t=0

γtpyt (st | s)δs̄,st

(
qs,ā(y) + λ∂ys,āωs(y)

(∑
a′

y(a′ | s)

))
,

where,

py(st | s) =
∑
s1,..,st

py(st | st−1) · · · py(s1 | s),

and pyt (s0 | s) = 1.

Returning to the specific notation for RL, defined in Section B, by setting y = π, i.e., when y is a policy, we get the Policy
Gradient Theorem for regularized MDPs, since for all s,

∑
a′ π(a′ | s) = 1.

Corollary 8 (Policy Gradient for Regularized MDPs). Let π ∈ ∆S
A. Then, ∇πvπ ∈ RS×S×A and

∇πvπ(s, s̄, ā) := ∇π(ā|s̄)v
π
λ(s) =

∞∑
t=0

γtpπ(st = s̄ | s)
(
λ∂π(ā|s̄)ω

π(s̄) + qπλ(s̄, ā)
)
.

D.3 The Linear Approximation of the Policy’s Value and The Directional Derivative for Regularized MDPs

In this section, we derive the directional derivative in policy space for regularized MDPs with tabular policy representation.

The linear approximation of the value function of the policy π′, around the policy π, is given by

vπ
′

λ ≈ vπλ + 〈∇πvπλ , π′ − π〉

In the MD framework, we take the arg min w.r.t. to this linear approximation. Note that the minimizer is independent on the
zeroth term, vπλ , and thus the optimization problem depends only on the directional derivative, 〈∇πvπλ , π′ − π〉. To keep track
with the MD formulation, we chose to refer to Proposition 1 as the ‘linear approximation of a policy’s value’, even though it is
actually the directional derivative.

Proposition 1 (Linear Approximation of a Policy’s Value). Let π, π′ ∈ ∆S
A. Then,

〈∇πvπλ , π′ − π〉 = (I − γPπ)−1
(
Tπ
′

λ vπλ − vπλ − λBω (π′, π)
)
, (3)

〈∇πµvπλ , π′ − π〉 =
1

1− γ
dµ,π

(
Tπ
′

λ vπλ − vπλ − λBω (π′, π)
)
. (4)

See that (4) is a vector in RS , whereas (3) is a scalar.

Proof. We start by proving the first claim. Consider the inner product,
〈
∇π(·|s̄)v

π(s), π′(· | s̄)− π(· | s̄)
〉
. By the linearity of

the inner product and using Corollary 8 we get,〈
∇π(·|s̄)v

π(s), π′(· | s̄)− π(· | s̄)
〉

=

∞∑
t=0

γtpπ(st = s̄ | s)
〈
λ∇π(·|s̄)ω (s̄;π) + qπλ(s̄, ·), π′(· | s̄)− π(· | s̄)

〉
=

∞∑
t=0

γtpπ(st = s̄ | s)
(
λ
〈
∇π(·|s̄)ω (s̄;π) , π′(· | s̄)− π(· | s̄)

〉
+ 〈qπλ(s̄, ·), π′(· | s̄)− π(· | s̄)〉

)
, (18)
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The following relations hold.

〈qπλ(s̄, ·), π′(· | s̄)− π(· | s̄)〉
= 〈qπλ(s̄, ·), π′(· | s̄)〉 − 〈qπλ(s̄, ·), π(· | s̄)〉

=
∑
a′

π′(a′ | s̄)

(
c(s̄, a) + λω (s̄;π) + γ

∑
s′

P (s′ | s̄, a)vπλ(s′)

)

−
∑
a′

π(a′ | s̄)

(
c(s̄, a) + λω (s̄;π) + γ

∑
s′

P (s′ | s̄, a)vπλ(s′)

)

=
∑
a′

π′(a′ | s̄)

(
c(s̄, a) + λω (s̄;π) + γ

∑
s′

P (s′ | s̄, a)vπλ(s′)

)
− vπλ(s̄)

=
∑
a′

π′(a′ | s̄)

(
c(s̄, a)+λω (s̄;π′)−λω (s̄;π′)+λω (s̄;π)+γ

∑
s′

P (s′ | s̄, a)vπλ(s′)

)
− vπλ(s̄)

=
∑
a′

π′(a′ | s̄)

(
c(s̄, a)+λω (s̄;π′)+γ

∑
s′

P (s′ | s̄, a)vπλ(s′)

)
− vπλ(s̄) + λ(ω (s̄;π)− ω (s̄;π′))

= cπ
′

λ (s̄) + γ
∑
s′

Pπ
′
(s′ | s̄)vπλ(s′)− vπλ(s̄) + λ(ω (s̄;π)−ω (s̄;π′))

= (Tπ
′

λ vπλ)(s̄)− vπλ(s̄) + λ(ω (s̄;π)− ω (s̄;π′)) (19)

The third relation holds by the fixed-point property of vπλ , and the last relation is by the definition of the regularized Bellman
operator.

Plugging this back into (18), we get,〈
∇π(·|s̄)v

π(s), π′(· | s̄)− π(· | s̄)
〉

=

∞∑
t=0

γtpπ(st = s̄ | s)×(
−λ
(
ω (s;π′)− ω (s;π)−

〈
∇π(·|s̄)ω (s̄;π) , π′(· | s̄)− π(· | s̄)

〉)
+ (Tπ

′

λ vπλ)(s̄)− vπλ(s̄)
)

=

∞∑
t=0

γtpπ(st = s̄ | s)
(

(Tπ
′

λ vπλ)(s̄)− vπλ(s̄)− λBω (s̄;π′, π)
)

(20)

Thus, we have that

〈∇πvπ(s), π′ − π〉 :=
∑
s̄

∑
a

(
∇π(a|s̄)v

π(s), π′(a | s̄)− π(a | s̄)
)

=
∑
s̄

〈
∇π(·|s̄)v

π(s), π′(· | s̄)− π(· | s̄)
〉

=
∑
s̄

∞∑
t=0

γtpπ(st = s̄ | s)
(

(Tπ
′

λ vπλ)(s̄)− vπλ(s̄)− λBω (s̄;π′, π)
)

=
∑
s̄

(I − γPπ)−1
s,s̄

(
(Tπ

′

λ vπλ)(s̄)− vπλ(s̄)− λBω (s̄;π′, π)
)

=
[
(I − γPπ)−1

(
Tπ
′

λ vπλ − vπλ − λBω (π′, π)
)]

(s).

Where the third relation is by (20), the forth by defining the matrix
∑∞
t=0 γ

tPπ = (I − γPπ)−1, and the fifth by the definition
of matrix-vector product.
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To prove the second claim, multiply both sides of the first relation (3) by µ. For the LHS we get,∑
s

µ(s)
〈
∇π(·|s̄)v

π(s), π′(· | s̄)− π(· | s̄)
〉

=

〈∑
s

µ(s)∇π(·|s̄)v
π(s), π′(· | s̄)− π(· | s̄)

〉

=

〈
∇π(·|s̄)

∑
s

µ(s)vπ(s), π′(· | s̄)− π(· | s̄)

〉
=
〈
∇π(·|s̄)µv

π, π′(· | s̄)− π(· | s̄)
〉
.

In the first and second relation we used the linearity of the inner product and the derivative, and in the third relation the definition
of µvπ . Lastly, observe that multiplying the RHS by µ yields µ(I − γPπ)−1 = 1

1−γ dµ,π .

E Uniform Trust Region Policy Optimization

In this Appendix, we derive the Uniform TRPO algorithm (Algorithm 1) and prove its convergence for both the unregularized
and regularized versions. Both Uniform Projected Policy Gradient and Uniform NE-TRPO are instances of Uniform TRPO, by a
proper choice of the Bregman distance. In Appendix E.1, we explicitly show that the iterates

πk+1 ∈ arg min
π∈∆S

A

{
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

}
, (21)

result in algorithm 1. In Appendix E.2, we derive the updates of the PolicyUpdate procedure, Algorithms 3 and 4. Then, we turn
to analyze Uniform TRPO and its instances in Appendix E.3. Specifically, we derive the fundamental inequality for Unifom
TRPO, similarly to the fundamental inequality for Mirror Descent (Beck, 2017, Lemma-9.13). Although the objective is not
convex, we show that due to the adaptive scaling, by applying the linear approximation of the value of regularized MDPs
(Proposition 1), we can repeat similar derivation to that of MD, with some modifications. Finally, in Appendix E.4, we go on to
prove convergence rates for both the unregularized (λ = 0) and regularized (λ > 0) versions of Uniform TRPO, using a right
choice of stepsizes.

E.1 Uniform TRPO Update Rule

In each TRPO step, we solve the following optimization problem:

πk+1 ∈ arg minπ∈∆S
A

{
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

}
∈ arg minπ∈∆S

A

{
(I − γPπk)−1(Tπλ v

πk
λ − v

πk
λ − λBω (π, πk)) +

1

tk
(I − γPπk)−1Bω (π, πk)

}
∈ arg minπ∈∆S

A

{
(I − γPπk)−1(Tπλ v

πk
λ − v

πk
λ +

(
1

tk
− λ
)
Bω (π, πk))

}
∈ arg minπ∈∆S

A

{
Tπλ v

πk
λ − v

πk
λ +

(
1

tk
− λ
)
Bω (π, πk)

}
,

where the second transition holds by plugging in the linear approximation (Proposition 1), and the last transition holds since
(I − γPπk)−1 > 0 and does not depend on π. Thus, we have,

πk+1 ∈ arg minπ∈∆S
A
{tk(Tπλ v

πk
λ − v

πk
λ ) + (1− λtk)Bω (π, πk)} (22)

By discarding terms which do not depend on π, we get

πk+1 ∈ arg min
π∈∆S

A

{tkTπλ v
πk
λ + (1− λtk)Bω (π, πk)} (23)

We are now ready to write (7), using the fact that (23), can be written as the following state-wise optimization problem: For
every s ∈ S,

πk+1(· | s) ∈ arg min
π∈∆A

{tkTπλ v
πk
λ (s) + (1− λtk)Bω (s;π, πk)}
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E.2 The PolicyUpdate procedure: Algorithms 3 and 4

Next, we write the solution for the optimization problem for each of the cases:

By plugging Lemma 20 into (22)

πk+1 ∈ arg min
π∈∆S

A

{tk〈qπkλ + λ∇ω(πk), π − πk〉+Bω (π, πk)}

Or again in a state-wise form,

πk+1(· | s) ∈ arg min
π∈∆A

{tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk(· | s)〉+Bω (s;π, πk)} (24)

Using (24), we can plug in the solution of the MD iteration for each of the different cases.

Euclidean Case:

For ω chosen to be the L2 norm, the solution to (24) is the orthogonal projection. For all s ∈ S the policy is updated according to

πk+1(·|s) = P∆A(πk(·|s)− tkqπkλ (s, ·)− λtkπk(· | s))
= P∆A((1− λtk)πk(·|s)− tkqπkλ (s, ·)),

where P∆A is the orthogonal projection operator over the simplex. Refer to [Beck, 2017] for details.

Finally, dividing by the constant 1− λtk does not change the optimizer. Thus,

πk+1(·|s) = P∆A

(
πk(·|s)− tk

1− λtk
qπkλ (s, ·)

)
, (25)

Non-Euclidean Case:

For ω chosen to be the negative entropy, (24) has the following analytic solution for all s ∈ S,

πk+1(· | s) ∈ arg min
π∈∆A

{tk〈qπkλ (s, ·) + λ∇H(πk(· | s), π − πk(· | s)〉+ dKL(π(· | s)||πk(· | s))}

∈ arg min
π∈∆A

{〈tkqπkλ (s, ·)− (1− λtk)∇H(πk(· | s), π − πk(· | s)〉+H(π(· | s))−Hk(π(· | s))}

∈ arg min
π∈∆A

{〈tkqπkλ (s, ·)− (1− λtk)∇H(πk(· | s), π〉+H(π(· | s))}

where the first transition is by substituting ω and the Bregman distance, the second is by the definition of the Bregman distance,
and the last transition is by omitting constant factors.

By using (Beck, 2017, Example 3.71), we get

πk+1 (a|s) =
πk (a | s)e−tkq

πk
λ (s,a)−λtk∇πk(a|s)H(πk(·|s))∑

a′ πk(a′ | s)e−tkq
πk
λ (s,a′)−λtk∇πk(a′|s)H(πk(·|s))

.

Now, using the derivative of the negative entropy function H(·), we have that for every s, a,

πk+1 (a|s) =
πk (a | s)e−tk(q

πk
λ (s,a)−λ log πk(a|s))∑

a′ πk(a′ | s)e−tk(q
πk
λ (s,a′)−λ log πk(a′|s))

, (26)

which concludes the result.
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E.3 Fundamental Inequality for Uniform TRPO

Central to the following analysis is Lemma 9, which we prove in this section. This lemma replaces Lemma [Beck, 2017][9.13]
from which it inherits its name, for the RL non-convex case. It has two main differences relatively to Lemma [Beck, 2017][9.13]:
(a) The inequality is in vector form (statewise). (b) The non-convexity of f demands replacing the gradient inequality with
different proof mechanism, i.e., the directional derivative in RL (see Proposition 1).

Lemma 9 (fundamental inequality for Uniform TRPO). Let {πk}k≥0 be the sequence generated by the uniform TRPO method
with stepsizes {tk}k≥0. Then, for every π and k ≥ 0,

tk(I − γPπ) (vπkλ − v
π
λ)

≤ (1− λtk)Bω (π, πk)−Bω (π, πk+1) + λtk(ω(πk)− ω(πk+1)) +
t2kh

2
ω

2
e,

where hω is defined in the second claim of Lemma 21, and e is a vector of ones.

Proof. First, notice that assumptions 2 and 3 hold. Assumption 2 is a regular assumption on the Bregman distance, which holds
trivially both in the euclidean and non-euclidean case, where the optimization domain is the ∆S

A. Assumption 3 deals with the
optimization problem itself and is similar to (Beck, 2017, Assumption 9.1) over ∆A. The only difference is that in our case, the
optimization objective vπ is non-convex.

Define ψ(π) ≡ tk(I − γPπk)〈∇vπkλ , π〉 + δ∆S
A

(π) where δ∆S
A

(π) = 0 when π ∈ ∆S
A and infinite otherwise. Observe it is a

convex function in π, as a sum of two convex functions: The first term is linear in π for any π ∈ ∆S
A, and thus convex, and

δ∆S
A

(π) is convex since ∆S
A is a convex set. Applying the non-euclidean second prox theorem (Theorem 27), with a = πk,

b = πk+1, we get that for any π ∈ ∆S
A,

〈∇ω(πk)−∇ω(πk+1), π − πk+1〉 ≤ tk(I − γPπk)〈∇vπkλ , π − πk+1〉 (27)

By the three-points lemma (26),

〈∇ω(πk)−∇ω(πk+1), π − πk+1〉 = Bω (π, πk+1) +Bω (πk+1, πk)−Bω (π, πk) ,

which, combined with (27), gives,

Bω (π, πk+1) +Bω (πk+1, πk)−Bω (π, πk) ≤ tk(I − γPπk)〈∇vπkλ , π − πk+1〉.

Therefore, by simple algebraic mainpulation, we get

tk(I − γPπk)〈∇vπkλ , πk − π〉
≤ Bω (π, πk)−Bω (π, πk+1)−Bω (πk+1, πk) + tk(I − γPπk)〈∇vπkλ , πk − πk+1〉
= Bω (π, πk)−Bω (π, πk+1)−Bω (πk+1, πk) + tk

(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)

+ λtkBω (πk+1, πk) , (28)

where the last equality is due to Proposition 1, and using (I − γPπk)(I − γPπk)−1 = I.

Rearranging we get

tk(I − γPπk)〈∇vπkλ , πk − π〉
≤ Bω (π, πk)−Bω (π, πk+1)− (1− λtk)Bω (πk+1, πk) + tk

(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)

≤ Bω (π, πk)−Bω (π, πk+1)− 1− λtk
2

‖πk+1 − πk‖2 + tk
(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)
, (29)

where the last inequality follows since the Bregman distance is 1-strongly-convex for our choices of Bω (e.g., Beck, 2017,
Lemma 9.4(a)).
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Furthermore, for every state s ∈ S,

tk
(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)

(s)

= tkλ(ω (s;πk)− ω (s;πk+1))

+
∑
a

tk (πk(a|s)− πk+1(a|s)) (c(s, a) + γ
∑
s′

p(s′|s, a)vπkλ (s′))

= tkλ(ω (s;πk)− ω (s;πk+1))

+

〈
tk√

1− λtk
(c(s, ·) + γ

∑
s′

p(s′|s, ·)vπkλ (s′)),
√

1− λtk(πk(·|s)− πk+1(·|s))

〉
≤ λtk(ω (s;πk)− ω (s;πk+1)))

+
1− λtk

2
‖πk+1 − πk‖2 +

t2k
2(1− λtk)

∥∥∥∥∥c(s, ·) + γ
∑
s′

p(s′|s, ·)vπkλ (s′)

∥∥∥∥∥
2

∗

≤ λtk(ω (s;πk)− ω (s;πk+1)) +
1− λtk

2
‖πk+1 − πk‖2 +

t2kh
2
ω

2(1− λtk)
,

where the first inequality is due to the Fenchel’s inequality on the convex ‖·‖2 and its convex conjugate ‖·‖2∗, and the last equality
uses the fact that ‖c(s, ·) + γ

∑
s′ p(s

′|s, ·)vπkλ (s′)‖∗ ≤ ‖cλ(s, ·) + γ
∑
s′ p(s

′|s, ·)vπkλ (s′)‖∗ = ‖qπkλ (s, ·)‖∗, and using the
repsective bound in Lemma 21.

Plugging the last inequality into (29),

tk(I − γPπk)〈∇vπkλ , πk − π〉 ≤ λtk(ω(πk)− ω(πk+1)) +Bω (π, πk)−Bω (π, πk+1) +
t2kh

2
ω

2(1− λtk)
e,

where e is a vector of all ones.

By using Proposition 1 on the LHS, we get,

− tk(Tπvπk − vπk − λBω (π, πk)) ≤ λtk(ω(πk)− ω(πk+1)) +Bω (π, πk)−Bω (π, πk+1) +
t2kh

2
ω

2(1− λtk)
e

⇐⇒ − tk(Tπvπk − vπk) ≤ λtk(ω(πk)− ω(πk+1)) + (1− λtk)Bω (π, πk)−Bω (π, πk+1) +
t2kh

2
ω

2(1− λtk)
e.

Lastly,

tk(I − γPπ) (vπkλ − v
π
λ) = −tk(Tπvπk − vπk)

≤ (1− λtk)Bω (π, πk)−Bω (π, πk+1) + λtk(ω(πk)− ω(πk+1)) +
t2kh

2
ω

2(1− λtk)
e,

where the first relation holds by the second claim in Lemma 25.

E.4 Proof of Theorem 2

Before proving the theorem, we establish that the policy improves in k for the chosen learning rates.
Lemma 10 (Uniform TRPO Policy Improvement). Let {πk}k≥0 be the sequence generated by Uniform TRPO. Then, for both
the euclidean and non-euclidean versions of the algorithm, for any λ ≥ 0, the value improves for all k,

vπkλ ≥ v
πk+1

λ .

Proof. Restating (28), we have that for any π,

tk(I − γPπk)〈∇vπkλ , πk − π〉
≤ Bω (π, πk)−Bω (π, πk+1)−Bω (πk+1, πk) + tk

(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)

+ λtkBω (πk+1, πk) .
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Plugging the closed form of the directional derivative (Proposition (1)), setting π = πk, using Bω (πk, πk) = 0, we get,

tk
(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)
≥ Bω (πk, πk+1) +Bω (πk+1, πk) (1− λtk). (30)

The choice of the learning rate and the fact that the Bregman distance is non negative (λ > 0, λtk = 1
k+2 ≤ 1 and for λ = 0 the

RHS of (30) is positive) implies that

vπkλ − T
πk+1

λ vπkλ =
(
Tπkλ vπkλ − T

πk+1

λ vπkλ
)
≥ 0

→ vπkλ ≥ T
πk+1

λ vπkλ . (31)

Applying iteratively Tπk+1

λ and using its monotonicty we obtain,

vπkλ ≥ T
πk+1

λ vπkλ ≥ (T
πk+1

λ )2vπkλ ≥ · · · ≥ lim
n→∞

(T
πk+1

λ )nvπkλ = v
πk+1

λ ,

where in the last relation we used the fact Tπk+1

λ is a contraction operator and its fixed point is vπk+1

λ which proves the claim.

For the sake of completeness and readability, we restate here Theorem 2, this time including the full theorem with all logarithmic
factors:
Theorem 11 (Convergence Rate: Uniform TRPO). Let {πk}k≥0 be the sequence generated by Uniform TRPO,

Then, the following holds for all N ≥ 1.

1. (Unregularized) Let λ = 0, tk = (1−γ)

Cω,1Cmax
√
k+1

then

‖vπN − v∗‖∞ ≤ O
(
Cω,1Cmax(Cω,3 + logN)

(1− γ)2
√
N

)

2. (Regularized) Let λ > 0, tk = 1
λ(k+2) then

‖vπNλ − v∗λ‖∞ ≤ O

(
C2
ω,1 Cmax,λ

2 logN

λ(1− γ)3N

)
.

Where Cω,1 =
√
A,Cω,3 = 1 for the euclidean case, and Cω,1 = 1, Cω,3 = logA for the non-euclidean case.

We are now ready to prove Theorem 11, while following arguments from (Beck, 2017, Theorem 9.18).

The Unregularized case

Proof. Applying Lemma 9 with π = π∗ and λ = 0 (the unregularized case) and let e ∈ RS , a vector ones, the following
relations hold.

tk(I − γPπ
∗
) (vπk − v∗) ≤ Bω (π∗, πk)−Bω (π∗, πk+1) +

t2kh
2
ω

2
e (32)

Summing the above inequality over k = 0, 1, ..., N , and noticing we get a telescopic sum gives

N∑
k=0

tk(I − γPπ
∗
) (vπk − v∗) ≤ Bω (π∗, π0)−Bω (π∗, πN+1) +

N∑
k=0

t2kh
2
ω

2
e

≤ Bω (π∗, π0) +

N∑
k=0

t2kh
2
ω

2
e

≤ ‖Bω (π∗, π0)‖∞ e+

N∑
k=0

t2kh
2
ω

2
e
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where the second relation holds since Bω (π∗, πN+1) ≥ 0 component-wise. From which we get the following relations,

(I − γPπ
∗
)

N∑
k=0

tk (vπk − v∗) ≤ ‖Bω (π∗, π0)‖∞ e+

N∑
k=0

t2kh
2
ω

2
e

⇐⇒
N∑
k=0

tk (vπk − v∗) ≤ (I − γPπ
∗
)−1

(
‖Bω (π∗, π0)‖∞ e+

N∑
k=0

t2kh
2
ω

2
e

)

⇐⇒
N∑
k=0

tk (vπk − v∗) ≤
‖Bω (π∗, π0)‖∞

1− γ
e+

N∑
k=0

t2kh
2
ω

2(1− γ)
e. (33)

In the second relation we multiplied both sides of inequality by (I − γPπ∗)−1 ≥ 0 component-wise. In the third relation we
used (I − γPπ)−1e = 1

1−γ e for any π. By Lemma (10) the policies are improving, from which, we get

(vπNλ − v∗)
N∑
k=0

tk ≤
N∑
k=0

tk (vπk − v∗) . (34)

Combining (33), (34) , and dividing by
N∑
k=0

tk we get the following component-wise inequality,

vπNλ − v∗ ≤
‖Bω (π∗, π0)‖∞ +

h2
ω

2

N∑
k=0

t2k

(1− γ)
N∑
k=0

tk

e

By plugging in the stepsizes, tk = 1
hω
√
k+1

we get,

vπNλ − v∗ ≤ O

 hω
1− γ

‖Bω (π∗, π0)‖∞ +
N∑
k=0

1
k+1

N∑
k=0

1√
k+1

e


Plugging in Lemma 24 and bounding the sums (e.g., by using Beck, 2017, Lemma 8.27(a)) yields,

vπNλ − v∗ ≤ O
(

hω
1− γ

Dω + logN√
N

e

)
.

Plugging the expressions for hω, Dω in Lemma 21 and Lemma 24 we conclude the proof.

The Regularized case

Proof. Applying Lemma 9 with π = π∗ and λ > 0,

tk(I − γPπ
∗
) (vπkλ − v

∗
λ)

≤ (1− λtk)Bω (π∗, πk)−Bω (π∗, πk+1) + λtk(ω(πk)− ω(πk+1)) +
t2kh

2
ω

2(1− λtk)
e.

Plugging tk = 1
λ(k+2) and multiplying by λ(k + 2),

(I − γPπ
∗
) (vπkλ − v

∗
λ)

≤ λ(k + 1)Bω (π∗, πk)− λ(k + 2)Bω (π∗, πk+1) + λω(πk)− λω(πk+1) +
h2
ω

2λ

1

k + 1
e.
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Summing the above inequality over k = 0, ..., N yields

N∑
k=0

(I − γPπ
∗
) (vπkλ − v

∗
λ)

≤ λBω (π∗, π0)− λ(N + 3)Bω (π∗, πN+1) + λω(π2)− λω(πN+1) +
h2
ω

2λ
e

N∑
k=0

1

k + 1
,

as the summation results in a telescopic sum.

Observe that for any π, π′ and both our choices of ω, ω(π)− ω(π′) ≤ maxπ |ω(π)|. For the euclidean case maxπ |ω(π)| < 1
and for the non euclidean case maxπ |ω(π)| ≤ logA. These bounds are the same bounds as the bound for the Bregman distance,
Dω (see Lemma 24). Thus, for both our choices of ω we can bound ω(π)− ω(π′) < Dω .

Furthermore, since Bω (π∗, πN+1) ≥ 0 the following bound holds:

N∑
k=0

(I − γPπ
∗
) (vπkλ − v

∗
λ) ≤ 2λDωe+

h2
ω

2λ
e
N∑
k=1

1

k + 1

⇐⇒ (I − γPπ
∗
)

N∑
k=0

(vπkλ − v
∗
λ) ≤ 2λDωe+

h2
ω

2λ
e

N∑
k=1

1

k + 1

⇐⇒
N∑
k=0

(vπkλ − v
∗
λ) ≤ 2λDω

1− γ
e+

h2
ω

2λ(1− γ)
e

N∑
k=1

1

k + 1
, (35)

and in the third relation we multiplied both side by (I − γPπ∗)−1 ≥ 0 component-wise and used (I − γPπ)−1e = 1
1−γ e for

any π.

By Lemma 10 the value vπkλ decreases in k, and, thus,

(N + 1)(vπNλ − v∗λ) ≤
N∑
k=0

(vπkλ − v
∗
λ) . (36)

Combining (35), (36), and dividing by N + 1 we get the following component-wise inequality,

vπNλ − v∗λ ≤

(
2λDω

(1− γ)(N + 1)
+

h2
ω

2λ(1− γ)(N + 1)

N+1∑
k=1

1

k

)
e

Using the fact that
N+1∑
k=1

1
k ∈ O(log n), we get

vπNλ − v∗λ ≤ O
(
λ2Dω + h2

ω logN

λ(1− γ)N
e

)
.

Plugging the expressions for hω, Dω in Lemma 21 and Lemma 24 we conclude the proof.
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F Sample-Based Trust Region Policy Optimization

Sample-Based TRPO is a sample-based version of Uniform TRPO (see Appendix E). Unlike Uniform TRPO which have access
to the entire state space and to a model of the environment, by which it computes vπ ∈ RS in each iteration, Sample-Based
TRPO solely requires the ability to sample from an MDP using a ν-restart model. Similarly to [Kakade et al., 2003], it requires
Assumption 1 to be satisfied, which we restate here.

Assumption 1 (Finite Concentrability Coefficient). Cπ
∗

:=
∥∥∥dµ,π∗ν ∥∥∥

∞
= maxs∈S

∣∣∣dµ,π∗ (s)

ν(s)

∣∣∣ <∞.
Thus, Sample-Based TRPO operates under much more realistic assumptions, and, more importantly, puts formal grounds to
first-order gradient based methods such as NE-TRPO [Schulman et al., 2015], which was so far considered a heuristic method
motivated by CPI [Kakade and Langford, 2002].

In this section we prove Sample-Based TRPO (Section 5, Theorem 4) converges to an approximately optimal solution with high
probability. We now describe the content of each of the following subsections: First, in Appendix F.1, we prove Proposition 3
which shows the connection between Sample-Based TRPO (using unbiased estimation) and Uniform TRPO. In Appendix F.2,
we analyze the Sample-Based TRPO update rule and formalize the truncated sampling process. In Appendix F.3, in order to ease
readability, we give a detailed proof sketch of the convergence theorem for Sample-Based TRPO. Then, we derive a fundamental
inequality that will be used to prove the convergence of both the unregularized and regularized versions (Appendix F.4). This
inequality is a scalar version of the fundamental inequality for Uniform TRPO (Lemma 9), but with an additional term which
arises due to the approximation error. In Appendix F.5, we analyze the sample complexity needed to bound this approximation
error. We go on to prove the convergence rates of Sample-Based TRPO for both the unregularized and regularized version
(Appendix F.6). Finally, in Appendix F.7, we calculate the overall sample complexity of both the unregularized and regularized
Sample-Based TRPO and compare it to CPI.

F.1 Relation Between Uniform and Sample-Based TRPO

Before diving into the proof of Sample-Based TRPO, we prove Proposition 3, which connects the update rules of Uniform TRPO
and Sample-Based TRPO (in case of an unbiased estimator for qπkλ ):

Proposition 3 (Uniform to Sample-Based Updates). Let Fk be the σ-field containing all events until the end of the k−1 episode.
Then, for any π, πk ∈ ∆S

A and every sample m,

ν
(
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

)
= E

[
〈∇̂νvπkλ [m], π(· | sm)− πk(· | sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
.

Proof. For any m = 1, ...,M , we take expectation over the sampling process given the filtration Fk, i.e., sm ∼ dν,πk , am ∼
U(A), q̂πkλ ∼ q

πk
λ (we assume here an unbiased estimation process where we do not truncate the sample trajectories),

E
[
〈∇̂νvπkλ [m], π(· | sm)− πk(· | sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
= E

[
1

1− γ
〈Aq̂πkλ (sm, ·,m)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
=

1

1− γ
E
[
Eq̂πkλ

[
〈Aq̂πkλ (sm, ·,m)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | sm, am

]
| Fk

]
=

1

1− γ
E
[
〈Eq̂πkλ [q̂πkλ (sm, ·,m)1{· = am} | sm, am] +∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]
=

1

1− γ
E
[
〈Aqπkλ (sm, ·)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]
= (∗),

25



where first transition is by the definition of ∇̂νvπkλ [m], the second by the smoothing theorem, the third transition is due to the
linearity of expectation and the fourth transition is by taking the expectation and due to the fact that 1{a = am} is zero for any
a 6= am.

(∗) =
1

1− γ
E
[
〈Aqπkλ (sm, ·)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]
=

1

1− γ
Esm

[ ∑
am∈A

1

A
〈Aqπkλ (sm, ·)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]

=
1

1− γ
Esm

[
〈
∑
am∈A

1

A
Aqπkλ (sm, ·)1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]

=
1

1− γ
Esm

[
〈qπkλ (sm, ·)

∑
am∈A

1{· = am}+∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+
1

tk
Bω (sm;π, πk) | Fk

]

=
1

1− γ
Esm

[
〈qπkλ (sm, ·) +∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]
= (∗∗).

where the second transition is by taking the expectation over am, the third transition is by the linearity of the inner product and
due to the fact that 〈∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉 and Bω (sm;π, πk) are independent of am.

Now, taking the expectation over sm ∼ dν,πk ,

(∗∗) =
1

1− γ
Esm

[
〈qπkλ (sm, ·) +∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+

1

tk
Bω (sm;π, πk) | Fk

]
=

1

1− γ
∑
s

dν,πk(s)

(
〈qπkλ (s, ·) +∇ω (s;πk) , π(· | s)− πk(· | s)〉+

1

tk
Bω (s;π, πk)

)
=

1

1− γ
dν,πk〈q

πk
λ +∇ω(πk), π − πk〉+

1

tk

1

1− γ
dν,πkBω (π, πk)

=
1

1− γ
dν,πk(Tπλ v

πk
λ − v

πk
λ − λBω (π, πk)) +

1

tk

1

1− γ
dν,πkBω (π, πk)

= 〈∇νvπkλ , π − πk〉+
1

tk(1− γ)
dν,πkBω (π, πk) ,

where the second transition is by taking the expectation w.r.t. to sm, the the fourth is by using the lemma 20 which connects the
bellman operator and the q-functions, and the last transition is due to (4) in Proposition 1.

So far, we proved that

〈∇νvπkλ , π − πk〉+
1

tk(1− γ)
dν,πkBω (π, πk)

E
[
〈∇̂νvπkλ [m], π(· | sm)− πk(· | sm)〉+

1

tk(1− γ)
Bω (sm;π, πk) | Fk

]
(37)

It is left to prove that,

ν

(
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

)
= 〈∇νvπkλ , π − πk〉+

1

tk(1− γ)
dν,πkBω (π, πk) (38)
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First, notice that for every s′

ν
〈
∇πk(·|s′)v

πk
λ , π − πk

〉
=
∑
s

ν(s)
〈
∇πk(·|s′)v

πk
λ (s), π(· | s′)− πk(· | s′)

〉
=

〈∑
s

∇πk(·|s′)ν(s)vπkλ (s), π(· | s′)− πk(· | s′)

〉

=

〈
∇πk(·|s′)

∑
s

ν(s)vπkλ (s), π(· | s′)− πk(· | s′)

〉
=
〈
∇πk(·|s′)νv

πk
λ , π(· | s′)− πk(· | s′)

〉
,

where in the second and third transition we used the linearity of the inner product and the derivative, and in the last transition we
used the definition of νvπkλ .

Thus, we have,

ν〈∇vπkλ , π − πk〉 = 〈∇νvπkλ , π − πk〉. (39)

Now,

ν

(
〈∇vπkλ , π − πk〉+

1

tk
(I − γPπk)−1Bω (π, πk)

)
=

(
ν〈∇vπkλ , π − πk〉+

1

tk
ν(I − γPπk)−1Bω (π, πk)

)
=

(
〈∇νvπkλ , π − πk〉+

1

tk
ν(I − γPπk)−1Bω (π, πk)

)
= 〈∇νvπkλ , π − πk〉+

1

tk(1− γ)
dν,πkBω (π, πk) ,

where the second transition is by plugging in (39) and the last transition is by the definition of the stationary distribution dν,πk .

By combining (37) and (38) we conclude the proof.

F.2 Sample-Based TRPO Update Rule and the Sampling Process

In each step, we solve the following optimization problem (8):

πk+1 ∈ arg min
π∈∆S

A

{ 1

M

M∑
m=1

〈∇̂νvπkλ [m], π(· | sm)− πk(· | sm)〉+
1

tk(1− γ)
Bω (sm;π, πk)

}
∈ arg min

π∈∆S
A

{
1

M

M∑
m=1

(
〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+ 1

tk
Bω (sm;π, πk)

)}

∈ arg min
π∈∆S

A

{∑
s∈S

M∑
m=1

1{s = sm}
(
〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉

+ 1
tk
Bω (sm;π, πk)

)}
,

where sm ∼ dν,πk(·) , am ∼ U(A), and q̂πkλ (sm, am,m) is the truncated Monte Carlo estimator of qπkλ (sm, am) in the m-th
trajectory. The notation q̂πkλ (sm, ·,m)1{· = am} is a vector with the estimator value at the index am, and zero elsewhere. Also,
we remind the reader we use the notation A := |A|. We can obtain a sample sm ∼ dν,πk(·) by a similar process as described
in [Kakade and Langford, 2002, Kakade et al., 2003]. Draw a start state s from the ν-restart distribution. Then, sm = s is chosen
w.p. γ. Otherwise, w.p. 1− γ, an action is sampled according to a ∼ πk(s) to receive the next state s. This process is repeated
until sm is chosen. If the time T = 1

1−γ log ε
8rω(k,λ) is reached, we accept the current state as sm. Note that rω(k, λ) is defined

in Lemma 16, and ε is the required final error. Finally, when sm is chosen, an action am is drawn from the uniform distribution,
and then the trajectory is unrolled using the current policy πk for T = 1

1−γ log ε
8rω(k,λ) time-steps, to calculate q̂πkλ (sm, am,m).

Note that this introduces a bias into the estimation of qπkλ [Kakade et al., 2003][Sections 2.3.3 and 7.3.4]. Lastly, note that the A
factor in the estimator is due to importance sampling.
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First, the update rule of Sample-Based TRPO can be written as a state-wise update rule for any s ∈ S. Observe that,

πk+1 ∈ arg min
π∈∆S

A

{
M∑
m=1

〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+
1

tk
Bω (sm;π, πk)

}

= arg min
π∈∆S

A

{∑
s∈S

M∑
m=1

1{s = sm}
(
〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉

+ 1
tk
Bω (sm;π, πk)

)}
, (40)

The first relation is the definition of the update rule (8) without the constant factor 1
M . See that multiplying the optimization

problem by the constant M does not change the minimizer. In the second relation we used the fact that summation on∑
s 1{s = sm} leaves the optimization problem unchanged (as the indicator function is 0 for all states that are not sm).

Thus, using this update rule we can solve the optimization problem individually per s ∈ S,

πk+1(·|s) = arg min
π∈∆A

{
M∑
m=1

1{s = sm}
(
〈Aq̂πkλ (s, ·,m)1{· = am}+ λ∇ω (s;πk) , π − πk(· | s)〉+ 1

tk
Bω (s;π, πk)

)}
.

(41)

Note that using this representation optimization problem, the solution for states which were not encountered in the k-th iteration,
s /∈ SkM , is arbitrary. To be consistent, we always choose to keep the current policy, πk+1(· | s) = πk(· | s).

Now, similarly to Uniform TRPO, the update rule of Sample-Based TRPO can be written such that the optimization problem is
solved individually per visited state s ∈ SkM . This results in the final update rule used in Algorithm 2.

To prove this, let n(s) =
∑
a n(s, a) be the number of times the state s was observed at the k-th episode. Using this notation

and (40), the update rule has the following equivalent forms,

πk+1 ∈ arg min
π∈∆S

A

{
M∑
m=1

〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉+
1

tk
Bω (sm;π, πk)

}

= arg min
π∈∆S

A

{∑
s∈S

M∑
m=1

1{s = sm}
(
〈Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk) , π(· | sm)− πk(· | sm)〉

+ 1
tk
Bω (sm;π, πk)

)}

= arg min
π∈∆S

A

{∑
s∈S

(〈∑M
m=1 1{s = sm}Aq̂πkλ (sm, ·,m)1{· = am}+ n(s)λ∇ω (s;πk) , π(· | s)− πk(· | s)

〉
+n(s) 1

tk
Bω (s;π, πk)

)}

= arg min
π∈∆S

A

 ∑
s∈SkM

(〈∑M
m=1 1{s = sm}Aq̂πkλ (sm, ·,m)1{· = am}+ n(s)λ∇ω (s;πk) , π(· | s)− πk(· | s)

〉
+n(s) 1

tk
Bω (s;π, πk)

)
= arg min

π∈∆S
A

 ∑
s∈SkM

(〈
1

n(s)

∑M
m=1 1{s = sm}Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (s;πk) , π(· | s)− πk(· | s)

〉
+ 1
tk
Bω (s;π, πk)

).
(42)

In the third relation we used the fact for any π, πk∑
s

M∑
m=1

Bω (sm;π, πk)1{s = sm} =
∑
s

Bω (s;π, πk)

M∑
m=1

1{s = sm} =
∑
s

Bω (s;π, πk)n(s).

The fourth relation holds as the optimization problem is not affected by s /∈ SkM , and the last relation holds by dividing by
n(s) > 0 as s ∈ SkM and using linearity of inner product.

Lastly, we observe that (42) is a sum of functions of π(· | s), i.e.,

πk+1 ∈ arg min
π∈∆S

A

 ∑
s∈SkM

f(π(· | s))

,
28



where f = 〈gs, π(· | s)〉+ 1
tk
Bω (s;π, πk), gs ∈ RA is the vector inside the inner product of (42). Meaning, the minimization

problem is a sum of independent summands. Thus, in order to minimize the function on ∆S
A it is enough to minimize

independently each one of the summands. From this observation, we conclude that the update rule (8) is equivalent to update the
policy for all s ∈ SkM by

πk+1(· | s) ∈ arg min
π∈∆A

{(〈
1

n(s)

∑M
m=1 1{s = sm}Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (s;πk) , π − πk(· | s)

〉
+ 1
tk
Bω (s;π, πk)

)}
, (43)

Finally, by plugging in q̂πkλ (s, a) = 1
n(s)

∑n(s,a)
i=1 q̂πkλ (s, a,mi), we get

πk+1(· | s) ∈ arg min
π∈∆A

{tk〈q̂πkλ (s, ·) + λ∇ω (s;πk) , π〉+Bω (s;π, πk)},

where mi is the trajectory index of the i-th occurrence of the state s.

F.3 Proof Sketch of Theorem 4

In order to keep things organized for an easy reading, we first go through the proof sketch in high level, which serves as map for
reading the proof of Theorem 4 in the following sections:

1. In Appendix F.4, we use the Sample-Based TRPO optimization problem described in F.2, to derive a fundamental
inequality in Lemma 15 for the sample-based case.:
(a) We derive a state-wise inequality for the sample-based case. By adding and subtracting a term which relates to

the expectation of the state-wise inequality, we write this inequality as a sum between the expected error and an
approximation error term.

(b) For each state, we employ importance sampling of dµ,π∗ (s)

dν,πk (s) to relate the derived state-wise inequality, to a
global guarantee w.r.t. the optimal policy π∗ and measure µ. This importance sampling procedure is allowed by
assumption 1, which states that for any s such that dµ,π∗(s) > 0 it also holds that ν(s) > 0, and thus dν,πk(s) > 0
since dν,πk(s) ≥ (1− γ)ν(s).

(c) By summing over all states we get the required fundamental inequality, which is a sum between the expected error
and an approximation error term.

2. In Appendix F.5, we show that the approximation error term is made of two sources of errors: (a) a sampling error due
to the finite number of trajectories in each iteration; (b) a truncation error due to the finite length of each trajectory, even
in the infinite-horizon case.
(a) In Lemma 16 we deal with the sampling error. We show that this error is due to the difference between an

empirical mean of i.i.d. random variables and their expected value. Using Lemma 22 and Lemma 23, we show
that these random variables are bounded, and also that they are proportional to the step size tk. Then, similarly to
[Kakade et al., 2003], we use Hoeffding’s inequality and the union bound over the policy space (in our case, the
space of deterministic policies), in order to bound this error term uniformly. This enables us to find the number
of trajectories needed in the k-th iteration to reach an error proportional to Cπ

∗
tkε =

∥∥∥dµ,π∗ν ∥∥∥
∞
tkε with high

probability. The common concentration efficient Cπ
∗
, arises due to dµ,π∗ (s)

dν,πk (s) , the importance sampling ratio used
for the global convergence guarantee.

(b) In Lemma 17 we deal with the truncation error. We show that we can bound this error to be proportional to Cπ
∗
tkε,

by using O
(

1
1−γ

)
samples in each trajectory.

Finally, in Lemma 19, we use the union bound over all k ∈ N in order to uniformly bound the error propagation over N
iterations of Sample-Based TRPO.

3. In Appendix F.6, we use the above results to prove Theorem 4 using a similar analysis to the one used for the rates
guarantees of Uniform TRPO (Appendix E.4). The main difference is the additional approximation term which we
bound in F.5. There, we make use of the fact that the approximation term is proportional to the step size tk and thus
decreasing with the number of iterations, to prove a bounded approximation error for any N . Moreover, differently than
in Uniform TRPO, in the sample-based case we don’t have improvement guarantees, and therefore the convergence is
proved for the best policy in hindsight.

4. Lastly, in Appendix F.7, we calculate the overall sample complexity – previously we bounded the number of needed
iterations and the number of samples needed in every iteartion – for each of the four cases of Sample-Based TRPO
(euclidean vs. non-euclidean, unregularized vs. regularized).
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F.4 Fundamental Inequality of Sample-Based TRPO

First, we will prove a lemma which will be used in the proof of Lemma 13.

Lemma 12 (helper state-wise inequality). For all states s the following inequality holds:〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉

≤ tk(Tπλ v
πk
λ (s)− vπkλ (s)) +

t2kh
2
ω(k;λ)

2
+ (1− λtk)Bω (s;π, πk)−Bω (s;π, πk+1) .

where hω is defined at the third claim of Lemma 21.

Proof. First, consider the LHS of the inequality,〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉

= tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk+1(· | s)〉︸ ︷︷ ︸
(1)

+
〈
∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉︸ ︷︷ ︸

(2)

(44)

The first term can be bounded as follows.

(1) = tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk+1(· | s)〉
= tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk(· | s)〉
+ tk〈qπkλ (s, ·) + λ∇ω (s;πk) , πk(· | s)− πk+1(· | s)〉
≤ tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk(· | s)〉
+ |〈tkqπkλ (s, ·) + tkλ∇ω (s;πk) , πk(· | s)− πk+1(· | s)〉|
≤ tk〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk(· | s)〉

+
t2k ‖q

πk
λ (s, ·) + λ∇ω (s;πk)‖2∗

2
+

1

2
‖πk(· | s)− πk+1(· | s)‖2 ,

where the last relation follows from Fenchel’s inequality using the euclidean or non-euclidean norm ‖·‖, and where ‖·‖∗ is its
dual norm, which is L2 in the euclidean case, and L∞ in the non-euclidean case. Note that the norms are applied over the action
space. Furthermore, by adding and subtracting λω (s;π),

〈qπkλ (s, ·) + λ∇ω (s;πk) , π − πk〉
= 〈qπkλ (s, ·), π − πk(· | s)〉+ λ〈∇ω (s;πk) , π − πk(· | s)〉
= Tπvπkλ (s)− Tπkvπkλ (s)− λω (s;π) + λω (s;πk) + λ〈∇ω (s;πk) , π − πk(· | s)〉
= Tπλ v

πk
λ (s)− Tπkλ vπkλ (s)− λBω (s;π, πk)

= Tπλ v
πk
λ (s)− vπkλ (s)− λBω (s;π, πk) , (45)

where the second transition follows the same steps as in equation (19) in the proof of Proposition 1, and the third transition is by
the definition of the Bregman distance of ω. Note that (45) is actually given in Lemma 20, but is re-derived here for readability.

From which, we conclude that

(1) ≤ tk(Tπλ v
πk
λ (s)− vπkλ (s)− λBω (s;π, πk))

+
t2k ‖q

πk
λ (s, ·) + λ∇ω (s;πk)‖2∗

2
+

1

2
‖πk(· | s)− πk+1(· | s)‖2

≤ tk(Tπλ v
πk
λ (s)− vπkλ (s)− λBω (s;π, πk)) +

t2kh
2
ω(k;λ)

2
+

1

2
‖πk(· | s)− πk+1(· | s)‖2 ,

where in the last transition we used the third claim of Lemma 21,
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We now continue analyzing (2).

(2) =
〈
∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉

= 〈∇ω (s;πk+1)−∇ω (s;πk) , π − πk+1(· | s)〉
= Bω (s;π, πk)−Bω (s;π, πk+1)−Bω (s;πk+1, πk)

≤ Bω (s;π, πk)−Bω (s;π, πk+1)− 1

2
‖πk(· | s)− πk+1(· | s)‖2 .

The first relation, ∇πk+1
Bω (s;πk+1, πk) = ∇ω (s;πk+1)−∇ω (s;πk), holds by simply taking the derivative of any Bregman

distance w.r.t. πk+1. The second relation holds by the three-points lemma (Lemma 26). The third relation holds by the strong
convexity of the Bregman distance, i.e., 1

2 ‖x− y‖
2 ≤ Bω (x, y), which is straight forward in the euclidean case, and is the well

known Pinsker’s inequality in the non-euclidean case.

Plugging the above upper bounds for (1) and (2) into (44) we get,〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉

≤ tk(Tπλ v
πk
λ (s)− vπkλ (s)) +

t2k(h2
ω(k;λ))

2
+ (1− λtk)Bω (s;π, πk)−Bω (s;π, πk+1) ,

which concludes the proof.

Now, we are ready to derive the fundamental inequality of Sample-Based TRPO. We first derive the following state-wise
inequality:
Lemma 13 (sample-based state-wise inequality). Let {πk}k≥0 be the sequence generated by Aproximate TRPO using stepsizes
{tk}k≥0. Then, for all states s for which dν,πk(s) > 0 the following inequality holds for all π ∈ ∆S

A,

0 ≤ tk(Tπλ v
πk
λ (s)− vπkλ (s)) +

t2kh
2
ω(k;λ)

2
+ (1− λtk)Bω (s;π, πk)−Bω (s;π, πk+1) + εk(s, π).

where hω is defined at the third claim of Lemma 22.

Proof. Using the first order optimality condition for the update rule (41), the following holds for any s ∈ S and thus for any
s ∈ {s′ : dν,πk(s) > 0},

0 ≤ 1

M

M∑
m=1

1{s = sm}
〈
tk (Aq̂πkλ (sm, ·,m)1{· = am}+ λ∇ω (sm;πk)) +∇πk+1

Bω (sm;πk+1, πk) , π − πk+1(· | sm)
〉
.

Dividing by dν,πk(s) which is strictly positive for all s such that 1{s = sm} = 1 and adding and subtracting the term〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉
,

we get

0 ≤
〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉︸ ︷︷ ︸

(∗)

+εk(s, π), (46)

where we defined εk(s, π),

εk(s, π)

:=
1

dν,πk(s)

1

M

M∑
m=1

1{s = sm}
〈
tk (Aq̂πkλ (sm, ·,m)1{· = am}+λ∇ω (sm;πk))+∇πk+1

Bω (sm;πk+1, πk) , π−πk+1(· |sm)
〉

−
〈
tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇πk+1

Bω (s;πk+1, πk) , π − πk+1(· | s)
〉

=
1

dν,πk(s)

1

M

M∑
m=1

1{s = sm}〈tk (Aq̂πkλ (sm, ·,m)1{· = am}+λ∇ω (sm;πk))+∇ω (s;πk+1)−∇ω (s;πk) , π−πk+1(· |sm)〉

− 〈tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇ω (s;πk+1)−∇ω (s;πk) , π − πk+1(· | s)〉. (47)

By bounding (∗) in (46) using Lemma 12 we conclude the proof.
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Now, we state another lemma which connects the state-wise inequality using the discounted stationary distribution of the optimal
policy dµ,π∗ .
Lemma 14. Let Assumption 1 hold and let {πk}k≥0 be the sequence generated by Aproximate TRPO using stepsizes {tk}k≥0.
Then, for all k ≥ 0 Then, the following inequality holds for all π,

0 ≤ tkdµ,π∗(Tπλ v
πk
λ − v

πk
λ ) +

t2kh
2
ω(k;λ)

2
+ (1− λtk)dµ,π∗Bω (π, πk)− dµ,π∗Bω (π, πk+1) + dµ,π∗εk(·, π).

where hω is defined in the third claim of Lemma 22.

Proof. By Assumption 1, for all s for which dµ,π∗(s) > 0 it also holds that dν,πk(s) > 0. Thus, for all s for which dµ,π∗(s) > 0
the component-wise relation in Lemma 13 holds. By multiplying each inequality by the positive number dµ,π∗(s) and summing
over all s we get,

0 ≤ tkdµ,π∗(Tπλ v
πk
λ − v

πk
λ ) +

t2kh
2
ω(k;λ)

2
+ (1− λtk)dµ,π∗Bω (π, πk)− dµ,π∗Bω (π, πk+1) + dµ,π∗εk(·, π),

which concludes the proof.

Lemma 15 (fundamental inequality of Sample-Based TRPO.). Let {πk}k≥0 be the sequence generated by Aproximate TRPO
using stepsizes {tk}k≥0. Then, for all k ≥ 0

tk(1− γ)(µvπkλ − µv
π∗

λ ) ≤ dµ,π∗((1− λtk)Bω (π∗, πk)−Bω (π∗, πk+1)) +
t2kh

2
ω(k;λ)

2
+ dµ,π∗εk,

where hω(k;λ) is defined in Lemma 22 and εk := εk(·, π∗) where the latter defined in (47).

Proof. Setting π = π∗ in Lemma 14 and denoting εk := εk(·, π∗), we get that for any k,

− tkdµ,π∗
(
Tπ
∗

λ vπkλ − v
πk
λ

)
≤ dµ,π∗((1− λtk)Bω (π∗, πk)−Bω (π∗, πk+1)) +

t2kh
2
ω(k;λ)

2
+ dµ,π∗εk.

Furthermore, by the third claim of Lemma 25,

(1− γ)µ(v∗λ − v
πk
λ ) = dµ,π∗

(
Tπ
∗

λ vπkλ − v
πk
λ

)
.

Combining the two relations on both sides we concludes the proof.

F.5 Approximation Error Bound

In this section we deal with the approximation error, the term dµ,π∗εk in Lemma 15. Two factors effects dµ,π∗εk: (1) the error
due to Monte-Carlo sampling, which we bound using Hoeffding’s inequality and the union bound; (2) the error due to the
truncation in the sampling process (see Appendix F.2). The next two lemmas bound these two sources of error. We first discuss
the analysis of using an unbiased sampling process (Lemma 16), i.e., when no truncation is taking place, and then move to
discuss the use of the truncated trajectories (Lemma 17). Finally, in Lemma 18 we combine the two results to bound dµ,π∗εk in
the case of the full truncated sampling process discussed in Appendix F.2.

The unbiased q-function estimator uses a full unrolling of a trajectory, i.e., calculates the (possibly infinite) sum of retrieved costs
following the policy πk in the m-th trajecotry of the k-th iteration,

q̂πkλ (sm, am,m) :=

∞∑
t=0

γt
(
c
(
sk,mt , ak,mt

)
+ λω

(
sk,mt ;πk

))
,
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where the notation sk,mt refer to the state encountered in the m-th trajectory of the k-th iteration, at the t step of estimating the
qπkλ function. Moreover, (sm, am) = (sk,m0 , ak,m0 ) and q̂πkλ (s, a,m) = 0 for any (s, a) 6= (sm, am).

The truncated biased q-function estimator, truncates the trajectory after T interactions with the MDP, where T is predefined:

q̂πkλ,trunc(s, a,m) :=

T−1∑
t=0

γt
(
c
(
sk,mt , ak,mt

)
+ λω

(
sk,mt ;πk

))
The following lemma describes the number of trajectories needed in the k-th update, in order to bound the error to be proportional
to ε w.p. 1− δ′, using an unbiased estimator.

Lemma 16 (Approximation error bound with unbiased sampling). For any ε, δ̃ > 0, if the number of trajectories in the k-th
iteration is

Mk ≥
2rω(k, λ)2

ε2

(
S log 2A+ log 1/δ̃

)
,

then with probability of 1− δ̃,

dµ,π∗εk ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2
,

where rω(k, λ) =
4ACmax,λ

1−γ and rω(k, λ) =
4ACmax,λ

1−γ (1 + 1{λ 6= 0} log k) in the euclidean and non-euclidean settings respec-
tively.

Proof. Plugging the definition of εk := εk(·, π∗) in (47), we get,

dµ,π∗εk

=
∑
s

dµ,π∗(s)

Mkdν,πk(s)

Mk∑
m=1

1{s = sm}〈tk (Aq̂πkλ (sm, ·,m)+λ∇ω (sm;πk))+∇ω (s;πk+1)−∇ω (s;πk) , π∗(· |s)−πk+1(· |sm)〉

−
∑
s

dµ,π∗(s)〈tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇ω (s;πk+1)−∇ω (s;πk) , π∗(· | s)− πk+1(· | s)〉

=
1

Mk

Mk∑
m=1

∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)
〈tk (Aq̂πkλ (sm, ·,m)+λ∇ω (sm;πk))+∇ω (s;πk+1)−∇ω (s;πk) , π∗(· |s)−πk+1(· |sm)〉

−
∑
s

dν,πk(s)
dµ,π∗(s)

dν,πk(s)
〈tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇ω (s;πk+1)−∇ω (s;πk) , π∗(· | s)− πk+1(· | s)〉,

where in the last transition we used the fact that for every s 6= sm the identity function 1{s = sm} = 0.

We define,

X̂k(sm, ·,m) := tk (Aq̂πkλ (sm, ·,m) + λ∇ω (sm;πk)) +∇ω (sm;πk+1)−∇ω (sm;πk) , (48)
Xk(s, ·) := tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇ω (s;πk+1)−∇ω (s;πk) . (49)

Using this definition, we have,

dµ,π∗εk =
1

Mk

Mk∑
m=1

∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(sm, ·,m), π∗(· | sm)− πk+1(· | sm)

〉
−
∑
s

dµ,π∗(s)〈Xk(s, ·), π∗(· | s)− πk+1(· | s)〉. (50)

In order to remove the dependency on the randomness of πk+1, we can bound this term in a uniform way:

dµ,π∗εk ≤max
π′

{ 1

Mk

Mk∑
m=1

∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
−
∑
s

dµ,π∗(s)〈Xk(sm, ·), π∗(· | s)− π′(· | s)〉
}
. (51)
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In this lemma, we analyze the case where no truncation is taken into account. In this case we, we will now show that for any π′

E

[∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | sm)− π′(· | sm)

〉]
=
∑
s

dµ,π∗(s)〈Xk(s, ·), π∗(· | s)− π′(· | s)〉,

which means that 1
Mk

∑Mk

m=1

∑
s 1{s = sm}

dµ,π∗ (s)

dν,πk (s)

〈
X̂k(s, ·,m), π∗(· | sm)− π′(· | sm)

〉
is an unbiased estimator.

This fact comes from the from the following relations:

E[
∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | sm)− π′(· | sm)

〉
]

= E

[
E

[∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | s)− π′(· | s)

〉
| sm

]]

= E
[
E
[
dµ,π∗(sm)

dν,πk(sm)

〈
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
| sm

]]
= E

[
dµ,π∗(sm)

dν,πk(sm)
E
[〈
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
| sm

]]
= E

[
dµ,π∗(sm)

dν,πk(sm)

〈
E
[
X̂k(sm, ·,m) | sm

]
, π∗(· | sm)− π′(· | sm)

〉]
= E

[
dµ,π∗(sm)

dν,πk(sm)
〈Xk(sm, ·), π∗(· | sm)− π′(· | sm)〉

]
=
∑
s

dν,πk(s)
dµ,π∗(s)

dν,πk(s)
〈Xk(s, ·), π∗(· | s)− π′(· | s)〉

=
∑
s

dµ,π∗(s)〈Xk(s, ·), π∗(· | s)− π′(· | s)〉, (52)

where the first transition is by law of total expectation; the second transition is by the fact the indicator function is zero for every
s 6= sm; the third transition is by the fact sm is not random given sm; the fourth transition is by the linearity of expectation and
the fact that π∗(· | sm)− π′(· | sm) is not random given sm; the fifth transition is by taking the expectation of X̂ in the state sm;
finally, the sixth transition is by explicitly taking the expectation over the probability that sm is drawn from dν,πk in the m-th
trajectory (by following πk from the restart distribution ν).

Meaning, (51) is a difference between an empirical mean of Mk random variables and their mean for a the fixed policy π′, which
maximizes the following expression

dµ,π∗εk ≤max
π′

{
1

Mk

Mk∑
m=1

∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | s)− π′(· | s)

〉
− E

[∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | s)− π′(· | s)

〉]}
. (53)

As we wish to obtain a uniform bound on π′, we can use the common approach of bounding (53) uniformly for all π′ ∈ ∆S
A

using the union bound. Note that the above optimization problem is a linear programming optimization problem in π′, where
π′ ∈ ∆S

A. It is a well known fact that for linear programming, there is an extreme point which is the optimal solution of the
problem [Bertsimas and Tsitsiklis, 1997][Theorem 2.7]. The set of extreme points of ∆S

A is the set of all deterministic policies
denoted by Πdet. Therefore, in order to bound the maximum in (53), it suffices to uniformly bound all policies π′ ∈ Πdet.
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Now, notice that dµ,π∗ (sm)

dν,πk (sm)

〈
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
is bounded for all sm and π′,

dµ,π∗(sm)

dν,πk(sm)

〈
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
=

〈
dµ,π∗(sm)

dν,πk(sm)
X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)

〉
≤
∥∥∥∥dµ,π∗(sm)

dν,πk(sm)
X̂k(sm, ·,m)

∥∥∥∥
∞
‖π∗(· | sm)− π′(· | sm)‖1

≤ 2
dµ,π∗(sm)

dν,πk(sm)

∥∥∥X̂k(sm, ·,m)
∥∥∥
∞

≤ 2

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

∥∥∥X̂k(sm, ·,m)
∥∥∥
∞

= 2

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
‖tk (Aq̂πkλ (sm, ·,m) + λ∇ω (sm;πk)) +∇ω (sm;πk+1)−∇ω (sm;πk)‖∞

≤ 2

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

(
tk ‖Aq̂πkλ (sm, ·,m) + λ∇ω (sm;πk)‖∞ + ‖∇ω (sm;πk+1)−∇ω (sm;πk)‖∞

)
≤ 2tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

(
ĥω(k;λ) + 2Aω(k)

)
= 2

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

(tkĥω(k;λ) +Aω(k))

:= tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
rω(k, λ), (54)

where the second transition is due to Hölder’s inequality; the third transition is due to the bound of the TV distance between
two random variables; the sixth transition is due to the triangle inequality; finally, the seventh transition is by plugging in the
bounds in Lemma 22 and Lemma 23. Also, we defined rω(k, λ) =

4ACmax,λ
1−γ and rω(k, λ) =

4ACmax,λ
1−γ (1 + 1{λ 6= 0} log k) in

the euclidean and non-euclidean cases respectively.

Thus, by Hoeffding and the union bound over the set of deterministic policies,

P

(
dµ,π∗εk ≥ tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2

)
≤ 2|Πdet| exp

(
− Mkε

2

2rω(k, λ)2

)
= δ̃.

In other words, in order to guarantee that

dµ,π∗εk ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2
,

we need the number of trajectories Mk to be at least

Mk ≥
2rω(k, λ)2

ε2

(
S log 2A+ log 1/δ̃

)
,

where we used the fact that there are |Πdet| = AS deterministic policies.

which concludes the result.

The following lemma described with error due to the use of truncated trajectories:
Lemma 17 (Truncation error bound). The bias of the truncated sampling process in the k-th iteration, with maximal trajectory
length of T = 1

1−γ log ε
8rω(k,λ) is tk

∥∥∥dµ,π∗dν,πk

∥∥∥
∞

ε
4 , where rω(k, λ) =

4ACmax,λ

1−γ and rω(k, λ) =
2ACmax,λ

1−γ

(
1

1−λtk + 1 + λ log k
)

in the euclidean and non-euclidean settings respectively.
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Proof. We start this proof by defining notation related to the truncated sampling process. First, denote dtrunc
ν,πk

(s), the probability
to choose a state s, using the truncated biased sampling process of length T , as described in Appendix F.2. Observe that

dtrunc
ν,πk

(s) = (1− γ)

T−1∑
t=0

γtp(st = s | ν, πk) + γT p(sT = s | ν, πk)

We also make use in this proof in the following definitions (see (48) and (49)),

X̂k(sm, ·,m) := tk

(
Aq̂πkλ,trunc(sm, ·,m) + λ∇ω (sm;πk)

)
+∇ω (sm;πk+1)−∇ω (sm;πk) ,

Xk(s, ·) := tk (qπkλ (s, ·) + λ∇ω (s;πk)) +∇ω (s;πk+1)−∇ω (s;πk) .

Lastly, we denote the expectation of X̂k(s, ·,m) using the truncated sampling process as X trunc
k (s, ·),

X trunc
k (s, a) = EX̂k(s, a,m)

Now, we move on to the proof. We first split the bias to two different sources of bias:

Es∼dtrunc
ν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)
〈Xk(s, ·), π(· | s)− π′(· | s)〉

=

(
Es∼dtrunc

ν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉)
+

(
Es∼dν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)
〈Xk(s, ·), π(· | s)− π′(· | s)〉

)
.

The first source of bias is due to the truncation of the state sampling after T iterations, and the second source of bias is due to the
truncation done in the estimation of qπkλ (s, a), for the chosen state s and action a.

First, we bound the first error term. Observe that for any s,

∑
s

∣∣dtrunc
ν,πk

(s)− dν,πk(s)
∣∣ =

∑
s

∣∣∣∣∣(1− γ)

T−1∑
t=0

γtp(st = s | ν, πk) + γT p(sT = s | ν, πk)− (1− γ)

∞∑
t=0

γtp(st = s | ν, πk)

∣∣∣∣∣
=
∑
s

∣∣∣∣∣γT p(sT = s | ν, πk)− (1− γ)

∞∑
t=T

γtp(st = s | ν, πk)

∣∣∣∣∣
≤
∑
s

∣∣γT p(sT = s | ν, πk)
∣∣+
∑
s

∣∣∣∣∣(1− γ)

∞∑
t=T

γtp(st = s | ν, πk)

∣∣∣∣∣
=
∑
s

γT p(sT = s | ν, πk) +
∑
s

(1− γ)

∞∑
t=T

γtp(st = s | ν, πk)

= γT
∑
s

p(sT = s | ν, πk) + (1− γ)

∞∑
t=T

γt
∑
s

p(st = s | ν, πk)

≤ γT + (1− γ)

∞∑
t=T

γt

= 2γT (55)

where the third transition is due to the triangle inequality, the fourth transition is due to the fact that for any t, γtp(st | ν, πk) ≥ 0
and the sixth transition is by the fact that

∑
s p(st = s|ν, πk) ≤ 1 for any t as a probability distribution.
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Thus,

Es∼dtrunc
ν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
=
∑
s

(
dtrunc
ν,πk

(s)− dν,πk(s)
)dµ,π∗(s)
dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
≤
∑
s

∣∣dtrunc
ν,πk

(s)− dν,πk(s)
∣∣∣∣∣∣dµ,π∗(s)dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉∣∣∣∣
≤ max

s

∣∣∣∣dµ,π∗(s)dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉∣∣∣∣∑
s

∣∣dtrunc
ν,πk

(s)− dν,πk(s)
∣∣

≤ 2γT
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

max
s

∣∣〈X trunc
k (s, ·), π(· | s)− π′(· | s)

〉∣∣
≤
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
tkrω(k, λ)2γT ,

where the fourth transition is by plugging in (55) and the last transition is by repeating similar analysis to (54).

Now, by simple arithmetic, for any ε > 0, if the trajectory length T > 1
1−γ log ε

16rω(k,λ) , we get that the first bias term is
bounded,

Es∼dtrunc
ν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
≤
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
tk
ε

8
(56)

Next, we bound the second error term.

First, observe that for any s, a,

∣∣∣Eq̂πkλ,trunc(s, a,m)− qπkλ (s, a)
∣∣∣

=

∣∣∣∣∣E
[
T−1∑
t=0

γt(ct(st, at) + λω (st;πk)) | s0 = s, a0 = a

]
− E

[ ∞∑
t=0

γt(ct(st, at) + λω (st;πk)) | s0 = s, a0 = a

]∣∣∣∣∣
=

∣∣∣∣∣E
[
T−1∑
t=0

γt(ct(st, at) + λω (st;πk))−
∞∑
t=0

γt(ct(st, at) + λω (st;πk)) | s0 = s, a0 = a

]∣∣∣∣∣
=

∣∣∣∣∣E
[ ∞∑
t=T

γt(ct(st, at) + λω (st;πk)) | s0 = s, a0 = a

]∣∣∣∣∣
≤ γT Cmax,λ

1− γ
(57)

Now,
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Es∼dν,πk
dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)
〈Xk(s, ·), π(· | s)− π′(· | s)〉

= Es∼dν,πk
dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·)−Xk(s, ·), π(· | s)− π′(· | s)

〉
=
∑
s

dν,πk(s)
dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·)−Xk(s, ·), π(· | s)− π′(· | s)

〉
≤ max

s

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·)−Xk(s, ·), π(· | s)− π′(· | s)

〉
≤ tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

max
s

〈
X trunc
k (s, ·)−Xk(s, ·), π(· | s)− π′(· | s)

〉
= tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

max
s

〈
Eq̂πkλ,trunc(s, ·,m)− qπkλ (s, ·), π(· | s)− π′(· | s)

〉
≤ tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

max
s

∥∥∥Eq̂πkλ,trunc(s, ·,m)− qπkλ (s, ·)
∥∥∥
∞
‖π(· | s)− π′(· | s)‖1

≤ 2

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
tk

Cmax,λ

1− γ
γT ,

where the first transition is due to the linearity of expectation, the third transition is by the fact the summation of dν,πk is convex,
the fourth transition is by the fact dµ,π∗ (s)

dν,πk (s) is non-negative for any s and by maximizing each term separately, the fifth transition
is by using the definitions of Xk and X trunc

k , the sixth is using Hölder’s inequality and the last transition is due to (57).

Now, using the same T , by the fact rω(k, λ) >
2 Cmax,λ

1−γ , we have that

Es∼dν,πk
dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
− Es∼dν,πk

dµ,π∗(s)

dν,πk(s)

〈
X trunc
k (s, ·), π(· | s)− π′(· | s)

〉
≤
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
tk
ε

8
. (58)

Finally, combining (56) and (58) concludes the results.

In the next lemma we combine the results of Lemmas 16 and 17 to bound the overall approximation error due to both sampling
and truncation.
Lemma 18 (Approximation error bound using truncated biased sampling). For any ε, δ̃ > 0, if the number of trajectories in the
k-th iteration is

Mk ≥
8rω(k, λ)2

ε2

(
S log 2A+ log 1/δ̃

)
,

and the number of samples in the truncated sampling process is of length

Tk ≥
1

1− γ
log

ε

8rω(k, λ)
,

then with probability of 1− δ̃,

dµ,π∗εk ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2
,

and the overall number of interaction with the MDP is in the k-th iteration is

O

rω(k, λ)2
(
S logA+ log 1/δ̃

)
(1− γ)ε2

,
38



where rω(k, λ) =
4ACmax,λ

1−γ and rω(k, λ) =
2ACmax,λ

1−γ

(
1

1−λtk + 1 + λ log k
)

in the euclidean and non-euclidean settings
respectively.

Proof. Repeating the same steps of Lemma 16, we re-derive equation (51),

dµ,π∗εk ≤max
π′

{ 1

Mk

Mk∑
m=1

∑
s

1{s = sm}
dµ,π∗(s)

dν,πk(s)

〈
X̂k(s, ·,m), π∗(· | sm)− π′(· | sm)

〉
−
∑
s

dµ,π∗(s)〈Xk(s, ·), π∗(· | s)− π′(· | s)〉
}
.

Now, we move on to deal with a truncated trajectory: In Appendix F.2 we defined a nearly unbiased estimation process for
qπkλ , i.e., 1

Mk

∑Mk

m=1

∑
s 1{s = sm}

dµ,π∗ (s)

dν,πk (s)

〈
X̂k(s, ·,m), π∗(· | sm)− π′(· | sm)

〉
is no longer an unbiased estimator as in

Lemma 16. In what follows we divide the error to two sources of error, one due to the finite sampling error (finite number of
trajectories) and the other due to the bias admitted by the truncation.

For any π′, denote the following variables,

Ŷm(π′) :=
dµ,π∗(sm)

dν,πk(sm)
〈X̂k(sm, ·,m), π∗(· | sm)− π′(· | sm)〉

Y (π′) :=
∑
s

dµ,π∗(s)〈Xk(s, ·), π∗(· | s)− π′(· | s)〉.

By plugging this new notation in (51), we can write,

dµ,π∗εk ≤ max
π′

1

M

M∑
m=1

Ŷm(π′)− Y (π′)

= max
π′

1

M

M∑
m=1

Ŷm(π′)− EŶm(π′) + EŶm(π′)− Y (π′)

≤ max
π′

1

M

M∑
m=1

Ŷm(π′)− EŶm(π′)︸ ︷︷ ︸
(1)

+ max
π′

EŶm(π′)− Y (π′)︸ ︷︷ ︸
(2)

, (59)

where the first inequality is by plugging in the definition of Y (π′), ŶM (π′) in (51) and the last transition is by maximizing each
of the terms in the sum independently. Note that (1) describes the error due to the finite sampling and (2) describes the error due
to the truncation of the trajectories. Importantly, notice that in the case where we do not truncate the trajectory, the second term
(2) equals zero by (52). We will now use Lemma 16 and Lemma 17 to bound (1) and (2) respectively:

First, look at the first term (1). By definition it an unbiased estimation process. Furthermore, by equation (54), Ŷm(π′) is
bounded for all sm and π′ by

Ŷm(π′) ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
rω(k, λ),

Thus by applying Lemma 16 we get that in order to guarantee that

max
π′

1

M

M∑
m=1

(
Ŷm(π′)− EŶm(π′)

)
≤ tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

4
, (60)

we need the number of trajectories Mk to be at least

Mk ≥
8rω(k, λ)2

ε2

(
S log 2A+ log 1/δ̃

)
.
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Next, we bound the second term (2). By Lemma 17, using a trajectory of maximal length 1
1−γ log ε

8rω(k,λ) , the errors due to the
truncated estimation process are bounded as follows,

max
π′

EŶm(π′)− Y (π′) ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

4
(61)

Bounding the two terms by (60) and (61), and plugging them back in (59), we get that using Mk trajectories, where each
trajectory is of length O( 1

1−γ log ε), we have that w.p. 1− δ̃

dµ,π∗εk ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

4
+ tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

4
= tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2
,

which concludes the result.

So far, we proved the number of samples needed for a bounded error with high probability in the k-th iteration of Sample-Based
TRPO. The following Lemma gives a bound for the accumulative error of Sample-Based TRPO after k iterations.
Lemma 19 (Cumulative approximation error). For any ε, δ > 0, if the number of trajectories in the k-th iteration is

Mk ≥
8rω(N,λ)2

ε2
(
S log 2A+ log 2(k + 1)2/δ

)
,

and the number of samples in the truncated sampling process is of length

T ≥ 1

1− γ
log

ε

8rω(k, λ)
,

then, with probability greater than 1− δ, uniformly on all k ∈ N,
N∑
k=0

dµ,π∗εk ≤
ε/2

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

N∑
k=0

tk,

where rω(k, λ) =
4ACmax,λ

1−γ and rω(k, λ) =
4ACmax,λ

1−γ (1 + 1{λ 6= 0} log k) in the euclidean and non-euclidean settings respec-
tively.

Proof. Using Lemma 18 with δ̃ = 6
π2

δ
(k+1)2 and the union bound over all k ∈ N, we get that w.p. bigger than

∞∑
k=0

6

π2

δ

(k + 1)2
=

6

π2
δ

∞∑
k=0

1

(k + 1)2
= δ,

for any k, the following inequality holds

dµ,π∗εk ≤ tk
∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞

ε

2
.

where we used the solution to Basel’s problem (the sum of reciprocals of the squares of the natural numbers) for calculating∑∞
k=0

1
(k+1)2 .

Thus, by summing the inequalities for k = 0, 1, ..., N , we obtain
N∑
k=0

dµ,π∗εk ≤
ε

2

N∑
k=0

tk

∥∥∥∥dµ,π∗dν,πk

∥∥∥∥
∞
.

Now, Using the fact that
∥∥∥dµ,π∗dν,πk

∥∥∥
∞
≤ 1

1−γ

∥∥∥dµ,π∗ν ∥∥∥
∞

, we have that w.p. of at least δ,

N∑
k=0

dµ,π∗εk ≤
ε/2

1− γ

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

N∑
k=0

tk.

Lastly, by bounding π2/6 ≤ 2 we conclude the proof.
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We are ready to prove the convergence rates for the unregularized and regularized algorithms.

F.6 Proof of Theorem 4

For the sake of completeness and readability, we restate here Theorem 4, this time including all logarithmic factors, but excluding
higher orders in λ (All constants are in the proof):
Theorem (Convergence Rate: Sample-Based TRPO). Let {πk}k≥0 be the sequence generated by Sample-Based TRPO, using
Mk ≥ rω(N,λ)2

2ε2

(
S log 2A+ log π2(k + 1)2/6δ

)
trajectories in each iteration, and {µvkbest}k≥0 be the sequence of best achieved

values, µvNbest := arg mink=0,...,N µv
πk
λ − µv∗λ. Then, with probability greater than 1− δ for every ε > 0 the following holds for

all N ≥ 1.

1. (Unregularized) Let λ = 0, tk = (1−γ)2

Cω,1 Cmax
√
k+1

then

µvNbest − µv∗

≤ O
(
Cω,1 Cmax(Cω,3 + logN)

(1− γ)
√
N

+
Cπ
∗
ε

(1− γ)2

)

2. (Regularized) Let λ > 0, tk = 1
λ(k+2) then

µvNbest − µv∗λ ≤ O

(
C2
ω,1Cω,2 Cmax,λ

2 logN

λ(1− γ)3N
+

Cπ
∗
ε

(1− γ)2

)
.

Where Cω,1 =
√
A,Cω,2 = 1, Cω,3 = 1, rω(k, λ) =

4ACmax,λ

1−γ for the euclidean case, and Cω,1 = 1, Cω,2 = A2, Cω,3 =

logA, rω(k, λ) =
4ACmax,λ

1−γ (1 + 1{λ 6= 0} log k) for the non-euclidean case.

Finally, we prove the rates for each of the cases:

The Unregularized Case

Proof. Applying Lemma 15 and λ = 0 (the unregularized case),

tk(1− γ)(µvπk − µv∗)

≤ dµ,π∗(Bω (π∗, πk)−Bω (π∗, πk+1)) +
t2kh

2
ω

2
+ dµ,π∗εk.

Summing the above inequality over k = 0, 1, ..., N , gives
N∑
k=0

tk(1− γ)(µvπk − µv∗)

≤ dµ,π∗Bω (π∗, π0)− dµ,π∗Bω (π∗, πN+1) +

N∑
k=0

t2kh
2
ω

2
+

N∑
k=0

dµ,π∗εk

≤ dµ,π∗Bω (π∗, π0) +

N∑
k=0

t2kh
2
ω

2
+

N∑
k=0

dµ,π∗εk

≤ Dω +

N∑
k=0

t2kh
2
ω

2
+

N∑
k=0

dµ,π∗εk.

where in the second relation we used Bω (π∗, πN+1) ≥ 0 and thus dµ,π∗Bω (π∗, πN+1) ≥ 0, and in the third relation Lemma
24.
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Using the definition of vNbest, we have that

µ(vNbest − v∗)
N∑
k=0

tk ≤
N∑
k=0

tk(µvπk − µv∗),

and by some algebraic manipulations, we get

µvNbest − µv∗ ≤
1

1− γ

Dω +
N∑
k=0

t2kh
2
ω

2 +
N∑
k=0

dµ,π∗εk

N∑
k=0

tk

=
1

1− γ

Dω +
h2
ω

2

N∑
k=0

t2k

N∑
k=0

tk

+
1

1− γ

N∑
k=0

dµ,π∗εk

N∑
k=0

tk

,

Plugging in the stepsizes tk = 1
hω
√
k

, we get,

µvNbest − µv∗ ≤
hω

1− γ

2Dω +
N∑
k=0

1
k

2
N∑
k=0

1√
k

+
1

1− γ

N∑
k=0

dµ,π∗εk

N∑
k=0

tk

.

Bounding the sums using (Beck, 2017, Lemma 8.27(a)) yields,

µvNbest − µv∗ ≤ O

 hω
1− γ

Dω + logN
N∑
k=0

1√
k

+
1∑N
k=0 tk

1

1− γ

N∑
k=0

dµ,π∗εk

.

Plugging in Lemma 19, we get that for any (ε, δ), if the number of trajectories in the k-th iteration is

Mk ≥
rω(N,λ)2

2ε2
(
S log 2A+ log π2(k + 1)2/6δ

)
,

then, with probability greater than 1− δ,

µvNbest − µv∗ ≤ O

 hω
1− γ

Dω + logN
N∑
k=0

1√
k

+
1∑N
k=0 tk

ε

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

N∑
k=0

tk

,
where rω(k, λ) =

4ACmax,λ
1−γ and rω(k, λ) =

4ACmax,λ
1−γ (1 + 1{λ 6= 0} log k) in the euclidean and non-euclidean settings respec-

tively.

By rearranging, we get,

µvNbest − µv∗ ≤ O

 hω
1− γ

Dω + logN
N∑
k=0

1√
k

+
ε

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

.
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Thus, for the euclidean case,

µvNbest − µv∗ ≤ O

(
Cmax

√
A logN

(1− γ)2
√
N

+
1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε
)
,

and for the non-euclidean case,

µvNbest − µv∗ ≤ O
(

Cmax(logA+ logN)

(1− γ)2
√
N

+
1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε).

The Regularized Case

Proof. Applying Lemma 15 and setting tk = 1
λ(k+2) , we get,

1− γ
λ(k + 2)

(
µvπkλ − µv

π∗

λ

)
≤ dµ,π∗

(
(1− 1

(k + 2)
)Bω (π∗, πk)−Bω (π∗, πk+1)

)
+

h2
ω(k;λ)

2λ2(k + 2)2
+ dµ,π∗εk

≤ dµ,π∗
(
k + 1

k + 2
Bω (π∗, πk)−Bω (π∗, πk+1)

)
+

h2
ω(N ;λ)

2λ2(k + 2)2
+ dµ,π∗εk,

where in the second relation we used that fact hω(k;λ) is a non-decreasing function of k for both the euclidean and non-euclidean
cases.

Next, multiplying both sides by λ(k + 2), summing both sides from k = 0 to N and using the linearity of expectation, we get,

N∑
k=0

(1− γ)(µvπkλ − µv
∗
λ) ≤ dµ,π∗(Bω (π∗, π0)− (N + 2)Bω (π∗, πN+1)) +

N∑
k=0

h2
ω(N ;λ)

2λ(k + 2)
+

N∑
k=0

λ(k + 2)dµ,π∗εk

≤ dµ,π∗Bω (π∗, π0) +

N∑
k=0

h2
ω(N ;λ)

2λ(k + 2)
+

N∑
k=0

λ(k + 2)dµ,π∗εk

≤ Dω +

N∑
k=0

h2
ω(N ;λ)

2λ(k + 2)
+

N∑
k=0

λ(k + 2)dµ,π∗εk

= Dω +

N∑
k=0

h2
ω(N ;λ)

2λ(k + 2)
+

N∑
k=0

1

tk
dµ,π∗εk,

where the second relation holds by the positivity of the Bregman distance, the third relation by Lemma 24 for uniformly initialized
π0, and the last relation by plugging back tk = 1

λ(k+2) in the last term..

Bounding
∑N
k=0

1
k+2 ≤ O(logN), we get

N∑
k=0

µvπkλ − µv
∗
λ ≤ O

(
Dω

(1− γ)
+
h2
ω(N ;λ) logN

λ(1− γ)
+

1

1− γ

N∑
k=0

1

tk
dµ,π∗εk

)
.

By the definition of vNbest, which gives (N + 1)
(
µvNbest − µv∗

)
≤

N∑
k=0

µvπk − µv∗, and some algebraic manipulations, we obtain
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µvNbest − µv∗λ ≤ O

(
Dω

(1− γ)N
+
h2
ω(N ;λ) logN

λ(1− γ)N
+

1

1− γ
1

N

N∑
k=0

1

tk
dµ,π∗εk

)
.

Plugging in Lemma 18, we get that for any (ε, δ), if the number of trajectories in the k-th iteration is

Mk ≥
rω(k, λ)2

2ε2
(
S log 2A+ log π2(k + 1)2/6δ

)
,

then with probability of at least 1− δ,

µvNbest − µv∗λ ≤ O
(

Dω

(1− γ)N
+
h2
ω(N ;λ) logN

λ(1− γ)N
+

ε

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

)
.

where rω(k, λ) =
4ACmax,λ

1−γ and rω(k, λ) =
4ACmax,λ

1−γ (1 + 1{λ 6= 0} log k) in the euclidean and non-euclidean settings respec-
tively.

By Plugging the bounds Dω, hω and Cmax,λ, we get in the euclidean case,

µvNbest − µv∗λ ≤ O

((
C2

max +λ2
)
A logN

λ(1− γ)3N
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
ε

)
,

and in the non-euclidean case,

µvNbest − µv∗λ ≤ O
(

(C2
max + λ2 log2A)A2 log3N

λ(1− γ)3N
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞
ε

)
,

F.7 Sample Complexity of Sample-Based TRPO

In this section we calculate the overall sample complexity of Sample-Based TRPO, i.e., the number interactions with the MDP
the algorithm does in order to reach a close to optimal solution.

By Lemma 19, in order to have 1
(1−γ)2

∥∥∥dµ,π∗ν ∥∥∥
∞

ε
2 approximation error, we need Mk ≥

O
(
rω(k,λ)2

ε2

(
S log 2A+ log (k + 1)2/δ

))
trajectories in each iteration, and the number of samples in each truncated

trajectory is Tk ≥ O
(

1
1−γ log ε

rω(k,λ)

)
, where rω(k, λ) =

4ACmax,λ
1−γ (1 + 1{λ 6= 0} log k) in the euclidean and non-euclidean

settings respectively.

Therefore, the number of samples in each iteration required to guarantee a 1
(1−γ)2

∥∥∥dµ,π∗ν ∥∥∥
∞

ε
2 error is

O

(
rω(k, λ)2 log ε

rω(k,λ)

(1− γ)ε2
(
S log 2A+ log (k + 1)2/δ

))
.

The overall sample complexity is acquired by multiplying the number of iterations N required to reach an ε/2
(1−γ)2 optimization

error multiplied with the iteration-wise sample complexity, given above. Combining the two errors and using the fact that
Cπ
∗ ≥ 1, we have that the overall error

1

(1− γ)2

(
1 + Cπ

∗
) ε

2
≤ 2

(1− γ)2
Cπ
∗ ε

2
=

1

(1− γ)2
Cπ
∗
ε.

In other words, the overall error of the algorithm is bounded by 1
(1−γ)2C

π∗ε

Finally, the sample complexity to reach a 1
(1−γ)2C

π∗ε error for the different cases is arranged in the following table (the complete
analysis is provided the the next section):
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Euclidean Non-Euclidean (KL)

Unregularized A3C4
max

(1−γ)3ε4

(
log |Πdet|+ log 1

δ

) A2C4
max

(1−γ)3ε4

(
log |Πdet|+ log 1

δ

)
Regularized A3C4

max,λ

λ(1−γ)4ε3

(
log |Πdet|+ log 1

δ

) A4C4
max,λ

λ(1−γ)4ε3

(
log |Πdet|+ log 1

δ

)
The same bound for CPI as given in [Kakade et al., 2003] is

A2C4
max

(1− γ)5ε4

(
log |Πdet|+ log

1

δ

)
,

where we omitted logarithmic factors in 1 − γ and ε. Notice that this bound is similar to the bound of Sample-Based TRPO
observed in this paper, as expected.

In order to translate this bound using our notation bound, we used [Kakade et al., 2003][Theorem 7.3.3] with H = 1
1−γ , which

states that in order to guarantee a bounded advantage of for any policy π′, Aπ(ν, π′) ≤ (1− γ)ε we need O
(

log ε(log Πdet+log 1
δ

(1−γ)5ε4

)
samples. Then, by [Kakade and Langford, 2002][Corollary 4.5] with Aπ(ν, π′) ≤ (1− γ)ε we get that (1− γ)(µvπ − µv∗) ≤
ε

1−γ

∥∥∥dµ,π∗ν ∥∥∥
∞

, or µvπ − µv∗ ≤ ε
(1−γ)2

∥∥∥dµ,π∗ν ∥∥∥
∞

. Finally, the C4
max factor comes from using a non-normalized MDP, where

the maximum reward is Cmax. We get C2
max from number of iterations needed for convergence, and the number of samples in

each iteration is also proportional to C2
max

The Unregularized Case

The euclidean case: The error after N iterations is bounded by

µvNbest − µv∗ ≤ O

(
Cmax

√
A logN

(1− γ)2
√
N

+
1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε2
)
.

Thus, in order to reach an error of 1
(1−γ)2C

π∗ε error, we need

N ≤ O
(
C2

maxA log ε

ε2

)
.

Thus, the sample complexity to reach 1
(1−γ)2C

π∗ε error when logarithmic factors are omitted is

Õ

(
A3C4

max

(1− γ)
3
ε4

(
log |Πdet|+ log

1

δ

))

The non-euclidean case: The error after N iterations is bounded by

µvNbest − µv∗ ≤ O
(

Cmax(logA+ logN)

(1− γ)2
√
N

+
1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε2
)
.

Thus, in order to reach an error of 1
(1−γ)2C

π∗ε error, we need

N ≤ O
(
C2

max log2A log2 ε

ε2

)
.

Thus, the sample complexity to reach 1
(1−γ)2C

π∗ε error when logarithmic factors are omitted is

Õ

(
A2C4

max

(1− γ)
3
ε4

(
log |Πdet|+ log

1

δ

))
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The Regularized Case

The euclidean case: The error after N iterations is bounded by

µvNbest − µv∗λ ≤ O

(
C2

max,λA logN

λ(1− γ)3N
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε2
)
,

Thus, in order to reach an error of 1
(1−γ)2C

π∗ε error, we need

N ≤ O

(
C2

max,λA log ε

λ(1− γ)ε

)

Thus, the sample complexity to reach 1
(1−γ)2C

π∗ε error when logarithmic factors are omitted is

Õ

(
A3C4

max,λ

λ(1− γ)
4
ε3

(
log |Πdet|+ log

1

δ

))

The non-euclidean case: The error after N iterations is bounded by

µvNbest − µv∗λ ≤ O

(
logA

(1− γ)N
+

C2
max,λA

2 log3N

λ(1− γ)3N

)
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

ε

2
.

Rearranging, we get,

µvNbest − µv∗λ ≤ O
(

(C2
max +λ2 log2A)A2 log3N

λ(1− γ)3N

)
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥
∞

ε

2
,

which can also be written with C2
max,λ

µvNbest − µv∗λ ≤ O

(
C2

max,λA
2 log3N

λ(1− γ)3N

)
+

1

(1− γ)2

∥∥∥∥dµ,π∗ν
∥∥∥∥ ε.

Thus, in order to reach an error of 1
(1−γ)2C

π∗ε error, we need

N ≤ Õ

(
C2

max,λA
2

λ(1− γ)ε

)
,

omitting logarithmic factors.

Thus, the sample complexity to reach 1
(1−γ)2C

π∗ε error when logarithmic factors are omitted is

Õ

(
A4C4

max,λ

λ(1− γ)
4
ε3

(
log |Πdet|+ log

1

δ

))

G Useful Lemmas

The next lemmas will provide useful bounds for uniform and Sample-Based TRPO. In this section, we define ‖·‖∗ to be the dual
norm of ‖·‖.
Lemma 20 (Connection between the regularized Bellman operator and the q-function). For any π, π′ the following holds:

〈qπλ + λ∇ω(π), π′ − π〉 = Tπ
′

λ vπλ − vπλ − λBω (π′, π)
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Proof. First, note that for any s

〈qπλ(s, ·), π′(· | s)〉

=
∑
a

π′(a | s)qπλ(s, a)

=
∑
a

π′(a | s)

(
cπλ(s, a) + γ

∑
s′

p(s′|s, a)vπλ

)

=
∑
a

π′(a | s)

(
c(s, a) + λω (s;π) + γ

∑
s′

p(s′|s, a)vπλ

)

=
∑
a

π′(a | s)

(
c(s, a) + λω (s;π′)− λω (s;π′) + λω (s;π) + γ

∑
s′

p(s′|s, a)vπλ

)

=
∑
a

π′(a | s)

(
c(s, a) + λω (s;π′) + γ

∑
s′

p(s′|s, a)vπλ

)
+ λω (s;π)− λω (s;π′)

= cπ
′

λ (s) + γPπ
′
vπλ(s) + λω (s;π)− λω (s;π′)

= Tπ
′

λ vπλ(s) + λω (s;π)− λω (s;π′) ,

where the second transition is by the definition of qπλ , the third is by the definition of cπλ, the fourth is by adding and subtracting
λω (s;π′), the fifth is by the fact λω (s;π′) is independent of a and the seventh is by the definition of the regularized Bellman
operator.

Thus,
〈qπλ , π′〉 = Tπ

′

λ vπλ + λω(π)− λω(π′)

Now, note that by the definition of the q-function 〈qπλ , π〉 = vπλ and thus,

〈qπλ , π′ − π〉 = Tπ
′

λ vπλ − vπλ + λω(π)− λω(π′).

Finally, by adding to both sides 〈λ∇ω(π), π′ − π〉, we get,

〈qπλ + λ∇ω(π), π′ − π〉 = Tπ
′

λ vπλ − vπλ + λω(π)− λω(π′) + λ〈∇ω(π), π′ − π〉.

To conclude the proof, note that by the definition of the Bregman distance we have,

〈qπλ + λ∇ω(π), π′ − π〉 = Tπ
′

λ vπλ − vπλ − λBω (π′, π) .

Lemma 21 (Bounds regarding the updates of Uniform TRPO). For any k ≥ 0 and state s, which is updated in the k-th iteration,
the following relations hold for Uniform TRPO (21):

1. ‖∇ω(πk(·|s))‖∗ ≤ O(1) and ‖∇ω(πk(·|s))‖∗ ≤ O(
Cmax,λ log k
λ(1−γ) ), in the euclidean and non-euclidean cases, respec-

tively.

2. ‖qπkλ (s, ·)‖∗ ≤ hω, where hω = O(
√
ACmax,λ

1−γ ) and hω = O(
Cmax,λ

1−γ ) in the euclidean and non-euclidean cases,
respectively.

3. ‖qπkλ (s, ·) + λ∇ω(πk(·|s))‖∗ ≤ hω(k;λ), where hω(k;λ) = O(
√
ACmax,λ

1−γ ) and hω(k;λ) = O(
Cmax,λ(1+1{λ6=0} log k)

1−γ )

in the euclidean and non-euclidean cases, respectively, and 1{λ 6= 0} = 0 in the unregularized case (λ=0) and
1{λ 6= 0} = 1 otherwise.

Where for every state s, ‖·‖∗ denotes the dual norm over the action space, which is L1 in the euclidean case, and L∞ in
non-euclidean cases.
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Proof. We start by proving the first claim:

For the euclidean case, ω(·) = 1
2 ‖·‖

2
2. Thus, for every state s,

‖∇ω(π(·|s))‖2 = ‖π(·|s)‖2 ≤ ‖π(·|s)‖1 = 1,

where the inequality is due to the fact that ‖·‖2 ≤ ‖·‖1.

The statement holds by the properties of 1
2 ‖·‖

2
2 and thus holds for both the uniform versions.

For the non-euclidean case, ω(·) = H(·) + logA. Now, consider Uniform TRPO (21). By taking the logarithm of (26), we
have,

log πk(a | s) = log πk−1(a | s)
− tk−1

(
q
πk−1

λ (s, a) + λ log πk−1(a | s)
)

− log

(∑
a′

πk−1(a′ | s) exp
(
−tk−1

(
q
πk−1

λ (s, a′) + λ log πk−1(a′ | s)
)))

. (62)

Notice that for k ≥ 0, for every state-action pair, qπkλ (a|s) ≥ 0. Thus,

log

(∑
a′

πk(a′ | s) exp(−tk(qπkλ (s, a′) + λ log πk(a′ | s)))

)
≤ log

(∑
a′

πk(a′ | s) exp(−tkλ log πk(a′ | s))

)

= log

(∑
a′

πk(a′ | s)π−λtkk (a′ | s)

)
. (63)

Where the first relation holds since qπλ(s, a) ≥ 0. Applying Jensen’s inequality we can further bound the above.

(63) = log

(
A
∑
a′

1

A
π1−λtk
k (a′ | s)

)

= log

(
A
∑
a′

1

A
π1−λtk
k (a′ | s)

)

≤ log

A(∑
a′

1

A
πk(a′ | s)

)1−λtk


= log

A( 1

A

∑
a′

πk(a′ | s)

)1−λtk


= log

(
A

(
1

A

)1−λtk
)

= log
(
Aλtk

)
= λtk logA. (64)

In the third relation we applied Jensen’s inequality for concave functions. As 0 ≤ 1 − λtk ≤ 1 (by the
choice of the learning rate in the regularized case) we have that X1−λtk is a concave function in X , and thus∑A
a′=1

1
Aπ

1−λtk
k (a′ | s) ≤

(∑A
a′=1

1
Aπk(a′ | s)

)1−λtk
by Jensen’s inequality. Combining this inequality with the fact that A is

positive and log is monotonic function establishes the third relation.

Furthermore, note that for every k, and for every s, a

log πk(a|s) ≤ 0 (65)

Plugging (64) and (65) in (62), we get,
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log πk(a | s) ≥ log πk−1(a | s)− tk−1

(
q
πk−1

λ (s, a) + λ logA
)

≥ log π0(a|s)−
k−1∑
i=0

tk(qπiλ (s, a) + λ logA)

≥ − logA−
(

Cmax,λ

1− γ
+ λ logA

) k−1∑
i=0

ti

= − logA−
(

Cmax,λ

λ(1− γ)
+ logA

) k−1∑
i=0

1

i+ 2

≥ − logA−
(

Cmax,λ

λ(1− γ)
+ logA

)
(1 + log k)

≥ −Cmax + 3λ logA

λ(1− γ)
(1 + log k)

≥ − 3 Cmax,λ

λ(1− γ)
(1 + log k), (66)

where the second relation holds by unfolding the recursive formula for each k and the fourth by plugging in the stepsizes for the
regularized case, i.e. tk = 1

λ(k+2) . The final relation holds since Cmax,λ = Cmax + λ logA.

To conclude, since log πk(a | s) ≤ 0 and ∇ω(π) = ∇H(π) = 1 + log π, we get that for the non-euclidean case,

‖∇ω(πk)‖∞ ≤ O
(

Cmax,λ

λ(1− γ)
log k

)
.

This concludes the proof of the first claim for both the euclidean and non-euclidean cases, in both exact scenarios. Interestingly,
in the non-euclidean case, the gradients can grow to infinity due to the fact that the gradient of the entropy of a deterministic
policy is unbounded. However, this result shows that a deterministic policy can only be obtained after an infinite time, as the
gradient is bounded by a logarithmic rate.

Next, we prove the second claim:

It holds that for any state-action pair qπkλ (s, a) ∈
[
0,

Cmax,λ
1−γ

]
.

For the euclidean case, we have that

‖qπkλ (s, ·)‖∗ = ‖qπkλ (s, ·)‖
2
≤

√√√√∑
a∈A

(
Cmax,λ

1− γ

)2

=

√
ACmax,λ

1− γ
.

For the non-euclidean case, we have that

‖qπkλ (s, ·)‖∗ = ‖qπkλ (s, ·)‖∞ ≤
Cmax,λ

1− γ
,

which concludes the proof of the second claim.

Finally, we prove the third claim: For any state s, by the triangle inequality,

‖qπkλ (s, ·) + λ∇ω(πk(·|s))‖∗ ≤ ‖q
πk
λ (s, ·)‖∗ + λ ‖∇ω(πk(·|s))‖∗ ,

by plugging the two former claims for the euclidean and non-euclidean cases, we get the required result.

The next lemma follows similar derivation to Lemma 21, with small changes tailored for the sample-based case. Note that in the
sample-based case, and A factor is added in claims 1,3 and 4.
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Lemma 22 (Bounds regarding the updates of Sample-Based TRPO). For any k ≥ 0 and state s, which is updated in the k-th
iteration, the following relations hold for Sample-Based TRPO (43):

1. ‖∇ω(πk(·|s))‖∗ ≤ O(1) and ‖∇ω(πk(·|s))‖∗ ≤ O(
ACmax,λ log k
λ(1−γ) ), in the euclidean and non-euclidean cases, respec-

tively.

2. ‖qπkλ (s, ·)‖∗ ≤ hω, where hω = O(
√
ACmax,λ

1−γ ) and hω = O(
Cmax,λ

1−γ ) in the euclidean and non-euclidean cases,
respectively.

3. ‖qπkλ (s, ·) + λ∇ω(πk(·|s))‖∗ ≤ hω(k;λ), where hω(k;λ) = O(
√
ACmax,λ

1−γ ) and hω(k;λ) =

O(
Cmax,λ(1+1{λ6=0}A log k)

1−γ ) in the euclidean and non-euclidean cases, respectively, and 1{λ 6= 0} = 0 in the
unregularized case (λ=0) and 1{λ 6= 0} = 1 in the regularized case (λ > 0).

4. ‖Aq̂πkλ (s, ·,m) + λ∇ω(πk(·|s))‖∞ ≤ ĥω(k;λ), where ĥω(k;λ) = O(
ACmax,λ

1−γ ) and ĥω(k;λ) =

O(
ACmax,λ(1+1{λ6=0} log k)

1−γ ) in the euclidean and non-euclidean cases, respectively, and 1{λ 6= 0} = 0 in the un-
regularized case (λ=0) and 1{λ 6= 0} = 1 in the regularized case (λ > 0).

Where for every state s, ‖·‖∗ denotes the dual norm over the action space, which is L1 in the euclidean case, and L∞ in
non-euclidean cases.

Proof. We start by proving the first claim:

For the euclidean case, in the same manner as in the Uniform case, ω(·) = 1
2 ‖·‖

2
2. Thus, for every state s,

‖∇ω(π(·|s))‖2 = ‖π(·|s)‖2 ≤ ‖π(·|s)‖1 = 1,

where the inequality is due to the fact that ‖·‖2 ≤ ‖·‖1.

For the non-euclidean case, ω(·) = H(·) + logA. The bound for the sample-based version for the non-euclidean choice of ω
follows similar reasoning with mild modification. By (42), in the sample-based case, a state s is updated in the k-th iteration
using the approximation of the qπkλ (s, a) in this state,

q̂πkλ (s, a) :=
A
∑M
m=1 1{s = sm, a = am}q̂πkλ (sm, ·,m)

n(s)
≤
A
∑M
m=1 1{s = sm, a = am}Cmax,λ

1−γ

n(s)
≤ ACmax,λ

1− γ
,

where we denoted n(s) =
∑
a n(s, a) the number of times the state s was observed at the k-th episode and used the fact

q̂πkλ (sm, ·,mi) is sampled by unrolling the MDP. Thus, it holds that

q̂πkλ (s, a) ≤ ACmax,λ

1− γ
.

Interestingly, because we use the importance sampling factor A in the approximation of qπkλ , we obtain an additional A factor.
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Thus, by repeating the analysis in Lemma 21, equation (66), we obtain,

log(πk(a | s)) ≥ log(πk−1(a | s))− tk−1

(
q̂
πk−1

λ (s, a) + λ logA
)

≥ log π0(a|s)−
k−1∑
i=0

ti(q̂
πi
λ (s, a) + λ logA)

≥ − logA−
(
ACmax,λ

1− γ
+ λ logA

) k−1∑
i=0

ti

= − logA−
(
ACmax,λ

λ(1− γ)
+ logA

) k−1∑
i=0

1

i+ 2

≥ − logA−
(
ACmax,λ

λ(1− γ)
+ logA

)
(1 + log k)

≥ −ACmax + 3Aλ logA

λ(1− γ)
(1 + log k)

≥ −3ACmax,λ

λ(1− γ)
, (67)

where the second relation holds by unfolding the recursive formula for each k and the fourth by plugging in the stepsizes for the
regularized case, i.e. tk = 1

λ(k+2) . The final relation holds since Cmax,λ = Cmax + λ logA. Thus,

log(πk(a | s)) ≥ −3ACmax,λ

λ(1− γ)
(1 + log k),

This concludes the proof of the first claim for both the euclidean and non-euclidean cases.

As in the uniform case, in the non-euclidean case, the gradients can grow to infinity due to the fact that the gradient of the entropy
of a deterministic policy is unbounded. However, this result shows that a deterministic policy can only be obtained after an
infinite time, as the gradient is bounded by a logarithmic rate.

Next, we prove the second claim:

It holds that for any state-action pair qπkλ (s, a) ∈
[
0,

Cmax,λ
1−γ

]
.

For the euclidean case, we have that

‖qπkλ (s, ·)‖∗ = ‖qπkλ (s, ·)‖
2
≤

√√√√∑
a∈A

(
Cmax,λ

1− γ

)2

=

√
ACmax,λ

1− γ
.

For the non-euclidean case, we have that

‖qπkλ (s, ·)‖∗ = ‖qπkλ (s, ·)‖∞ ≤
Cmax,λ

1− γ
,

which concludes the proof of the second claim.

Next, we prove the third claim: For any state s, by the triangle inequality,

‖qπkλ (s, ·) + λ∇ω(πk(·|s))‖∗ ≤ ‖q
πk
λ (s, ·)‖∗ + λ ‖∇ω(πk(·|s))‖∗ ,

by plugging the two former claims for the euclidean and non-euclidean cases, we get the required result.

Finally, the fourth claim is the same as the third claim, but with an additional A factor due to the importance sampling factor,

‖Aq̂πkλ (s, ·,m) + λ∇ω(πk(·|s))‖∞ ≤ A ‖q̂
πk
λ (s, ·,m)‖∞ + λ ‖∇ω(πk(·|s))‖∞ .
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Using the same techniques of the last lemma, we prove the following technical lemma, regarding the change in the gradient of
the Bregman generating function ω of two consecutive iterations of TRPO, in the sample-based case.
Lemma 23 (bound on the difference of the gradient of ω between two consecutive policies in the sample-based case). For each
state-action pair, s, a, the difference between two consecutive policies of Sample-Based TRPO is bounded by:

‖∇ω(πk+1)−∇ω(πk)‖∞,∞ ≤ Aω(k),

where Aω(k) = tk
A3/2 Cmax,λ

1−γ and Aω(k) = tk
ACmax,λ log k

1−γ in the euclidean and non-euclidean cases respectively, k is the
iteration number and tk is the step size used in the update.

Proof. In both the euclidean in non-euclidean cases, we discuss optimization problem (43) for the sample-based case. Thus, for
any visited state in the k-th iteration, s ∈ SkM :=

{
s′ ∈ S :

∑M
m=1 1{s′ = sm} > 0

}
, by (42)

q̂πkλ (s, a) :=
A
∑M
m=1 1{s = sm, a = am}q̂πkλ (sm, ·,m)

n(s)
≤
A
∑M
m=1 1{s = sm, a = am}Cmax,λ

1−γ

n(s)
≤ ACmax,λ

1− γ
,

where we denoted n(s) =
∑
a n(s, a) the number of times the state s was observed at the k-th episode and used the fact

q̂πkλ (sm, ·,mi) is sampled by unrolling the MDP. Thus, it holds that

q̂πkλ (s, a) ≤ ACmax,λ

1− γ
.

Interestingly, because we use the importance sampling factor A in the approximation of qπkλ , we obtain an additional A factor.

First, notice that for states which were not encountered in the k-th iteration, i.e., all states s for which
∑M
m=1 1{s = sm} = 0,

the solution of the optimization problem is πk+1(· | s) = πk(· | s). Thus, ∇ω (s;πk+1) = ∇ω (s;πk) and the inequality
trivially holds.

We now turn to discuss the case where
∑M
m=1 1{s = sm} > 0, i.e., s ∈ SkM . We separate here the analysis for the euclidean

and non-euclidean cases:

For the euclidean case, ω(·) = 1
2 ‖·‖

2
2. Thus, the derivative of ω at a state s is,

∇ω (s;π) = π(· | s). (68)

By the first order optimality condition, for any state s and policy π,

〈∇ω (s;πk+1)−∇ω (s;πk) , πk+1(· | s)− π〉 ≤ tk〈q̂πkλ (s, ·) + λ∇ω (s;πk) , π − πk+1(· | s)〉.

Plugging in π := πk(· | s), we get

〈∇ω (s;πk+1)−∇ω (s;πk) , πk+1(· | s)− πk(· | s)〉 ≤ tk〈q̂πkλ (s, ·) + λ∇ω (s;πk) , πk(· | s)− πk+1(· | s)〉.

Plugging in (68), we have that

〈∇ω (s;πk+1)−∇ω (s;πk) ,∇ω (s;πk+1)−∇ω (s;πk)〉 ≤ tk〈q̂πkλ (s, ·) + λ∇ω (s;πk) , πk(· | s)− πk+1(· | s)〉,

which can be also written as

‖∇ω (s;πk+1)−∇ω (s;πk)‖22 ≤ tk〈q̂
πk
λ (s, ·) + λ∇ω (s;πk) , πk(· | s)− πk+1(· | s)〉.

Bounding the RHS using the Cauchy-Schwartz inequality, we get,

‖∇ω (s;πk+1)−∇ω (s;πk)‖22 ≤ tk ‖q̂
πk
λ (s, ·) + λ∇ω (s;πk)‖

2
‖πk(· | s)− πk+1(· | s)‖2 ,

which is the same as

‖∇ω (s;πk+1)−∇ω (s;πk)‖22 ≤ tk ‖q̂
πk
λ (s, ·) + λ∇ω (s;πk)‖

2
‖∇ω (s;πk+1)−∇ω (s;πk)‖2 ,

Dividing by ‖∇ω (s;πk+1)−∇ω (s;πk)‖2 > 0 and noticing that in case it is 0 the bound is trivially satisfied,

‖∇ω (s;πk+1)−∇ω (s;πk)‖2 ≤ tk ‖q̂
πk
λ (s, ·) + λ∇ω (s;πk)‖

2
.
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Finally, using the norm equivalence we get,
‖∇ω (s;πk+1)−∇ω (s;πk)‖∞ ≤ ‖∇ω (s;πk+1)−∇ω (s;πk)‖2 ≤ tk ‖q̂

πk
λ (s, ·) + λ∇ω (s;πk)‖

2
.

Using the fourth claim of Lemma 22 (in the euclidean setting), and the fact the this inequality holds uniformly for all s ∈ SkM
concludes the result.

For the non-euclidean case, ω (s;π) =
∑
a π(a | s) log π(a | s). Thus, the derivative at the state action pair, s, a, is
∇π(a|s)ω (s;π) = 1 + log π(a | s).

Thus, the difference between two consecutive policies is:
∇πk+1(a|s)ω (s;πk+1)−∇πk(a|s)ω (s;πk) = log πk+1(a | s)− log πk(a | s)

Restating (62),
log πk+1(a | s) = log πk(a | s)

− tk(q̂πkλ (s, a) + λ log πk(a | s))

− log

(∑
a′

πk(a′ | s) exp(−tk(q̂πkλ (s, a′) + λ log πk(a′ | s)))

)
.

First, we will bound log πk+1(a | s)− log πk(a | s) from below:

Similarly to equation 64, bounding the last term in the RHS,

log

(∑
a′

πk(a′ | s) exp(−tk(q̂πkλ (s, a′) + λ log πk(a′ | s)))

)
≤ tkλ logA.

Together with the fact that λtk log πk(a | s) ≤ 0, we obtain,

log πk+1(a | s)− log πk(a | s) ≥ −tk(q̂πkλ (s, a) + λ logA) ≥ −tk
(
ACmax,λ

1− γ
+ λ logA

)
≥ −2tk

ACmax,λ

1− γ
,

where the last relation is by the definition of Cmax,λ

Next, it is left to bound log πk+1(a | s)− log πk(a | s) from above. Notice that,

log

(∑
a′

πk(a′ | s) exp(−tk(q̂πkλ (s, a′) + λ log πk(a′ | s)))

)
≥ log

∑
a′

πk(a′ | s) exp

(
−tk

ACmax,λ

1− γ
− λtk log π(a′ | s)

)
≥ log

∑
a′

πk(a′ | s) exp

(
−tk

ACmax,λ

1− γ

)
= log

∑
a′

πk(a′ | s) + log exp

(
−tk

ACmax,λ

1− γ

)
= −tk

ACmax,λ

1− γ
,

where in the first transition we used the fact that in the sample-based case ‖q̂πkλ ‖∞,∞ ≤
ACmax,λ

1−γ due to the importance sampling
applied in the estimation process, in the second transition we used the fact that the exponent is minimized when λtk log π(a′|s)
is maximized and the fact that log π(a′|s) ≤ 0, and the last transition is by the fact

∑
a′ πk(a′|s) = 0.

Thus, we have

log πk+1(a | s)− log πk(a | s) ≤ −tk(q̂πkλ (s, a) + λ log πk(a | s)) + tk
ACmax,λ

1− γ

≤ tk
ACmax,λ

1− γ
− λtk log πk(a | s)

≤ tk
ACmax,λ

1− γ
+ λtk

ACmax +2Aλ logA

λ(1− γ)
(1 + log k)

≤ tk
4ACmax,λ log k

1− γ
,
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where the third transition is due to (67), and the last transition is by the the definition of Cmax,λ.

Combining the two bounds we have,

−2tk
ACmax,λ

1− γ
≤ log πk+1(a | s)− log πk(a | s) ≤ 4tk

ACmax,λ

1− γ
log k

⇐⇒ −2tk
ACmax,λ

1− γ
≤ 1 + log πk+1(a | s)− (1− log πk(a | s) ≤ 4tk

ACmax,λ

1− γ
log k

⇐⇒ −2tk
ACmax,λ

1− γ
≤ ∇πk+1(a|s)ω (s;πk+1)−∇πk(a|s)ω (s;πk) ≤ 4tk

ACmax,λ

1− γ
log k,

which concludes the proof.

Lemma 24 (bounds on initial distance Dω). Let π0 be the uniform policy over all states, and Dω be an upper bound on
maxπ ‖Bω (π0, π)‖∞, i.e., maxπ ‖Bω (π0, π)‖ ≤ Dω . Then, the following claims hold.

1. For ω(·) = 1
2 ‖·‖

2
2, Dω = 1.

2. For ω(·) = H(·), Dω = logA.

Proof. For brevity, without loss of generality we omit the dependency on the state s. We start by proving the first claim. For the
euclidean case,

Bω (π, π0) =
1

2
‖π − π0‖22

=
1

2

∑
a

(π(a)− 1

A
)2

≤ 1

2

∑
a

π2(a) +
∑
a

1

A2

=
1

2A
+

1

2

∑
a

π2(a)

≤ 1

2A
+

1

2

∑
a

π(a) =
1

2A
+

1

2
,

where the fifth relation holds since x2 ≤ x for x ∈ [0, 1], and the sixth relation holds since π is a probability measure.

For the non-euclidean case the following relation holds.

Bω (π, π0) = dKL(π||π0)

=
∑
a

π(a) logAπ(a)

=
∑
a

π(a) log π(a) +
∑
a

π(a) logA

=
∑
a

π(a) log π(a) + logA
∑
a

π(a)

= H(π) + logA,

where H is the negative entropy. Since H(π) ≤ 0 we get that Bω (π, π0) ≤ logA and conclude the proof.

The following Lemma as many instances in previous literature (e.g., [Scherrer and Geist, 2014][Lemma 1]) in the unregularized
case, when λ = 0. Here we generalize it to the regularized case, for λ > 0.
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Lemma 25 (value difference to Bellman differences). For any policies π and π′, the following claims hold:

1. vπ
′

λ − vπλ = (I − γPπ′)−1(Tπ
′

λ vπλ − vπλ).

2. Tπ
′

λ vπλ − vπλ = (I − γPπ′)(vπ′λ − vπλ).

3. µ
(
vπ
′

λ − vπλ
)

= 1
1−γ dµ,π′(T

π′

λ vπλ − vπλ).

Proof. The first claim holds by the following relations.

vπ
′

λ − vπλ = (I − γPπ
′
)−1cπ

′

λ − (I − γPπ
′
)−1(I − γPπ

′
)vπλ

= (I − γPπ
′
)−1(cπ

′

λ + γPπ
′
vπλ − vπλ)

= (I − γPπ
′
)−1(Tπ

′

λ vπλ − vπλ).

The second claim follows by multiplying both sides by (I − γPπ′). The third claim holds by multiplying both sides of the first
claim by µ and using the definition dµ,π′ = (1− γ)µ(I − γPπ′)−1.

H Useful Lemmas from Convex Analysis

We state two basic results which are essential to the analysis of convergence. A full proof can be found in [Beck, 2017].
Lemma 26 (Beck 2017, Lemma 9.11, three-points lemma). Suppose that ω : E → (−∞,∞] is proper closed and convex.
Suppose in addition that ω is differentiable over dom(∂ω). Assume that a,b ∈ dom(∂ω) and c ∈ dom(ω). Then the following
equality holds:

〈∇ω(b)−∇ω(a), c− a〉 = Bω (c,a) +Bω (a,b)−Bω (c,b) .

Theorem 27 (Beck 2017, Theorem 9.12, non-euclidean second prox theorem).

• ω : E→ (−∞,∞] be a proper closed and convex function differentiable over dom(∂ω).

• ψ : E→ (−∞,∞] be a proper closed and convex function satisfying dom(ψ) ⊆ dom(ω).

• ω + δdom(ψ) be σ-strongly convex (σ > 0).

Assume that b ∈ dom(∂ω), and let a be defined by

a = arg minx∈E{ψ(x) +Bω (x,b)}.

Then a ∈ dom(∂ω) and for all u ∈ dom(ψ),

〈∇ω(b)−∇ω(a),u− a〉 ≤ ψ(u)− ψ(a).
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