
Policy Continuation and Policy Evolution with
Hindsight Inverse Dynamics

Hao Sun1, Bo Dai1, Zhizhong Li1, Xiaotong Liu2, Rui Xu1, Dahua Lin1, Bolei Zhou1

1The Chinese University of Hong Kong, 2Peking University
sh018@ie.cuhk.edu.hk

Abstract

Solving goal-oriented tasks is an important but challenging problem in reinforce-
ment learning (RL). For such tasks, the rewards are often sparse, making it difficult
to learn a policy effectively. To tackle this difficulty, we propose a new approach
called Policy Continuation and and Policy Evolution with Hindsight Inverse Dy-
namics (PC&PEHID). This approach learns from Hindsight Inverse Dynamics
based on Hindsight Experience Replay. This work also extends it to multi-step
settings with Policy Continuation and Policy Evolution. The proposed method
is general – it can work in isolation or be combined with other on-policy and
off-policy algorithms. On challenging multi-goal tasks, PC&PEHID significantly
improves the sample efficiency as well as the final performance.

1 Introduction

Imagine you are given the task of Tower of Hanoi with ten disks, what would you probably do to
solve this complex problem? This game seems daunting at the first glance. However, through trials
and errors, one may discover the key, that is, to recursively relocate the disks on the top of the stack
from one pod to another, assisted by an intermediate one. In this case, you are actually learning skills
from easier sub-tasks and those skills help you to learn more. This case exemplifies the procedure of
self-imitated curriculum learning, namely recursively developing the skills of solving more complex
problems.

Tower of Hanoi belongs to an important kind of challenging problems in Reinforcement Learning
(RL), namely solving the goal-oriented tasks. In such tasks, rewards are usually very sparse. For
example, in many goal-oriented tasks, a single binary reward is provided only when the task is
completed [1, 2, 3]. Previous works attribute the difficulty in reward sparse problems to the low
efficiency in experience collection [4], thus many approaches have been proposed to tackle this prob-
lem, including automatic goal generation [5], self-imitation learning [6] hierarchical reinforcement
learning [7], curiosity driven methods [8, 9], curriculum learning [1, 10], and Hindsight Experience
Replay (HER) [11]. Most of these works guide the agent by demonstrating on right choices based on
sufficient exploration to improve learning efficiency. HER opens up a new way to learn more from
failures but is limited, as it is only applicable when combined with off-policy algorithms[3].

In this paper we propose an approach of goal-oriented RL called Policy Continuation with Hindsight
Inverse Dynamics (PCHID), which leverages the key idea of self-imitate learning. In contrast to HER,
our method can work as an auxiliary module for both on-policy and off-policy algorithms, or as an
isolated controller itself. Moreover, by learning to predict actions directly from back-propagation [12]
through self-imitation, instead of temporal difference [13] or policy gradient [14, 15, 16, 17], the data
efficiency is greatly improved.

The contributions of this work lie in three aspects: (1) We introduce the state-goal space partition
for multi-goal RL and thereon define Policy Continuation (PC) as a new approach to such tasks.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

0 20 40 60 80 100
Number of frames(1e4)

14

12

10

8

6

Re
wa

rd

Combine Inverse Dynaics with HER

HER + 0.10ID
HER + 0.05ID
HER + 0.03ID
HER + 0.01ID
HER
ID

/. /)

/0!1 !.
21

!

"

!

"

Figure 1: (a): Empirical results in bit-flipping problem. (b): An analogy of flat state space. (c): An
example of the GridWorld domain, which is a non-flat case.

(2) We propose Hindsight Inverse Dynamics (HID), which extends the vanilla Inverse Dynamics
method to the goal-oriented setting. (3) We further integrate PC and HID into PCHID, which can
effectively leverage self-supervised learning to accelerate the process of reinforcement learning. Note
that PCHID is a general method. Both on-policy and off-policy algorithms can benefit therefrom.
We tested this method on challenging RL problems, where it achieves considerably higher sample
efficiency.

2 Related Work

Hindsight Experience Replay Learning with sparse rewards in RL problems is always a leading
challenge for the rewards are usually uneasy to reach with random explorations. Hindsight Experience
Replay (HER) which relabels the failed rollouts as successful ones is proposed by Andrychowicz et
al. [11] as a method to deal with such problem. The agent in HER receives a reward when reaching
either the original goal or the relabeled goal in each episode by storing both original transition pairs
st, g, at, r and relabeled transitions st, g′, at, r′ in the replay buffer.

Inverse Dynamics Given a state transition pair (st, at, st+1), the inverse dynamics [18] takes
(st, st+1) as the input and outputs the corresponding action at. In previous works, inverse dynamics
is always used to perform feature extraction [19, 9, 20] for policy network optimization. The actions
stored in such transition pairs are always collected with a random policy so that it can barely be
used to optimize the policy network directly. In our work, we use hindsight experience to revise the
original transition pairs in inverse dynamics, and we call this approach Hindsight Inverse Dynamics.
The details will be elucidated in the next section.

Auxiliary Task and Curiosity Driven Method Mirowski et al. [21] propose to jointly learn the
goal-driven reinforcement learning problems with an unsupervised depth prediction task and a
self-supervised loop closure classification task, achieving data efficiency and task performance
improvement. But their method requires extra supervision like depth input.

Shelhamer et al. [20] introduce several self-supervised auxiliary tasks to perform feature extraction
and adopt the learned features to reinforcement learning, improving the data efficiency and returns
of end-to-end learning. Pathak et al. [19] propose to learn an intrinsic curiosity reward besides the
normal extrinsic reward, formulated by prediction error of a visual feature space and improved the
learning efficiency. Both of the approaches belong to self-supervision and utilize inverse dynamics
during training. Although our method can be used as an auxiliary task and trained in self-supervised
way, we improved the vanilla inverse dynamics with hindsight, which enables direct joint training of
policy networks with temporal difference and self-supervised learning.

3 Method

3.1 Revisiting the Bit-Flipping Problem

Inspired by the self-imitated learning ability of humans, we aim to equip RL agents with a similar
ability so that they could learn policies even when the original goal has not yet achieved. A
straightforward way is to adopt the inverse dynamics. However, in most cases the actions stored in
inverse dynamics are irrelevant to the goals. Specifically, transition pairs like ((st, g), (st+1, g), at)

2

are saved to learn inverse dynamics of goal-oriented tasks, with the objective:

φ = arg min
φ

∑
st,st+1,at

||fφ((st, g), (st+1, g))− at||2, (1)

where fφ is a neural network parameterized by φ. While usually an agent is unaware of goals g in
Eq.(1), we replace g with g′ = m(st+1), which encodes the future state as a hindsight goal, so that
an agent is knowing the hindsight goal when making decisions. e.g. at should be chosen if it wants to
reach g′ from at.

We incorporated the modified Eq.1 with HER in the bit-flipping problem [11], and obtained significant
improment, as shown in Fig.1(a). We attribute this success to the flatness of the state space of the task.
Fig.1(b) shows an intuitive analogy of such flatness, where it is not hard for the agent to extrapolate
its policy to reach g3 if it already knows how to reach s1. Nevertheless, successes are not always
within effortless reach. When challenging goals are encountered, such as reaching g1 and g2 in
Fig.1(b) and navigation in the GridWorld (Fig.1(c), more sophisticated development of self-imitated
learning is needed, which results in our proposed new approach, refered to as Policy Continuation
with Hindsight Inverse Dynamics.

3.2 Perspective of Policy Continuation on Multi-Goal RL Task

Our approach is mainly based on policy continuation over sub-policies, which can be viewed as an
emendation of the spontaneous extrapolation in the bit-flipping case. Given a policy π defined on
the state space Sπ, if another policy Π defined on the state space SΠ satisfies 1) Sπ ⊂ SΠ and 2)
Π(s) = π(s) for any s ∈ Sπ , Π is called a policy continuation of π.

Upon this definition, we then introduce the concept of k-step solvability, where a state-goal pair (s, g)
in a system with deterministic dynamics is called k-step solvable if reaching the goal g needs at least
k steps under the optimal policy π? starting from s. Here we follow HER to assume a mapping [11]
m : S → G so that r(s,m(s)) = 1 for all s, which means the information of g is encoded in s. In
the simplest case, m is an identical mapping.Consequently, we could divide the state-goal space
according to their k-step solvability, as S×G = (S × G)0 ∪ (S × G)1 ∪ ... ∪ (S × G)T ∪ (S × G)U ,
where T is a finite horizon we suppose the task should be solved within, and (S × G)U denotes
unsolvable state-goal pairs, which is not our focus.

Following the partition over the state-goal spate, a curriculum way to obtain the optimal policy π?
over (S × G)\(S × G)U is readily at hand: starting from an optimal policy π?0 on (S × G)0, we
recursively approximate π? on

⋃i
j=0(S × G)j by expanding the domain of sub-state-goal space in

policy continuation. In practice, we parameterize the policy function π = fθ using neural networks.
And optimization for π = fθ is achieved by jointly self-supervised learning with data collected by
Hindsight Inverse (HID).

3.3 Hindsight Inverse Dynamics

One step HID data can be collected easily. With n randomly rollout trajectories
{(s0, g), a0, r0, (s1, g), a1, ..., (sT , g), aT , rT }i, i ∈ {1, 2, ..., n}, we can use a modified inverse
dynamics by substituting the original goal g with hindsight goal g′ = m(st+1) for every st and result
in {(s0,m(s1)), a0, (s1,m(s2)), a1, ..., (sT−1,m(sT)), aT−1}i, i ∈ {1, 2, ..., n}. We can then fit
fθ1 using SGD [22] by

θ1 = arg min
θ

∑
st,st+1,at

||fθ((st,m(st+1)), (st+1,m(st+1)))− at||2. (2)

When m is an identical mapping, the function fθ1 is a good enough approximator for π∗1 . Otherwise,
we should adapt equation (2) as θ1 = arg minθ

∑
st,st+1,at

||fθ((st,m(st+1)),m(st+1)) − at||2,
where the state information is omitted to leverage fθ1 as a policy.

Once we have fθk−1
, an approximator of π∗k−1, k-step HID is ready to get. We can collect valid

k-step HID data recursively by testing whether the k-step HID state-goal pairs indeed need k steps to
solve. Fig.2 illustrates this process. The testing process is based on a function TEST(·).1 A joint

1See Appendix A for the choice of TEST.

3

!"

!#

!#$%

!&
'()'(+, !#,-(!#$+))
!#$+

!#$%/+

Less than +?
Less than +?

!"

!# !#$0
!#$%/0

!#$%

!&
Less than %?

'()'(%, !#,-(!#$%))

!#$+
!#$%/+

Figure 2: Test whether the transitions are 2-step (left) or k-step (right) solvable. The TEST function
will return True if the transition st → st+k needs at least k steps.

training is utilized to ensure fθk to be a policy continuation of π∗i , i ∈ {1, ..., k}:

θk = arg min
θ

∑
s
(i)
t ,s

(i)
t+i,a

(i)
t ,i∈{1,...,k}

||fθ((st,m(st+i)), (st+i,m(st+i)))− at||2 (3)

The combination of PC and with multi-step HID leads to our algorithm PCHID.2 PCHID can work
alone or as an auxiliary module with other RL algorithms.

3.4 Synchronous Improvement

In PCHID, the learning scheme is set to be curriculum, i.e., the agent must learn to master easy skills
before learning complex ones. However, in general the efficiency of finding a transition sequence that
is i-step solvable decreases as i increases. The size of buffer Bi is thus decreasing for i = 1, 2, 3, ..., T
and the learning of πi might be restricted due to limited experiences. Besides, in continuous control
tasks, the k-step solvability means the number of steps it should take from s to g, given the maximum
permitted action value. And in practice the k-step solvability is an evolving concept that can gradually
change as the learning goes. Specifically, at the beginning, an agent can only walk with small paces
as it is learned from experiences collected by random movements. As the training continues, the
agent is confident to move with larger paces, which may change the distribution of selected actions.
Consequently, previous k-step solvable state goal pairs may be solved in less than k steps.

From the Ornstein-Uhlenbeck Process Perspective. At first, we study these issues in the perspec-
tive of the Ornstein-Uhlenbeck Process. For simplicity we consider 1-dimensional state-action space.
An policy equipped with Gaussian noise in the action space a ∼ N (µ, σ2) lead to a stochastic process
in the state space. In the most simple case, the mapping between action space and the corresponding
change in state space is an affine transformation, i.e., ∆st = st+1 − st = αat + β. Without loss of
generality, we have

∆st ∼ N (ε(g − st), σ2) (4)
after normalization. The ε describes the correlations between actions and goal states. e.g., for random
initialized policies, the actions are unaware of goal thus ε = 0, and for optimal policies, the actions
are goal-oriented thus ε = 1. The learning process can be interpreted as maximizing ε, where better
policies have larger ε. Under those notations,

∆st = ε(g − st)∆t+ σ∆Wt (5)
where Wt is the Wiener Process. As Eq. (5) is exactly an Ornstein-Uhlenbeck (OU) Process, it has
closed-form solutions:

st = s0e
−εt + g(1− e−εt) + σ

∫ t

0

e−ε(t−s)dWs (6)

and the expectation is
E(st)− g = (s0 − g)e−εt (7)

Intuitively, Eq. (7) shows that as ε increase during learning, it will take less time to reach the goal.
More precisely, we are caring about the concept of First Hitting Time (FHT) of OU process, i.e.,
τ = inf{t > 0 : st = g|s0} [23]. Accordingly, the optimization of solving goal-oriented reward
sparse tasks can be viewed as minimizing the FHT of OU process. From this perspective, any action
that can reduce the FHT will lead to a better policy.

2See Appendix B for more details.

4

Inspired by such a perspective, and to tackle the efficiency bottleneck and further improve the
performance of PCHID, we extend our method to a synchronous setting based on the evolving
concept of k-step solvability. We refer to this updated approach as Policy Evolution with Hindsight
Inverse Dynamics (PEHID). PEHID start the learning of πi before the convergence of πi+1 by merging
buffers {Bi}Ti=1 into one single buffer B. And when increasing the buffer with new experiences, we
will test an experience that is k-step solvable could be reproduced within k steps if we change the
goal. We retain those experiences that are not reproducable as they contain new valuable skills for
current policy to learn. Although such a synchronous learning scheme is not guaranteed to converge
theoretically, in practice we empirically found it evolves to reach goals in less and less steps.

4 Experiments

As a policy π(s, g) aims at reaching a state s′ where m(s′) = g, by intuition the difficulty of solving
such a goal-oriented task depends on the complexity of m. In Sec.4.1 we start with a simple case
where m is an identical mapping in the environment of GridWorld by showing the agent a fully
observable map. Moreover, the GridWorld environment permits us to use prior knowledge to calculate
the accuracy of any TEST function. We show that PCHID can work independently or augmented
with the DQN in discrete action space setting, outperforming the DQN as well as the DQN augmented
with HER. The GridWorld environment corresponds to the identical mapping case G = S . In Sec.4.2
we test our method on a continuous control problem, the OpenAI Fetch environment provided by
Plappert et al. [3]. In FetchReach, PCHID outperforms PPO by achieving 100% successful rate in
about 100 episodes. We further compare the sensitivity of PPO to reward values and the robustness
PCHID owns. The state-goal mapping of FetchReach environment is G ⊂ S . We demonstrate PEHID
in the other three environments and show its high learning efficiency.

4.1 GridWorld Navigation

We use the GridWorld navigation task in Value Iteration Networks (VIN) [24], in which the state
information includes the position of the agent, and an image of the map of obstacles and goal position.
In our experiments we use 16× 16 domains, navigation in which is not an effortless task. Fig.1(c)
shows an example of our domains. The action space is discrete and contains 8 actions leading the
agent to its 8 neighbour positions respectively. A reward of 10 will be provided if the agent reaches
the goal within 50 timesteps, otherwise the agent will receive a reward of −0.02. An action leading
the agent to an obstacle will not be executed, thus the agent will stay where it is. In each episode, a
new map will randomly selected start s and goal g points will be generated. We train our agent for
500 episodes in total so that the agent needs to learn to navigate within just 500 trials, which is much
less than the number used in VIN [24].3 Thus we can demonstrate the high data efficiency of PCHID
by testing the learned agent on 1000 unseen maps. Our work follows VIN to use the rollout success
rate as the evaluation metric.

Our empirical results are shown in Fig.3. Our method is compared with DQN, both of which are
equipped with VIN as policy networks. We also apply HER to DQN but result in a little improvement.
PC with 1-step HID, denoted by PCHID 1, achieves similar accuracy as DQN in much less episodes,
and combining PC with 5-step HID, denoted by PCHID 5, and HER results in much more distinctive
improvement.

4.2 OpenAI Fetch

In the Fetch environments, there are several tasks based on a 7-DoF Fetch robotics arm with
a two-fingered parallel gripper. There are four tasks: FetchReach, FetchPush, FetchSlide and
FetchPickAndPlace. In those tasks, the states include the Cartesian positions, linear velocity of the
gripper, and position information as well as velocity information of an object if presented. The goal
is presented as a 3-dimentional vector describing the target location of the object to be moved to. The
agent will get a reward of 0 if the object is at the target location within a tolerance or −1 otherwise.
Action is a continuous 4-dimentional vector with the first three of them controlling movement of the
gripper and the last one controlling opening and closing of the gripper.

3Tarmar et al. train VIN through the imitation learning (IL) with ground-truth shortest paths between start
and goal positions. Although both of our approaches are based on IL, we do not need ground-truth data

5

0 100 200 300 400 500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Comparison

HER
DQN
PCHID-1 + DQN
PCHID-1 + HER
PCHID-5 + HER

0 100 200 300 400 500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Different TEST Function

Grountruth
Interaction
RND
1 step

0 100 200 300 400 500
Episode

0.94

0.95

0.96

0.97

0.98

0.99

1.00

Ac
cu

ra
cy

Accuracy of each TEST function

RND 0.25
RND 0.275
RND 0.30
Interaction

0 100 200 300 400 500
Episode

0.2

0.4

0.6

0.8

1.0

Re
ca

ll

Recall of each TEST function

0.25
0.275
0.30
Interaction

Figure 3: (a): The rollout success rate on test maps in 10 experiments with different random seeds.
HER outperforms VIN, but the difference disappears when combined with PCHID. PCHID-1 and
PCHID-5 represent 1-step and 5-step PCHID. (b): Performance of PCHID module alone with
different TEST functions. The blue line is from ground truth testing results, the orange line and
green line are Interaction and RND respectively, and the red line is the 1-step result as a baseline.
(c)(d): Test accuracy and recall with Interaction and RND method under different threshold.

Table 1: The successful rate of different methods in the FetchPush, FetchSlide and FetchPickAndPlace
environments (trained for 1.25M timesteps)

Method FetchPush FetchSlide FetchPickAndPlace

PPO 0.00 0.00 0.00
DDPG 0.08 0.03 0.05
DDPG + HER 1.00 0.30 0.60
PEHID 0.95 0.38 0.75

FetchReach Here we demonstrate PCHID in the FetchReach task. We compare PCHID with PPO and
HER based on PPO. Our work is the first to extend hindsight knowledge into on-policy algorithms [3].
Fig.4 shows our results. PCHID greatly improves the learning efficiency of PPO. Although HER is
not designed for on-policy algorithms, our combination of PCHID and PPO-based HER results in the
best performance.

FetchPush, FetchSlide, FetchPickAndPlace We evaluate PEHID in the FetchPush, FetchSlide and
FetchPickAndPlace tasks. To demonstrate the high learning efficiency of PEHID, we compare the
success rate of different method after 1.25M timesteps, which is amount to 13 epochs in the work of
Plappert et. al [3]. Table 1 shows our results.

4.3 Combing PCHID with Other RL Algorithms

As PCHID only requires sufficient exploration in the environment to approximate optimal sub-policies
progressively, it can be easily plugged into other RL algorithms, including both on-policy algorithms
and off-policy algorithms. At this point, the PCHID module can be regarded as an extension of HER
for off-policy algorithms.

We put forward three combination strategies and evaluate each of them on both GridWorld and
FetchReach environment. 1.Joint Training: The first strategy for combining PCHID with normal
RL algorithm is to adopt a shared policy between them. A shared network is trained through both

0 100 200 300 400 500 600
Episode

50

45

40

35

30

25

20

15

Re
wa

rd

Reward Obtain
HER
PPO
PPO r10
PCHID
PCHID + HER
PCHID + PPO

0 100 200 300 400 500 600
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Success Rate

HER
PPO
PPO r10
PCHID
PCHID + HER
PCHID + PPO

Figure 4: (a): The FetchReach environment. (b): The reward obtaining process of each method.
In PPO r10 the reward of achieving the goal becomes 10 instead of 0 as default, and the reward is
re-scaled to be comparable with other approaches. This is to show the sensitivity of PPO to reward
value. By contrast, the performance of PCHID is unrelated to reward value. (c): The success rate
of each method. Combining PPO with PCHID brings about little improvement over PCHID, but
combining HER with PCHID improves the performance significantly.

6

0 100 200 300 400 500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Combination Methods

Joint Train
Binary IR
Continuous IR
Average Output

0 100 200 300 400 500
Episode

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

Average Outputs with different Weights

HER + 0.1PCHID
HER + 0.4PCHID
HER + 0.7PCHID
HER + 1.0PCHID
HER + 1.3PCHID
HER + 1.6PCHID

0 100 200 300 400 500 600
Episode

50

45

40

35

30

25

20

15

Re
wa

rd

Reward Obtain
Joint Train
Average Output
Only PCHID

Figure 5: (a): Accuracy of GridWorld under different combination strategies. (b): Averaging outputs
with different weights. (c): Obtained Reward of FetchReach under different strategies.

temporal difference learning in RL and self-supervised learning in PCHID. The PCHID module in
joint training can be viewed as a regularizer. 2.Averaging Outputs: Another strategy for combination
is to train two policy networks separately, with data collected in the same set of trajectories. When
the action space is discrete, we can simply average the two output vectors of policy networks. When
the action space is continuous, we can then average the two predicted action vectors and perform
an interpolated action. 3.Intrinsic Reward (IR): This approach is quite similar to the curiosity
driven methods. Instead of using the inverse dynamics to define the curiosity, we use the prediction
difference between PCHID module and RL agent as an intrinsic reward to motivate RL agent to act
as PCHID. Maximizing the intrinsic reward helps the RL agent to avoid aimless explorations hence
can speed up the learning process.

Fig.5 shows our results in GridWorld and FetchReach with different combination strategies. Joint
training performs the best and it does not need hyper-parameter tuning. On the contrary, averaging
outputs requires determining the weights and intrinsic reward requires adjusting its scale with regard
to the external reward.

5 Conclusion

In this work we propose the Policy Continuation with Hindsight Inverse Dynamics (PCHID) to solve
the goal-oriented reward sparse tasks from a new perspective. Our experiments show the PCHID is
able to improve data efficiency remarkably in both discrete and continuous control tasks. Moreover,
our method can be incorporated with both on-policy and off-policy RL algorithms flexibly. We then
extend PCHID in synchronous settings and result in PEHID, in which the learning efficiency is further
improved.

7

References
[1] Carlos Florensa, David Held, Markus Wulfmeier, Michael Zhang, and Pieter Abbeel. Reverse

curriculum generation for reinforcement learning. arXiv preprint arXiv:1707.05300, 2017.

[2] Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking
deep reinforcement learning for continuous control. In International Conference on Machine
Learning, pages 1329–1338, 2016.

[3] Matthias Plappert, Marcin Andrychowicz, Alex Ray, Bob McGrew, Bowen Baker, Glenn
Powell, Jonas Schneider, Josh Tobin, Maciek Chociej, Peter Welinder, et al. Multi-goal
reinforcement learning: Challenging robotics environments and request for research. arXiv
preprint arXiv:1802.09464, 2018.

[4] Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech Zaremba, and Pieter Abbeel. Over-
coming exploration in reinforcement learning with demonstrations. In 2018 IEEE International
Conference on Robotics and Automation (ICRA), pages 6292–6299. IEEE, 2018.

[5] David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. Automatic goal generation for
reinforcement learning agents. arXiv preprint arXiv:1705.06366, 2017.

[6] Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee. Self-imitation learning. arXiv
preprint arXiv:1806.05635, 2018.

[7] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. Learning multi-level hierar-
chies with hindsight. 2018.

[8] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven ex-
ploration by self-supervised prediction. In IEEE Conference on Computer Vision & Pattern
Recognition Workshops, 2017.

[9] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and Alexei A Efros.
Large-scale study of curiosity-driven learning. arXiv preprint arXiv:1808.04355, 2018.

[10] Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic
curriculum learning. 2016.

[11] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,
Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech Zaremba. Hindsight experience
replay. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems 30, pages 5048–5058.
Curran Associates, Inc., 2017.

[12] David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning representations by
back-propagating errors. Cognitive modeling, 5(3):1, 1988.

[13] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[14] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In ICML, 2014.

[15] Sham M Kakade. A natural policy gradient. In Advances in neural information processing
systems, pages 1531–1538, 2002.

[16] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[17] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. arXiv
preprint arXiv:1509.02971, 2015.

[18] Michael I Jordan and David E Rumelhart. Forward models: Supervised learning with a distal
teacher. Cognitive science, 16(3):307–354, 1992.

8

[19] Deepak Pathak, Pulkit Agrawal, Alexei A. Efros, and Trevor Darrell. Curiosity-driven explo-
ration by self-supervised prediction. In The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017.

[20] Evan Shelhamer, Parsa Mahmoudieh, Max Argus, and Trevor Darrell. Loss is its own reward:
Self-supervision for reinforcement learning. arXiv preprint arXiv:1612.07307, 2016.

[21] Piotr Mirowski, Razvan Pascanu, Fabio Viola, Hubert Soyer, and Raia Hadsell. Learning to
navigate in complex environments. 2016.

[22] Léon Bottou. Large-scale machine learning with stochastic gradient descent. In Proceedings of
COMPSTAT’2010, pages 177–186. Springer, 2010.

[23] Larbi Alili, Pierre Patie, and Jesper Lund Pedersen. Representations of the first hitting time
density of an ornstein-uhlenbeck process. Stochastic Models, 21(4):967–980, 2005.

[24] Aviv Tamar, Yi Wu, Garrett Thomas, Sergey Levine, and Pieter Abbeel. Value iteration networks.
In Advances in Neural Information Processing Systems, pages 2154–2162, 2016.

[25] Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random
network distillation. arXiv preprint arXiv:1810.12894, 2018.

9

A On the Selection of TEST(·) Function

In Algorithm 1, a crucial step to extend the (k − 1)-step sub policy to k-step sub policy is to test
whether a k-step transition st → st+k in a trajectory is indeed a k-step solvable problem if we regard
st as a start state s0 and m(st+k) as a goal g. We propose two approaches and evaluate both in Sec.4.

Interaction A straightforward idea is to reset the environment to st and execute action at by policy
πk−1, followed by execution of at+1, at+2, ..., and record if it achieves the goal in less than k steps.
We call this approach Interaction for it requires the environment to be resettable and interact with
the environment. This approach can be portable when the transition dynamics is known or can be
approximated without heavy computation expense.

Random Network Distillation (RND) Given a state as input, the RND [25] is proposed to provide
exploration bonus by comparing the output difference between a fixed randomly initialized neural
network NA and another neural network NB , which is trained to minimize the output difference
between NA and NB with previous states. After training NB with 1, 2, ..., k − 1 step transition pairs
to minimize the output difference between NA and NB , since NB has never seen k-step solvable
transition pairs, these pairs will be differentiated for they lead to larger output differences.

B Algorithm1

Algorithm 1 PCHID Module
Require
• a policy πb(s, g)

• a reward function r(s, g) = 1 if g = m(s) else 0

• a buffer for PCHID B = {B1,B2, ...,BT−1}
• a list K

Initialize πb(s, g), B, K = [1]
for episode = 1,M do

generate s0, g by the system
for t = 0, T − 1 do

Select an action by the behavior policy at = πb(st, g)
Execute the action at and get the next state st+1

Store the transition ((st, g), at, (st+1, g)) in a temporary episode buffer
end for
for t = 0, T − 1 do

for k ∈ K do
calculate additional goal according to st+k by g′ = m(st+k)
if TEST(k, st, g′) = True then

Store (st, g
′, at) in Bk

end if
end for

end for
Sample a minibatch B from buffer B
Optimize behavior policy πb(st, g′) to predict at by supervised learning
if Converge then

Add max(K) + 1 in K
end if

end for

10

C Algorithm2

Algorithm 2 PEHID Module
Require
• a policy πb(s, g)

• a reward function r(s, g) = 1 if g = m(s) else 0

• a buffer for PEHID B
• a list K = [1, 2, ...,K]

Initialize πb(s, g), B
for episode = 1,M do

generate s0, g by the system
for t = 0, T − 1 do

Select an action by the behavior policy at = πb(st, g)
Execute the action at and get the next state st+1

Store the transition ((st, g), at, (st+1, g)) in a temporary episode buffer
end for
for t = 0, T − 1 do

for k ∈ K do
calculate additional goal according to st+k by g′ = m(st+k)
if TEST(k, st, g′) = True then

Store (st, g
′, at) in B

end if
end for

end for
Sample a minibatch B from buffer B
Optimize behavior policy πb(st, g′) to predict at by supervised learning

end for

11

	Introduction
	Related Work
	Method
	Revisiting the Bit-Flipping Problem
	Perspective of Policy Continuation on Multi-Goal RL Task
	Hindsight Inverse Dynamics
	Synchronous Improvement

	Experiments
	GridWorld Navigation
	OpenAI Fetch
	Combing PCHID with Other RL Algorithms

	Conclusion
	On the Selection of TEST() Function
	Algorithm1
	Algorithm2

