
Q-learning with UCB Exploration is Sample Efficient
for Infinite-Horizon MDP

Kefan Dong∗∗1, Yuanhao Wang∗∗1, Xiaoyu Chen2, Liwei Wang2,3

1IIIS, Tsinghua University
2Key Laboratory of Machine Perception, MOE, School of EECS, Peking University

3Center for Data Science, Peking University, Beijing Institute of Big Data Research Peking University, China
{dkf16,yuanhao-16}@mails.tsinghua.edu.cn,
cxy30@pku.edu.cn, wanglw@cis.pku.edu.cn

Abstract

A fundamental question in reinforcement learning is whether model-free algorithms
are sample efficient. Recently, Jin et al. [6] proposed a Q-learning algorithm with
UCB exploration policy, and proved it has nearly optimal regret bound for finite-
horizon episodic MDP. In this paper, we adapt Q-learning with UCB-exploration
bonus to infinite-horizon MDP with discounted rewards without accessing a gener-
ative model. We show that the sample complexity of exploration of our algorithm
is bounded by Õ(SA

ε2(1−γ)7). This improves the previously best known result of

Õ(SA
ε4(1−γ)8) in this setting achieved by delayed Q-learning [11], and matches the

lower bound in terms of ε as well as S and A up to logarithmic factors.

1 Introduction

The goal of reinforcement learning (RL) is to construct efficient algorithms that learn and plan in
sequential decision making tasks when the underlying system dynamics are unknown. A typical
model in RL is Markov Decision Process (MDP). At each time step, the environment is in a state
s. The agent takes an action a, obtain a reward r, and then the environment transits to another state.
In reinforcement learning, the transition probability distribution is unknown. The algorithm needs
to learn the transition dynamics of MDP, while aiming to maximize the cumulative reward. This
poses the exploration-exploitation dilemma: whether to act to gain new information (explore) or to
act consistently with past experience to maximize reward (exploit).

Theoretical analyses of reinforcement learning fall into two broad categories: those assuming a
simulator (a.k.a. generative model), and those without a simulator. In the first category, the algorithm
is allowed to query the outcome of any state action pair from an oracle. The emphasis is on the
number of calls needed to estimate the Q value or to output a near-optimal policy. There has been
extensive research in literature following this line of research, the majority of which focuses on
discounted infinite horizon MDPs [1, 4, 10]. The current results have achieved near-optimal time and
sample complexities [10, 9].

Without a simulator, there is a dichotomy between finite-horizon and infinite-horizon settings. In
finite-horizon settings, there are straightforward definitions for both regret and sample complexity;
the latter is defined as the number of samples needed before the policy becomes near optimal. In this

∗These two authors contributed equally.
Full version available here: https://arxiv.org/abs/1901.09311

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

https://arxiv.org/abs/1901.09311

setting, extensive research in the past decade [6, 2, 5, 3] has achieved great progress, and established
nearly-tight bounds for both regret and sample complexity.

The infinite-horizon setting is a very different matter. First of all, the performance measure cannot be
a straightforward extension of the sample complexity defined above (See [12] for detailed discussion).
Instead, the measure of sample efficiency we adopt is the so-called sample complexity of exploration
[7], which is also a widely-accepted definition. This measure counts the number of times that the
algorithm “makes mistakes” along the whole trajectory. See also [12] for further discussions regarding
this issue.

For infinite horizon MDPs without access to simulator, the best model-free algorithm has a sample
complexity of exploration Õ(SA

ε4(1−γ)8), achieved by delayed Q-learning [11]. It is also the first

algorithm that achieves Õ(SA) bound in sample complexity of exploration. The authors provide a
novel strategy of argument when proving the upper bound for the sample complexity of exploration,
namely identifying a sufficient condition for optimality, and then bound the number of times that this
condition is violated.

However, the results of Delayed Q-learning still leave a quadratic gap in 1/ε from the best-known
lower bound. This is partly because the updates in Q-value are made in an over-conservative way. In
fact, the loose sample complexity bound is a result of delayed Q-learning algorithm itself, as well as
the mathematical artifact in their analysis. To illustrate this, we construct a hard instance showing
that Delayed Q-learning incurs Ω(1/ε3) sample complexity (See Section 5 in the supplementary
materials). This observation, as well as the success of the Q-learning with UCB algorithm [6] in
proving a regret bound in finite-horizon settings, motivates us to incorporate a UCB-like exploration
term into our algorithm.

In this work, we analyze a Q-learning algorithm with UCB exploration policy. We show that the
sample complexity of exploration bound of our algorithm is Õ(SA

ε2(1−γ)7). This strictly improves
the previous best known result due to Delayed Q-learning. It also matches the lower bound in the
dependence on ε, S and A up to logarithmic factors.

Although our algorithm is similar to the algorithm proposed by [6], the analysis of the sample
complexity of exploration for infinite-horizon MDP is challenging and the techniques developed in
[6] do not directly apply here. Please see Section 3.2 for detailed explanations.

2 Preliminary

We consider a Markov Decision Process defined by a five tuple 〈S,A, p, r, γ〉, where S is the state
space,A is the action space, p(s′|s, a) is the transition function, r : S×A → [0, 1] is the deterministic
reward function, and 0 ≤ γ < 1 is the discount factor for rewards. Let S = |S| and A = |A| denote
the number of states and the number of actions respectively.

Starting from a state s1, the agent interacts with the environment for infinite number of time steps.
At each time step, the agent observes state st ∈ S, picks action at ∈ A, and receives reward rt; the
system then transits to next state st+1.

Using the notations in [11], a policy πt refers to the non-stationary control policy of the algo-
rithm since step t. We use V πt(s) to denote the value function under policy πt, which is de-
fined as V πt(s) = E[

∑∞
i=1 γ

i−1r(si, πt+i−1(si))|s1 = s]. We also use V ∗(s) = supπ V
π(s) to

denote the value function of the optimal policy. Accordingly, we define Qπt(s, a) = r(s, a) +
E[
∑∞
i=2 γ

i−1r(si, πt+i−1(si))|s1 = s, a1 = a] as the Q function under policy πt; Q∗(s, a) is the Q
function under optimal policy π∗.

We use the sample complexity of exploration defined in [7] to measure the learning efficiency of our
algorithm. This sample complexity definition has been widely used in previous works [11, 8, 12].

Definition 1. Sample complexity of Exploration of an algorithm ALG is defined as the number
of time steps t such that the non-stationary policy πt at time t is not ε-optimal for current state st, i.e.
V πt (st) < V ∗ (st)− ε.

Roughly speaking, this measure counts the number of mistakes along the whole trajectory. We use
the following definition of PAC-MDP [11].

2

Definition 2. An algorithm ALG is said to be PAC-MDP (Probably Approximately Correct in
Markov Decision Processes) if, for any ε and δ, the sample complexity of ALG is less than some
polynomial in the relevant quantities (S,A, 1/ε, 1/δ, 1/(1− γ)), with probability at least 1− δ.

Finally, recall that Bellman equations are defined as the following:{
V πt(s) = Qπt (s, πt(s))
Qπt(s, a) := (rt + γPV πt+1) (s, a),

{
V ∗(s) = Q∗ (s, π∗(s))
Q∗(s, a) := (rt + γPV ∗) (s, a),

which is frequently used in our analysis. Here we denote [PV πt] (s, a) := Es′∼p(·|s,a)V
πt+1 (s′).

3 Main Results

In this section, we present the UCB Q-learning algorithm and the sample complexity bound.

3.1 Algorithm

Algorithm 1 Infinite Q-learning with UCB
Parameters: ε, γ, δ
Initialize Q(s, a), Q̂(s, a)← 1

1−γ , N(s, a)← 0, ε1 ← ε
24RM ln 1

1−γ
, H ← ln 1/((1−γ)ε1)

ln 1/γ .

Define ι(k) = ln(SA(k + 1)(k + 2)/δ), αk = H+1
H+k .

for t = 1, 2, ... do
5: Take action at ← arg maxa′ Q̂(st, a

′). Receive reward rt and transit to st+1

N(st, at)← N(st, at) + 1

k ← N(st, at), bk ← c2
1−γ

√
Hι(k)
k . c2 is a constant and can be set to 4

√
2

V̂ (st+1)← maxa∈A Q̂(st+1, a)

Q(st, at)← (1− αk)Q(st, at) + αk

[
r(st, at) + bk + γV̂ (st+1)

]
10: Q̂(st, at)← min(Q̂(st, at), Q(st, at))

end for

Here c2 = 4
√

2 is a constant. R = dln 3
ε(1−γ)/(1 − γ)e, while the choice of M can be found in

Section. 3.3. (M = O (ln 1/((1− γ)ε))). The learning rate is defined as αk = (H + 1)/(H + k).

H is chosen as ln 1/((1−γ)ε1)
ln 1/γ , which satisfies H ≤ ln 1/((1−γ)ε1)

1−γ .

Our UCB Q-learning algorithm (Algorithm 1) maintains an optimistic estimation of action value
function Q(s, a) and its historical minimum value Q̂(s, a). Nt(s, a) denotes the number of times that
(s, a) is experienced before time step t; τ(s, a, k) denotes the time step t at which (st, at) = (s, a)
for the k-th time; if this state-action pair is not visited that many times, τ(s, a, k) = ∞. Qt(s, a)

and Q̂t(s, a) denotes the Q and Q̂ value of (s, a) that the algorithm maintains when arriving at st
respectively.

3.2 Sample Complexity of Exploration

Our main result is the following sample complexity of exploration bound.
Theorem 1. For any ε > 0, δ > 0, 1/2 < γ < 1, with probability 1− δ, the sample complexity of
exploration (i.e., the number of time steps t such that πt is not ε-optimal at st) of Algorithm 1 is at
most

Õ

(
SA ln 1/δ

ε2 (1− γ)
7

)
,

where Õ suppresses logarithmic factors of 1/ε, 1/(1− γ) and SA.

We first point out the obstacles for proving the theorem and reasons why the techniques in [6] do not
directly apply here. We then give a high level description of the ideas of our approach.

3

One important issue is caused by the difference in the definition of sample complexity for finite and
infinite horizon MDP. In finite horizon settings, sample complexity (and regret) is determined in the
first T timesteps, and only measures the performance at the initial state s1 (i.e. (V ∗ − V π)(s1)).
However, in the infinite horizon setting, the agent may enter under-explored regions at any time
period, and sample complexity of exploration characterizes the performance at all states the agent
enters. For example, one can create an MDP with a starting state s1 where the probability of leaving
s1 is o(T−1). In that case, with high probability, it would take more than T timesteps to leave s1.
Hence, guarantees about the learning in the first T timesteps or about the performance at s1 imply
almost nothing about the number of mistakes the algorithm would make in the rest of the MDP (i.e.
the sample complexity of exploration of the algorithm). As a result, the analysis for finite horizon
MDPs cannot be directly applied to infinite horizon setting.

This calls for techniques for counting mistakes along the entire trajectory, such as those employed
by [11]. In particular, we need to establish convenient sufficient conditions for being ε-optimal at
timestep t and state st, i.e. V ∗(st)− V πt(st) ≤ ε. Then, bounding the number of violations of such
conditions gives a bound on sample complexity.

Another technical reason why the proof in [6] cannot be directly applied to our problem is the
following: In finite horizon settings, [6] decomposed the learning error at episode k and time h as
errors from a set of consecutive episodes before k at time h+ 1 using a clever design of learning rate.
However, in the infinite horizon setting, this property does not hold. Suppose at time t the agent is at
state st and takes action at. Then the learning error at t only depends on those previous time steps
such that the agent encountered the same state as st and took the same action as at. Thus the learning
error at time t cannot be decomposed as errors from a set of consecutive time steps before t, but errors
from a set of non-consecutive time steps without any structure. Therefore, we have to control the sum
of learning errors over an unstructured set of time steps. This makes the analysis more challenging.

Now we give a brief road map of the proof of Theorem 1. Our first goal is to establish a sufficient
condition so that πt learned at step t is ε-optimal for state st. As an intermediate step we show that a
sufficient condition for V ∗(st)− V πt(st) ≤ ε is that V ∗(st′)−Q∗(st′ , at′) is small for a few time
steps t′ within an interval [t, t+R] for a carefully chosen R (Condition 3). Then we show the desired
sufficient condition (Condition 4) implies Condition 3. The remaining part of this section is organized
as follows. We establish the sufficient condition for ε-optimality in Section 3.3. Finally we prove
Theorem 1 in Section 3.4.

3.3 Sufficient Condition for ε-optimality

In this section, we establish a sufficient condition (Condition 4) for ε-optimality at time step t.

For a fixed st, let TRAJ(R) be the set of length-R trajectories starting from st. Our goal is to give
a sufficient condition so that πt, the policy learned at step t, is ε-optimal. For any ε2 > 0, define
R := dln 1

ε2(1−γ)/(1− γ)e. Denote V ∗(st)−Q∗(st, at) by ∆t. We have

V ∗(st)− V πt(st)
=V ∗(st)−Q∗(st, at) +Q∗(st, at)− V πt(st)
=V ∗(st)−Q∗(st, at) + γP (V ∗ − V πt) (st, πt(st))

=V ∗(st)−Q∗(st, at) + γ
∑
st+1

p (st+1|st, πt(st)) · [V ∗(st+1)−Q∗(st+1, at+1)] +

γ
∑

st+1,st+2

p (st+2|st+1, πt+1(st+1)) · p (st+1|st, πt(st)) [V ∗(st+2)−Q∗(st+2, at+2)]

. . .

≤ε2 +
∑
traj∈

TRAJ(R)

p(traj) ·

R−1∑
j=0

γj∆t+j

 , (1)

where the last inequality holds because γR

1−γ ≤ ε2, which follows from the definition of R.

4

For any fixed trajectory of length R starting from st, consider the sequence (∆t′)t≤t′<t+R. Let X(i)
t

be the i-th largest item of (∆t′)t≤t′<t+R. Rearranging Eq. (1), we obtain

V ∗(st)− V πt(st) ≤ ε2 + Etraj

[
R∑
i=1

γi−1X
(i)
t

]
. (2)

We first propose that Condition 3 implies ε-optimality at time step t when ε2 = ε/3. The proof is
given in Section 1 in the supplementary materials.

Condition 1. Let ξi := 1
2i+2 ε2

(
ln 1

1−γ

)−1

. For all 0 ≤ i ≤ blog2Rc,

E[X
(2i)
t] ≤ ξi. (3)

Claim 1. If Condition 3 is satisfied at time step t, the policy πt is ε-optimal at state st, i.e. V ∗(st)−
V πt(st) ≤ ε.

Next we propose that given i, t, Condition 4 implies Eq. (8). The proof is given in Section 1 in the
supplementary materials.

Condition 2. Define L = blog2Rc. Let M = max
{
d2 log2

1
ξL(1−γ)e, 10

}
, and ηj = ξi

M · 2
j−1.

For all 2 ≤ j ≤M , ηj Pr[X
(2i)
t > ηj−1] ≤ ξi

M .

Claim 2. Given i, t, Eq. (8) holds if Condition 4 is satisfied.

Therefore, if a time step t is not ε2-optimal, there exists 0 ≤ i < blog2Rc and 2 ≤ j ≤M such that

ηj Pr[X
(2i)
t > ηj−1] >

ξi
M
. (4)

Now, the sample complexity can be bounded by the number of (t, i, j) pairs that Eq. (4) is violated.
Following the approach of [11], for a fixed (i, j)-pair, instead of directly counting the number of time
steps t such that Pr[X

(2i)
t > ηj−1] > ξi

Mηj
, we count the number of time steps that X(2i)

t > ηj−1.
Lemma 2 provides an upper bound of the number of such t.

3.4 Proof for Theorem 1

In this section, we first present Lemma 2, which bounds the number of sub-optimal actions and
in turn, bounds the sample complexity of our algorithm. We then prove Theorem 1 by stitching
Lemma 2 and Condition 4.
Lemma 1. For fixed t and η > 0, let B(t)

η be the event that V ∗(st)−Q∗(st, at) > η
1−γ in step t. If

η > 2ε1, then with probability at least 1− δ/2,
t=∞∑
t=1

I
[
B(t)
η

]
≤ SA lnSA ln 1/δ

η2(1− γ)3
· polylog

(
1

ε1
,

1

1− γ

)
, (5)

where I[·] is the indicator function.

Now we present the proof for Theorem 1.

Proof. (Proof for Theorem 1)

By lemma 2, for any 2 ≤ j ≤M ,
∑∞
t=1 I [V ∗(st)−Q∗(st, at) > ηj−1] ≤ C, where

C =
SA lnSA ln 1/δ

η2
j−1(1− γ)5

· P̃ . (6)

Here P̃ is a shorthand for polylog
(

1
ε1
, 1

1−γ

)
.

Let At = I[X
(2i)
t ≥ ηj−1] be a Bernoulli random variable, and {Ft}t≥1 be the filtration generated

by random variables {(sτ , aτ) : 1 ≤ τ ≤ t}. Since At is Ft+R−measurable, for any 0 ≤ k < R,

5

{Ak+tR − E[Ak+tR | Fk+tR]}t≥0 is a martingale difference sequence. For now, consider a fixed

0 ≤ k < R. By Azuma-Hoeffiding inequality, after T = O
(
C
2i ·

Mηj
ξi

ln(RML)
)

time steps (if it
happens that many times) with

Pr
[
X

(2i)
k+tR ≥ ηj−1

]
= E[Ak+tR] >

ξi
Mηj

, (7)

we have
∑
tAk+tR ≥ C/2i with probability at least 1− δ/(2MRL).

On the other hand, if Ak+tR happens, within [k + tR, k + tR + R − 1], there must be at least
2i time steps at which V ∗(st) − Q∗(st, at) > ηj−1. The latter event happens at most C times,
and [k + tR, k + tR + R − 1] are disjoint. Therefore,

∑∞
t=0Ak+tR ≤ C/2i. This suggests that

the event described by (7) happens at most T times for fixed i and j. Via a union bound on
0 ≤ k < R, we can show that with probability 1− δ/(2ML), there are at most RT time steps where
Pr
[
X

(2i)
t ≥ ηj−1

]
> ξi/(Mηj). Thus, the number of sub-optimal steps is bounded by,

∞∑
t=1

I[V ∗(st)− V πt(st) > ε]

≤
∞∑
t=1

L∑
i=0

M∑
j=2

I

[
ηj Pr[X

(2i)
t > ηj−1] >

ξi
M

]
=

L∑
i=0

M∑
j=2

∞∑
t=1

I

[
Pr[X

(2i)
t > ηj−1] >

ξi
ηjM

]

≤
L∑
i=0

M∑
j=2

SAMR ln 1/δ lnSA

ηjξi · 2i(1− γ)5
P̃ ≤

L∑
i=0

SA · 2i+4 lnSA ln 1/δ

ε22(1− γ)6
P̃ (By definition of ξi and ηj)

≤ SAR lnSA ln 1/δ

ε22(1− γ)6
P̃ ≤ SA lnSA ln 1/δ

ε22(1− γ)7
P̃ . (By definition of R)

Our final choice of ε2 and ε1 are ε2 = ε
3 , and ε1 = ε

24RM ln 1
1−γ

. It is not hard to see that ln 1/ε1 =

poly(ln 1
ε , ln

1
1−γ). This immediately implies that with probability 1− δ, the number of time steps

such that (V ∗ − V π) (st) > ε is

Õ
(
SA ln 1/δ

ε2(1− γ)7

)
,

where hidden factors are poly(ln 1
ε , ln

1
1−γ , lnSA).

4 Discussion

Lower bound To the best of our knowledge, the current best lower bound for worst-case sample
complexity is Ω

(
SA

ε2(1−γ)3 ln 1/δ
)

due to [8]. The gap between our results and this lower bound lies
only in the dependence on 1/(1− γ) and logarithmic terms of SA, 1/(1− γ) and 1/ε.

Model-free algorithms Previously, the best sample complexity bound for a model-free algorithm is
Õ
(

SA
ε4(1−γ)8

)
(suppressing all logarithmic terms), achieved by Delayed Q-learning [11]. Our results

improve this upper bound by a factor of 1
ε2(1−γ) , and closes the quadratic gap in 1/ε between Delayed

Q-learning’s result and the lower bound. In fact, the following theorem shows that UCB Q-learning
can indeed outperform Delayed Q-learning.

Theorem 2. There exists a family of MDPs with constant S and A, in which with probability
1− δ, Delayed Q-learning incurs sample complexity of exploration of Ω

(
ε−3

ln(1/δ)

)
, assuming that

ln(1/δ) < ε−2.

The construction of this hard MDP family is given in the supplementary material.

Model-based algorithms For model-based algorithms, better sample complexity results in infinite
horizon settings have been claimed [13]. To the best of our knowledge, the best published result

6

without further restrictions on MDPs is Õ
(

SA
ε2(1−γ)6

)
claimed by [13], which is (1− γ) smaller than

our upper bound. From the space complexity point of view, our algorithm is much more memory-
efficient. Our algorithm stores O(SA) values, whereas the algorithm in [13] needs Ω(S2A) memory
to store the transition model.

Reduction to regret bound Our results can imply a Õ(
√
T) regret bound via reduction. The

argument is similar to that in [3].

Acknowledgement

The authors thank Chongjie Zhang for helpful discussions.

References
[1] Mohammad Gheshlaghi Azar, Remi Munos, Mohammad Ghavamzadeh, and Hilbert Kappen.

Speedy q-learning. In Advances in neural information processing systems, 2011.

[2] Mohammad Gheshlaghi Azar, Ian Osband, and Rémi Munos. Minimax regret bounds for
reinforcement learning. arXiv preprint arXiv:1703.05449, 2017.

[3] Christoph Dann, Tor Lattimore, and Emma Brunskill. Unifying pac and regret: Uniform pac
bounds for episodic reinforcement learning. In Advances in Neural Information Processing
Systems, pages 5713–5723, 2017.

[4] Eyal Even-Dar and Yishay Mansour. Learning rates for q-learning. Journal of Machine Learning
Research, 5(Dec):1–25, 2003.

[5] Thomas Jaksch, Ronald Ortner, and Peter Auer. Near-optimal regret bounds for reinforcement
learning. Journal of Machine Learning Research, 11(Apr):1563–1600, 2010.

[6] Chi Jin, Zeyuan Allen-Zhu, Sebastien Bubeck, and Michael I Jordan. Is q-learning provably
efficient? In Advances in Neural Information Processing Systems, pages 4864–4874, 2018.

[7] Sham Machandranath Kakade et al. On the sample complexity of reinforcement learning. PhD
thesis, University of London London, England, 2003.

[8] Tor Lattimore and Marcus Hutter. Pac bounds for discounted mdps. In International Conference
on Algorithmic Learning Theory, pages 320–334. Springer, 2012.

[9] Aaron Sidford, Mengdi Wang, Xian Wu, Lin Yang, and Yinyu Ye. Near-optimal time and sample
complexities for solving markov decision processes with a generative model. In Advances in
Neural Information Processing Systems, pages 5186–5196, 2018.

[10] Aaron Sidford, Mengdi Wang, Xian Wu, and Yinyu Ye. Variance reduced value iteration and
faster algorithms for solving markov decision processes. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 770–787. Society for Industrial
and Applied Mathematics, 2018.

[11] Alexander L Strehl, Lihong Li, Eric Wiewiora, John Langford, and Michael L Littman. Pac
model-free reinforcement learning. In Proceedings of the 23rd international conference on
Machine learning, pages 881–888. ACM, 2006.

[12] Alexander L Strehl and Michael L Littman. An analysis of model-based interval estimation for
markov decision processes. Journal of Computer and System Sciences, 74(8):1309–1331, 2008.

[13] István Szita and Csaba Szepesvári. Model-based reinforcement learning with nearly tight
exploration complexity bounds. In Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pages 1031–1038, 2010.

7

A Proof of Sufficient Conditions

Condition 3. Let ξi := 1
2i+2 ε2

(
ln 1

1−γ

)−1

. For all 0 ≤ i ≤ blog2Rc,

E[X
(2i)
t] ≤ ξi. (8)

Claim 3. If Condition 3 is satisfied at time step t, the policy πt is ε-optimal at state st, i.e. V ∗(st)−
V πt(st) ≤ ε.

Proof. Note that X(i)
t is monotonically decreasing with respect to i. Therefore, E[X

(i)
t] ≤

E[X
(2blog2 ic)
t]. Eq. (8) implies that for 1/2 < γ < 1,

E

[
R∑
i=1

γi−1X
(i)
t

]
=

R∑
i=1

γi−1E[X
(i)
t] ≤

R∑
i=1

γi−1E[X
(2blog2 ic)
t]

≤
R∑
i=1

γi−12−blog2 ic−2ε2

(
ln

1

1− γ

)−1

≤
R∑
i=1

γi−1

i
ε2

(
ln

1

1− γ

)−1

≤ 2ε2,

where the last inequality follows from the fact that
∑∞
i=1

γi−1

i = 1
γ ln 1

1−γ and γ > 1/2.

In Section 3.3 of the main text, we show that (Eq. (2) in the main text):

V ∗(st)− V πt(st) ≤ ε2 + Etraj

[
R∑
i=1

γi−1X
(i)
t

]
. (9)

By Eq. (9), we have, V ∗(st)− V πt(st) ≤ ε2 + E
[∑R

i=1 γ
i−1X

(i)
t

]
≤ 3ε2 = ε.

Condition 4. Define L = blog2Rc. Let M = max
{
d2 log2

1
ξL(1−γ)e, 10

}
, and ηj = ξi

M · 2
j−1.

For all 2 ≤ j ≤M , ηj Pr[X
(2i)
t > ηj−1] ≤ ξi

M .

Claim 4. Given i, t, Eq. (8) holds if Condition 4 is satisfied.

Proof. The reason behind the choice of M is to ensure that ηM > 1/(1 − γ) 2. It follows that,
assuming Condition 4 holds, for 1 ≤ j ≤M ,

E
[
X

(2i)
t

]
=

∫ 1/(1−γ)

0

Pr
[
X

(2i)
t > x

]
dx ≤ η1 +

M∑
j=2

ηj Pr[X
(2i)
t > ηj−1] ≤ ξi.

B Proof of Lemma 1

Lemma 2. For fixed t and η > 0, let B(t)
η be the event that V ∗(st)−Q∗(st, at) > η

1−γ in step t. If
η > 2ε1, then with probability at least 1− δ/2,

t=∞∑
t=1

I
[
B(t)
η

]
≤ SA lnSA ln 1/δ

η2(1− γ)3
· polylog

(
1

ε1
,

1

1− γ

)
, (10)

where I[·] is the indicator function.

2 ηM > 1/(1−γ) can be verified by combining inequalities ξi ·2M/2 ≥ 1/(1−γ) and 2M/2−1 > (M +1)
for large enough M .

8

Proof. When η > 1 the lemma holds trivially. Now consider the case that η ≤ 1.

Let I = {t : V ∗(st)−Q∗(st, at) > η
1−γ }. By lemma 3, with probability 1− δ,

η|I|
1− γ

≤
∑
t∈I

(V ∗(st)−Q∗(st, at)) ≤
∑
t∈I

[(
Q̂t −Q∗

)
(st, at)

]
≤ |I|ε1

1− γ
+O

(
1

(1− γ)5/2

√
SA|I|`(|I|) +

SA

(1− γ)3
ln |I| ln 1

ε1(1− γ)

)

≤ |I|ε1
1− γ

+O

ln
1

ε1(1− γ)
·

√
SA|I| ln SA|I|

δ

(1− γ)5/2
+
SA ln |I|
(1− γ)3

≤ |I|ε1

1− γ
+O

(√
ln

1

δ
ln

1

ε1(1− γ)
·

(√
SA|I| lnSA|I|
(1− γ)5/2

+
SA ln |I|
(1− γ)3

))

Suppose that |I| = SAk2

η2(1−γ)3 lnSA, for some k > 1. Then it follows that for some constant C1,

η|I|
1− γ

=
k2SA lnSA

(1− γ)4η
≤ 2

(η − ε1)|I|
1− γ

≤ C1

√
ln

1

δ
ln

1

ε1(1− γ)

(√
SA|I| ln (SA|I|)

(1− γ)5/2
+
SA ln |I|
(1− γ)3

)

≤ C1

√
ln

1

δ
ln

1

ε1(1− γ)

(
SAk

η(1− γ)4

√
lnSA · (lnSA+ ln |I|) +

SA ln |I|
(1− γ)3

)
.

Therefore

k2 ln(SA) ≤ C1

√
ln

1

δ
ln

1

ε1(1− γ)
(k (lnSA+ ln |I|) + η(1− γ) ln |I|)

≤ kC1

√
ln

1

δ
ln

1

ε1(1− γ)
· (lnSA+ 2 ln |I|)

≤ kC1

√
ln

1

δ
ln

1

ε1(1− γ)
·
(

3 lnSA+ 4 ln k + 6 ln
1

η(1− γ)

)
≤ 6kC1

√
ln

1

δ
ln2 1

ε1(1− γ)
(lnSA+ ln ek) .

Let C ′ = max{2, 6C1

√
ln 1

δ ln2 1
ε1(1−γ)}. Then

k ≤ C ′(2 + ln k). (11)
If k ≥ 10C ′ lnC ′, then

k − C ′ (2 + ln k) ≥ 8C ′ lnC ′ − (2 + ln 10)C ′

≥ 4C ′ (2 lnC ′ − 4) ≥ 0,

which means violation of (11). Therefore, since C ′ ≥ 2

k ≤ 10C ′ lnC ′ ≤ 360C2
1 max{ln4 1

ε1(1− γ)
, 20 ln 2}. (12)

It immediately follows that

|I| = SAk2

η2(1− γ)3
lnSA (13)

≤ SA lnSA

η2(1− γ)5
· ln 1

δ
· O
(

ln8 1

ε1(1− γ)

)
. (14)

9

C Proof of Lemma 2

Lemma 3. For every (C,w)-sequence (wt)t≥1, with probability 1− δ/2, the following holds:

∑
t≥1

wt(Q̂t −Q∗)(st, at) ≤
Cε1

1− γ
+O

(√
wSAC`(C)

(1− γ)2.5
+
wSA lnC

(1− γ)3
ln

1

(1− γ)ε1

)
.

where `(C) = ι(C) ln 1
(1−γ)ε1

is a log-factor.

Fact 1. (1) The following statement holds throughout the algorithm,

Q̂p+1(s, a) ≤ Qp+1(s, a).

(2) For any p, there exists p′ ≤ p such that

Q̂p+1(s, a) ≥ Qp′+1(s, a).

Proof. Both properties are results of the update rule at line 11 of Algorithm 1.

Before proving lemma 2, we will prove two auxiliary lemmas.

Lemma 3. The following properties hold for αit :

1.
√

1
t ≤

∑t
i=1 α

i
t

√
1
i ≤ 2

√
1
t for every t ≥ 1, c > 0.

2. maxi∈[t] α
i
t ≤ 2H

t and
∑t
i=1(αit)

2 ≤ 2H
t for every t ≥ 1.

3.
∑∞
t=i α

i
t = 1 + 1/H, for every i ≥ 1.

4.
√

ι(t)
t ≤

∑t
i=1 α

i
t

√
ι(i)
i ≤ 2

√
ι(t)
t where ι(t) = ln(c(t+1)(t+2)), for every t ≥ 1, c ≥ 1.

Proof. Recall that

αt =
H + 1

H + t
, α0

t =

t∏
j=1

(1− αj), αit = αi

t∏
j=i+1

(1− αj).

Properties 1-3 are proven by [6]. Now we prove the last property.

On the one hand,
t∑
i=1

αit

√
ι(i)

i
≤

t∑
i=1

αit

√
ι(t)

i
≤ 2

√
ι(t)

t
,

where the last inequality follows from property 1.

The left-hand side is proven by induction on t. For the base case, when t = 1, αtt = 1. For t ≥ 2, we
have αit = (1− αt)αit−1 for 1 ≤ i ≤ t− 1. It follows that

t∑
i=1

αit

√
ι(i)

i
= αt

√
ι(t)

t
+ (1− αt)

t−1∑
i=1

αit−1

√
ι(i)

i
≥ αt

√
ι(t)

t
+ (1− αt)

√
ι(t− 1)

t− 1
.

Since function f(t) = ι(t)/t is monotonically decreasing for t ≥ 1, c ≥ 1, we have

αt

√
ι(t)

t
+ (1− αt)

√
ι(t− 1)

t− 1
≥ αt

√
ι(t)

t
+ (1− αt)

√
ι(t)

t
≥
√
ι(t)

t
.

10

Lemma 4. With probability at least 1− δ/2, for all p ≥ 0 and (s, a)-pair,

0 ≤ (Qp −Q∗)(s, a) ≤ α0
t

1− γ
+

t∑
i=1

γαit(V̂ti − V ∗)(sti+1) + βt, (15)

0 ≤ (Q̂p −Q∗)(s, a), (16)

where t = Np(s, a), ti = τ(s, a, i) and βt = c3
√
Hι(t)/((1− γ)2t).

Proof. Recall that

α0
t =

t∏
j=1

(1− αj), αit = αi

t∏
j=i+1

(1− αj).

From the update rule, it can be seen that our algorithm maintains the following Q(s, a):

Qp(s, a) = α0
t

1

1− γ
+

t∑
i=1

αit

[
r(s, a) + bi + γV̂ti(sti+1)

]
.

Bellman optimality equation gives:

Q∗(s, a) = r(s, a) + γPV ∗(s, a) = α0
tQ
∗(s, a) +

t∑
i=1

αit [r(s, a) + γPV ∗(s, a)] .

Subtracting the two equations gives

(Qp −Q∗)(s, a) = α0
t (

1

1− γ
−Q∗(s, a)) +

t∑
i=1

αit [bi + γ (Vti − V ∗) (sti+1) + γ (V ∗(sti+1)− PV ∗(s, a))] .

The identity above holds for arbitrary p, s and a. Now fix s ∈ S, a ∈ A and p ∈ N. Let t = Np(s, a),
ti = τ(s, a, i). The t = 0 case is trivial; we assume t ≥ 1 below. Now consider an arbitrary fixed k.
Define

∆i =
(
αik · I[ti <∞] ·

(
PV ∗ − P̂tiV ∗

)
(s, a)

)
Let Fi be the σ-Field generated by random variables (s1, a1, ..., sti , ati). It can be seen that
E [∆i|Fi] = 0, while ∆i is measurable in Fi+1. Also, since 0 ≤ V ∗(s, a) ≤ 1

1−γ , |∆i| ≤ 2
1−γ .

Therefore, ∆i is a martingale difference sequence; by the Azuma-Hoeffding inequality,

Pr

[∣∣∣∣∣
k∑
i=1

∆i

∣∣∣∣∣ > η

]
≤ 2 exp

{
− η2

8 (1− γ)
−2∑k

i=1(αik)2

}
. (17)

By choosing η, we can show that with probability 1− δ/ [SA(k + 1)(k + 2)],

∣∣∣∣∣
k∑
i=1

∆i

∣∣∣∣∣ ≤ 2
√

2

1− γ
·

√√√√ k∑
i=1

(αik)2 · ln 2(k + 1)(k + 2)SA

δ
≤ c2

1− γ

√
Hι(k)

k
. (18)

Here c2 = 4
√

2, ι(k) = ln (k+1)(k+2)SA
δ . By a union bound for all k, this holds for arbitrary k > 0,

arbitrary s ∈ S, a ∈ A simultaneously with probability

1−
∑

s′∈S,a′∈A

∞∑
k=1

δ

2SA(k + 1)(k + 2)
= 1− δ

2
.

Therefore, we conclude that (18) holds for the random variable t = Np(s, a) and for all p, with
probability 1− δ/2 as well.

Proof of the right hand side of (15): We also know that (bk = c2
1−γ

√
Hι(k)
k)

c2
1− γ

√
Hι(k)

k
≤

k∑
i=1

αikbi ≤
2c2

1− γ

√
Hι(k)

k
.

11

It is implied by (18) that

(Qp −Q∗)(s, a) ≤ α0
t

1− γ
+ γ

∣∣∣∣∣
t∑
i=1

∆i

∣∣∣∣∣+

t∑
i=1

αit

[
γ(V̂ti − V ∗)(xti+1) + bi

]
≤ α0

t

1− γ
+

3c2
1− γ

√
Hι(t)

t
+

t∑
i=1

γαit(V̂
ti − V ∗)(xti+1)

(Property 4 of lemma 3)

≤ α0
t

1− γ
+

t∑
i=1

γαit(V̂
ti − V ∗)(xti+1) + βt.

Note that βt = c3(1− γ)−1
√
Hι(t)/t; c3 = 3c2 = 12

√
2.

Proof of the left hand side of (15): Now, we assume that event that (18) holds. We assert that
Qp ≥ Q∗ for all (s, a) and p ≤ p′. This assertion is obviously true when p′ = 0. Then

(Qp −Q∗)(s, a) ≥ −γ

∣∣∣∣∣
t∑
i=1

∆i

∣∣∣∣∣+

t∑
i=1

αit

[
γ(V̂ti − V ∗)(xti+1) + bi

]
≥

t∑
i=1

αitbi − γ

∣∣∣∣∣
t∑
i=1

∆i

∣∣∣∣∣ ≥ 0.

Therefore the assertion holds for p′ + 1 as well. By induction, it holds for all p.

We now see that (15) holds for probability 1− δ/2 for all p, s, a. Since Q̂p(s, a) is always greater
than Qp′(s, a) for some p′ ≤ p, we know that Q̂p(s, a) ≥ Qp′(s, a) ≥ Q∗(s, a), thus proving (16).

We now give a proof for lemma 2. Recall the definition for a (C,w)-sequence. A sequence (wt)t≥1

is said to be a (C,w)-sequence for C,w > 0, if 0 ≤ wt ≤ w for all t ≥ 1, and
∑
t≥1 wt ≤ C.

Proof. Let nt = Nt(st, at) for simplicity; we have

∑
t≥1

wt(Q̂t −Q∗)(st, at)

≤
∑
t≥1

wt(Qt −Q∗)(st, at)

≤
∑
t≥1

wt

[
α0
nt

1− γ
+ βnt + γ

nt∑
i=1

αint

(
V̂τ(st,at,i) − V

∗
)

(sτ(st,at,i)+1)

]
(19)

The last inequality is due to lemma 4. Note that α0
nt = I[nt = 0], the first term in the summation can

be bounded by,

∑
t≥1

wt
α0
nt

1− γ
≤ SAw

1− γ
. (20)

12

For the second term, define u(s, a) = suptNt(s, a).3 It follows that,

∑
t≥1

wtβnt =
∑
s,a

u(s,a)∑
i=1

wτ(s,a,i)βi

≤
∑
s,a

(1− γ)−1c3

Cs,a/w∑
i=1

√
Hι(i)

i
w (21)

≤ 2
∑
s,a

(1− γ)−1c3

√
ι(C)HCs,aw (22)

≤ 2c3(1− γ)−1
√
wSAHCι(C). (23)

Where Cs,a =
∑
t≥1,(st,at)=(s,a) wt. Inequality (21) follows from rearrangement inequality, since

ι(x)/x is monotonically decreasing. Inequality (23) follows from Jensen’s inequality.

For the third term of the summation, we have∑
t≥1

wt

nt∑
i=1

αint

(
V̂τ(st,at,i) − V

∗
)

(sτ(st,at,i)+1)

≤
∑
t′≥1

(
V̂t′ − V ∗

)
(st′+1)

 ∞∑
t=t′+1

(st,at)=(s′t,a
′
t)

αnt′nt wt

 . (24)

(25)

Define

w′t′+1 =

 ∞∑
t=t′+1

(st,at)=(s′t,a
′
t)

αnt′nt wt

 .

We claim that w′t+1 is a (C, (1 + 1
H)w)-sequence. We now prove this claim. By lemma 3, for any

t′ ≥ 0,

w′t′+1 ≤ w
∞∑

j=nt′

α
nt′
j = (1 + 1/H)w.

By
∑i
j=0 α

j
i = 1, we have

∑
t′≥1 w

′
t′+1 ≤

∑
t≥1 wt ≤ C. This proves the assertion. It follows from

(24) that ∑
t≥1

w′t+1

(
V̂t − V ∗

)
(st+1)

=
∑
t≥1

w′t+1

(
V̂t+1 − V ∗

)
(st+1) +

∑
t≥1

w′t+1

(
V̂t − V̂t+1

)
(st+1) (26)

≤
∑
t≥1

w′t+1

(
V̂t+1 − V ∗

)
(st+1) +

∑
t≥1

w′t+1

(
2αnt+1

1

1− γ

)
(27)

≤
∑
t≥1

w′t+1

(
V̂t+1 − V ∗

)
(st+1) +O

(
wSAH

1− γ
lnC

)
(28)

≤
∑
t≥1

w′t+1

(
Q̂t+1 −Q∗

)
(st+1, at+1) +O

(
wSAH

1− γ
lnC

)
(29)

3u(s, a) could be infinity when (s, a) is visited for infinite number of times.

13

Inequality (27) comes from the update rule of our algorithm. Inequality (28) comes from the
fact that αt = (H + 1)/(H + t) ≤ H/t and Jensen’s Inequality. More specifically, let C ′s,a =∑
t≥1,(st,at=s,a

w′t+1, w′ = w(1 + 1/H). Then

∑
t≥1

w′t+1αnt+1 ≤
∑
s,a

C′s,a/w
′∑

n=1

w′
H

n
≤
∑
s,a

Hw′ ln(C ′s,a/w) ≤ 2SAHw lnC.

Putting (20), (23) and (29) together, we have,

∑
t≥1

wt(Q̂t −Q∗)(st, at)

≤ 2c3

√
wSAHCι(C)

1− γ
+O

(
wSAH

1− γ
lnC

)
+ γ

∑
t≥1

w′t+1

(
Q̂t+1 −Q∗

)
(st+1, at+1). (30)

Observe that the third term is another weighted sum with the same form as (19). Therefore, we
can unroll this term repetitively with changing weight sequences.Suppose that our original weight
sequence is also denoted by {w(0)

t }t≥1, while {w(k)
t }t≥1 denotes the weight sequence after unrolling

for k times. Let w(k) be w · (1 + 1/H)
k. Then we can see that {w(k)

t }t≥1 is a (C,w(k))-sequence.
Suppose that we unroll for H times. Then∑

t≥1

wt(Q̂t −Q∗)(st, at)

≤ 2c3

√
w(H)SAHCι(C)

(1− γ)2
+O

(
w(H)SAH

(1− γ)2
lnC

)
+ γH

∑
t≥1

w
(H)
t

(
Q̂t −Q∗

)
(st, at)

≤ 2c3

√
w(H)SAHCι(C)

(1− γ)2
+O

(
w(H)SAH

(1− γ)2
lnC

)
+ γH

C

1− γ
.

We set H = ln 1/((1−γ)ε1)
ln 1/γ ≤ ln 1/((1−γ)ε1)

1−γ . It follows that w(H) = (1 + 1/H)Hw(0) ≤ ew(0), and
that γH C

1−γ ≤ Cε1. Also, let `(C) = ι(C) ln((1− γ)−1ε−1
1). Therefore,

∑
t≥1

wt(Q̂t −Q∗)(st, at) ≤
Cε1

1− γ
+O

(√
wSAC`(C)

(1− γ)2.5
+

wSA

(1− γ)3
lnC ln

1

(1− γ)ε1

)
. (31)

D Extension to other settings

First we define a mapping from a finite horizon MDP to an infinite horizon MDP so that our algorithm
can be applied. For an arbitrary finite horizon MDPM = (S,A,H, rh(s, a), ph(s′ | s, a)) where H
is the length of episode, the corresponding infinite horizon MDP M̄ = (S̄, Ā, γ, r̄(s̄, ā), p̄(s̄′ | s̄, ā))
is defined as,

• S̄ = S ×H, Ā = A;
• γ = (1− 1/H);
• for a state s at step h, let s̄s,h be the corresponding state. For any action a and next state
s′, define r̄(s̄s,h, a) = γH−h+1rh(s, a) and p̄(s̄s′,h+1 | s̄s,h, a) = ph(s′ | s, h). And for
h = H , set r̄(s̄s,h, a) = 0 and p̄(s̄s′,1 | s̄s,h, a) = I[s′ = s1] for a fixed starting state s1.

Let V̄t be the value function in M̄ at time t and V kh the value function inM at episode k, step h. It
follows that V̄ ∗(s̄s1,1) = γH

1−γH V
∗
1 (s1). And the policy mapping is defined as πh(s) = π̄(s̄s,h) for

14

policy π̄ in M̄. Value functions in MDPM and M̄ are closely related in a sense that, any ε-optimal
policy π̄ of M̄ corresponding to an (ε/γH)-optimal policy π inM (see section D.1 for proof). Note
that here γH = (1− 1/H)H = O(1) is a constant.

For any ε > 0, by running our algorithm on M̄ for Õ(3SAH9

ε2) time steps, the starting state s1 is
visited at least Õ(3SAH8

ε2) times, and at most 1/3 of them are not ε-optimal. If we select the policy
uniformly randomly from the policy πtH+1 for 0 ≤ t < T/H , with probability at least 2/3 we can
get an ε-optimal policy. Therefore the PAC sample complexity is Õ

(
ε−2
)

after hiding S,A,H terms.

On the other hand, we want to show that for any K episodes,

Regret(T) =

T/H∑
k=1

[
V ∗(s1)− V k1 (s1)

]
∝ T 1/2.

The reason why our algorithm can have a better reduction from regret to PAC is that, after choosing
ε1, it follows from the argument of theorem 1 that for all ε2 > Õ(ε1/(1 − γ)), the number of
ε2-suboptimal steps is bounded by

O
(
SA lnSA ln 1/δ

ε22(1− γ)7
polylog

(
1

ε1
,

1

1− γ

))
with probability 1−δ. In contrast, delayed Q-learning can only give an upper bound on ε1-suboptimal
steps after setting parameter ε1.

Formally, let Xk = V ∗(s1)− V k1 (s1) be the regret of k-th episode. For any T , set ε =
√
SA/T and

ε2 = Õ(ε1/(1− γ)). Let M = dlog2
1

ε2(1−γ)e. It follows that,

Regret(T) ≤ Tε2 +

M∑
i=1

(∣∣k : {Xk ≥ ε2 · 2i−1}
∣∣) ε2 · 2i

≤ Õ

(
Tε2 +

M∑
i=1

SA ln 1/δ

ε2 · 2i−2

)
≤ Õ

(√
SAT ln 1/δ

)
with probability 1− δ. Note that the Õ notation hides the poly (1/(1− γ), log 1/ε1) which is, by our
reduction, poly (H, log T, logS, logA).

D.1 Connection between value functions

Recall that our MDP mapping from M = (S,A,H, rh(s, a), ph(s′ | s, a)) to M̄ =
(S̄, Ā, γ, r̄(s̄, ā), p̄(s̄′ | s̄, ā)) is defined as,

• S̄ = S ×H, Ā = A;

• γ = (1− 1/H);

• for a state s at step h, let s̄s,h be the corresponding state. For any action a and next state s′,
define r̄(s̄s,h, a) = γH−h+1rh(s, a) and p̄(s̄s′,h+1 | s̄s,h, a) = ph(s, h). And for h = H ,
set r̄(s̄s,h, a) = 0 and p̄(s̄s′,1 | s̄s,h, a) = I[s′ = s1] for a fixed starting state s1.

For a trajectory {(s̄s1,1, ā1), (s̄s2,2, ā2), · · · } in M̄, let {(s1, a1), (s2, a2), · · · } be the corresponding
trajectory inM. Note thatM has a unique fixed starting state s1, which means that stH+1 = s1 for
all t ≥ 0. Denote the corresponding policy of π̄t as πt (may be non-stationary), then we have

V̄ π̄
t

(s̄s1,1) = E
[
r̄(s̄s1,1, ā1) + γr̄(s̄s2,2, ā2) + · · ·+ γH−1r̄(s̄sH−1,H−1, āH−1) + γH V̄ πt+H−1(s̄sH+1,1)

]
= γHE

[
r1(s1, a1) + r2(s2, a2) + · · ·+ rH−1(sH−1, aH−1) + V̄ πt+H (s̄sH+1,1)

]
= γHV π

t

(s1) + γH V̄ πt+H (s̄s1,1).

15

Then for a stationary policy π̄, we can conclude V̄ π̄(s̄s1,1) = γH

1−γH V
π(s1). Since the optimal policy

π̄∗ is stationary, we have V̄ ∗(s̄s1,1) = γH

1−γH V
∗(s1).

By definition, π̄ is ε-optimal at time step t means that

V̄ π̄
t

(s̄s1,1) ≥ V̄ ∗(s̄s1,1)− ε.

It follows that

γHV π
t

(s1) + γH V̄ πt+H (s̄s1,1) = V̄ π̄(s̄s1,1) ≥ V̄ ∗(s̄s1,1)− ε,

hence

γHV π
t

(s1) ≥ (1− γH)V̄ ∗(s̄s1,1) + γH(V̄ ∗(s̄s1,1)− V̄ πt+H (s̄s1,1))− ε ≥ (1− γH)V̄ ∗(s̄s1,1)− ε.

Therefore we have

V π
t

(s1) ≥ 1− γH

γH
V̄ ∗(s̄s1,1)− ε/γH = V ∗(s1)− ε/γH ,

which means that πt is an (ε/γH)-optimal policy.

E A hard instance for Delayed Q-learning

In this section, we prove Theorem 2 regarding the performance of Delayed Q-learning.
Theorem 2. There exists a family of MDPs with constant S and A, in which with probability
1− δ, Delayed Q-learning incurs sample complexity of exploration of Ω

(
ε−3

ln(1/δ)

)
, assuming that

ln(1/δ) < ε−2.

Figure 1: The MDP family. Actions are denoted by arrows. Actions with red color have reward 1,
and reward 0 otherwise.

Proof. For each 0 < ε < 1
10 , consider the following MDP (see also Fig. 1): state space is S =

{a, b, c} while action set isA = {x, y}; transition probabilities are P (b|a, y) = 1−10ε, P (c|a, y) =
10ε, P (b|a, x) = 1, P (a|b, ·) = P (a|c, ·) = 1. Rewards are all 1, except R(c, ·) = 0.

Assume that Delayed Q-learning is called for this MDP starting from state a, with discount γ > 1
2

and precision set as ε. Denote the Q value maintained by the algorithm by Q̂. Without loss
of generality, assume that the initial tie-breaking favors action y when comparing Q̂(a, x) and
Q̂(a, y). In that case, unless Q̂(a, y) is updated, the agent will always choose y in state a. Since
Q(a, x)−Q(a, y) = 10εγ > ε for any policy, choosing y at state a implies that the timestep is not
ε-optimal. In other words, sample complexity for exploration is at least the number of times the agent
visits a before the first update of Q̂(a, y).

In the Delayed Q-learning algorithm, Q̂(·, ·) are initialized to 1/(1− γ). Therefore, Q̂(a, y) could
only be updated if max Q̂(c, ·) is updated (and becomes smaller than 1/(1− γ)). According to the
algorithm, this can only happen if c is visited m = Ω

(
1
ε2

)
times.

However, each time the agent visits a, there is less than 10ε probability of transiting to c. Let
t0 = m/(10εC), where C = 3 ln 1

δ + 1. δ is chosen such that C ≤ m. In the first 2t0 timesteps,

16

a will be visited t0 times. By Chernoff’s bound, with probability 1− δ, state c will be visited less
than m times. In that case, Q̂(a, y) will not be updated in the first 2t0 timesteps. Therefore, with
probability 1− δ, sample complexity of exploration is at least

t0 = Ω

(
1

ε3 (ln 1/δ)

)
.

When ln(1/δ) < ε−2, it can be seen that C = 3 ln 1
δ + 1 < 4

ε2 < m.

17

	Introduction
	Preliminary
	Main Results
	Algorithm
	Sample Complexity of Exploration
	Sufficient Condition for -optimality
	Proof for Theorem 1

	Discussion
	Proof of Sufficient Conditions
	Proof of Lemma 1
	Proof of Lemma 2
	Extension to other settings
	Connection between value functions

	A hard instance for Delayed Q-learning

