
Kalman Optimization for Value Approximation

Shirli Di-Castro Shashua
Technion, Israel

shirlidi@campus.technion.ac.il

Shie Mannor
Technion, Israel

shie@ee.technion.ac.il

Abstract

Policy evaluation is a key process in reinforcement learning. It assesses a given
policy by estimating the corresponding value function. When using a parameterized
value function, its set of parameters are commonly optimized by minimizing the
sum of squared Bellman Temporal Differences errors. However, this approach
ignores distributional properties of the errors and value parameters. Considering
these distributions in the optimization process can provide useful information on the
amount of confidence in value estimation. In this work we propose to optimize the
value by minimizing a regularized objective function which forms a trust region over
its parameters. We present a novel optimization method, called KOVA, based on the
Extended Kalman Filter. KOVA minimizes the regularized objective function by
adopting a Bayesian perspective over both the value parameters and noisy observed
returns. This distributional property provides information on parameter uncertainty
in addition to value estimates. We provide theoretical results of our approach and
analyze the performance of KOVA on domains with large state and action spaces.

1 Introduction

Reinforcement learning (RL) solves sequential decision making problems by considering an agent
that interacts with the environment and seeks the optimal policy [24]. During the learning process,
the agent is required to evaluate its policies using a value function. In many real world RL domains,
such as robotics, games and autonomous driving cars, the state and action spaces are large; hence, the
value function is approximated, e.g., using a Deep Neural Network (DNN). A common approach is to
optimize a set of parameters by minimizing the sum of squared Bellman Temporal Differences (TD)
errors [4]. There are two underlying assumptions in this approach: first, the value and its parameters
are deterministic; second, the Bellman TD errors are independent Gaussian random variables (RVs)
with zero mean and a fixed variance. Although a commonly used objective function, these underlying
assumptions may not be suitable for the policy evaluation task in RL. Distributional RL [2] refers to
the second assumption and argues in favor of a full distribution perspective over the sum of discounted
rewards for a fixed policy. In particular, learning this distribution is meaningful in presence of value
approximation. However, in their formulation the value parameters are still considered deterministic
and they do not provide an amount of confidence for the value estimates.

Treating the value or its parameters as RVs has been investigated in the RL literature. Engel et al.
[7, 8], in their algorithm GPTD, used Gaussian Processes (GPs) for the value and the return to
capture uncertainties in policy evaluation. Geist & Pietquin [9] proposed an algorithm called KTD
which uses the Unscented Kalman filter (UKF) to learn the uncertainty in value parameters. Their
formulation requires many samples of parameters in each training step, which is not feasible in Deep
Reinforcement Learning (DRL) with large state and action spaces.

Motivated by the works of Engel et al. [7, 8] and Geist & Pietquin [9], we present in this work
a unified framework for addressing uncertainties while approximating the value in DRL domains.
Our framework, unlike GPTD and KTD, is feasible when using complex nonlinear approximation
functions as DNNs, it adapts the uncertainty concepts to modern RL tasks and can be adjusted
to estimate the value in both on-policy and off-policy optimization algorithms. Our framework
incorporates the well-known Kalman filter estimation techniques with RL principles to improve value
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Figure 1: A Bayesian perspective for the policy evaluation problem in RL. The randomness of noisy
observation y(u) originates from two sources: (i) the randomness of its mean, the value h(u;θ)
through the dependency on the random parameters θ. (ii) the random zero-mean noise n which
relates to the stochastic transitions in the trajectory and to the possibly random policy.

approximation. The Kalman filter [13] and its variant for nonlinear approximations, the Extended
Kalman filter (EKF) [1, 10], are used for on-line tracking and for estimating states in dynamic
environments through indirect noisy observations. These methods have been successfully applied to
numerous control dynamic systems such as navigation and tracking targets [20]. The Kalman filter
can also be used for parameter estimation in approximation functions, in which parameters replace
the states of dynamic systems.

We develop a new optimization method for policy evaluation based on the EKF formulation. Figure
1 illustrates our Bayesian perspective over value parameters and noisy observed returns. Our main
contributions are: (1) developing a new regularized objective function for approximating values
in the policy evaluation task - the regularization term accounts for both parameters and observa-
tions uncertainties; (2) presenting a novel optimization algorithm, Kalman Optimization for Value
Approximation (KOVA), and proving that it minimizes at each time step the regularized objective
function - this optimizer can be easily plugged into any policy optimization algorithm that relay
on value function estimation, and improve it; (3) demonstrating the improvement achieved by our
optimizer on several control tasks with large state and action spaces.

2 Background

Reinforcement Learning and MDPs: The standard RL setting considers an interaction of an agent
with an environment E for a discrete number of time steps. The environment is modeled as a
Markov Decision Process (MDP) {S,A, P,R, γ} where S is a finite set of states, A is a finite set
of actions, P : S ×A× S → [0, 1] is the state transition probabilities for each state s and action a,
R : S × A → R is a bounded reward function and γ is a discount factor. At each time step t, the
agent observes state st ∈ S and chooses action at ∈ A according to a policy π : S × A → [0, 1].
The agent receives an immediate reward rt(st, at) and the environment stochastically steps to
state st+1 ∈ S according to the probability distribution P (st+1|st, at). The state value function
and the state-action Q-function are used for evaluating the performance of a fixed policy π [24]:
V π(s) = Eπ

[∑∞
t=0 γ

tr(st, at)|s0 = s
]

and Qπ(s, a) = Eπ
[∑∞

t=0 γ
trt(st, at)|s0 = s, a0 = a

]
,

where Eπ denotes the expectation with respect to the state (state-action) distribution induced by
transition law P and policy π.

Value Function Estimation: Policy evaluation is a core element in RL algorithms. We will use
the term value function (VF) to address the following functions: V π(s), Qπ(s, a) and the advan-
tage function Aπ(s, a) = Qπ(s, a) − V π(s). When the state or action space is large, the VF is
approximated using a parameterized function, h(·;θ). A common approach for optimizing VF
parameters is to minimize at each time step t the empirical mean of the squared Bellman TD error
δ(u;θt) , y(u)− h(u;θt), over N samples generated form environment E under a given policy:

LMLE
t (θt) =

1

2N

N∑

i=1

δ2(ui;θt). (1)

We use the general notation u to specify the input for the target label y(u) and for the approximated
value at time t, h(u;θt). For example, for h(u;θt) = V (sm;θt), u = sm is the state at a discrete
time m; For h(u;θt) = Q(sm, am;θt), u = (sm, am) is the state-action pair. In Table 1 we
provide examples of several options for y(u) and h(u;θt) which clarify how this general notation
can be utilized in known policy optimization algorithms. Traditionally, the VF is trained by a

2



Table 1: Examples for policy optimization algorithms and their Bellman TD error δ(u;θt) type. The
decomposition of δ(u;θt) into the observation function h(u;θt) and the target label y(u) in the EKF
model (2) enables the integration of our KOVA optimizer with any policy optimization algorithm that
relay on value function estimation. θ′ refers to a fixed network, different than the one being trained
θt.

Algorithm δ(u;θt) type h(u;θt) y(u)

A3C [17] k-step V-evaluation V (sm;θt)
∑k−1

i=0 γ
irm+i + γkV (sm+k;θ

′)
DDPG [15] 1-step Q-evaluation Q(s, a;θt) r + γQ(s′, π(s′);θ′)
PPO [23]
TRPO [21]

GAE [22] V (sm;θt)
∑∞

i=0(γλ)
i
(
rm+i + γV (sm+i+1;θ

′)

−V (sm+i;θ
′)
)
+ V (sm;θ′)

DQN [16] Optimality equation Q(s, a;θt) r + γmaxa′ Q(s′, a′;θ′)

SAC [11] 1-step V-evaluation
1-step Q-evaluation

V (s;θt)

Q(s, a; θ̃t)

Ea[Q(s, a; θ̃t)− log π(s|a)]
r + γEs′ [V (s′;θ′)]

gradient method, estimating the loss on each experience as it is encountered, yielding the update:
θt+1 ← θt + αEu∼p(·)

[(
y(u)− h(u;θt)

)
∇θth(u;θt)

]
, where α is the learning rate and p(·) is the

experience distribution. We will show (Section 3) that the underlying assumptions in LMLE
t (1) are

that the parameters θt are deterministic and that the target labels y(u) are independent Gaussian RVs
with mean h(u;θt) and a fixed variance.

Extended Kalman Filter (EKF): In this section we briefly outline the Extended Kalman filter
[1, 10], which serves as a base for our novel regulerized objective function LEXF

t (4). The EKF
is a standard technique for estimating the state of a nonlinear dynamic system or for learning the
parameters of a nonlinear approximation function. In this paper we will focus on its latter role,
meaning estimating θ. The EKF considers the following model:

{
θt = θt−1 + vt
y(ut) = h(ut;θt) + nt

, (2)

where θt ∈ Rd×1 are the parameters evaluated at time t, vt is the evolution noise and nt is the obser-
vation noise, both modeled as additive and white noises with covariances Pvt and Pnt , respectively.
y(ut) is the N -dimensional observations vector at time t: y(ut) = [y(u1t ), y(u2t ), . . . , y(uNt )]> ∈
RN×1, and h(ut;θt) ∈ RN×1 is an N -dimensional vector, where h(u;θ) is a nonlinear observation
function with input u and parameters θ: h(ut;θt) = [h(u1t ;θt), h(u2t ;θt), . . . , h(uNt ;θt)]

>. As
seen in (2), EKF treats the parameters θt as RVs, similarly to Bayesian approaches that assume that
the parameters belong to an uncertainty set Θ governed by the mean and covariance of the parameters
distribution. The estimation at time t, denoted as θ̂t|· is the conditional expectation of the parameters
with respect to the observed data: θ̂t|t , E[θt|y1:t] and θ̂t|t−1 , E[θt|y1:t−1] = θ̂t−1|t−1. With
some abuse of notation, y1:t′ are the observations gathered up to time t′: y(u1), . . . , y(ut′). The
parameters error is θ̃t|· , θt − θ̂t|· and the conditional error covariance is Pt|· , E

[
θ̃t|·θ̃

>
t|·|y1:·

]
.

EKF then uses the following updates:
{
θ̂EKF
t|t = θ̂t|t−1 + Kt

(
y(ut)− h(ut; θ̂t|t−1)

)
,

Pt|t = Pt|t−1 −KtPỹtK
>
t .

(3)

where ỹt|t−1 is the Observation innovation, Pỹt is the Covariance of the innovation and Kt is the
Kalman gain. In the next section we present how to use the EKF formulation in order to approximate
VFs which consider uncertainty both in the parameters and in the noisy observations.

3 EKF for Value Function Approximation

We now derive a novel regularized objective function, LEXF
t (4), and argue in its favor for optimizing

value functions in RL. We use general notations in order to enable integration of our proposed VF
optimization method with any policy optimization algorithm that relay on value function estimation.
The main idea is to decompose the Bellman TD error vector δ(ut;θt) into two parts: δ(ut;θt) =
y(ut) − h(ut;θt) = [δ(u1t ;θt), .., δ(u

N
t ;θt)]

>. (i) The observation at time t, y(ut) is a vector
that contains N target labels y(u1t ), . . . , y(uNt ). (ii) The observation function h(u;θt) may be one
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of the following: V (s;θt), Q(s, a;θt) or A(s, a;θt). The observation functions for N inputs are
concatenated into the N -dimensional vector h(ut;θt). In Table 1 we provide several examples for
the Bellman TD error decomposition according to the chosen policy optimization algorithm.

Our goal is to estimate the parameters θt. One way is to learn them by maximum likelihood estimation
(MLE) using stochastic gradient descent methods: θMLE = arg maxθ log p(y1:t|θ). This forms the
objective function in Equation (1). Another way is learning them by a Bayesian approach which
uses Bayes rule and adds prior knowledge over the parameters p(θ) to calculate the maximum
a-posteriori (MAP) estimator: θMAP = arg maxθ log p(θ|y1:t) = arg maxθ log p(y1:t|θ) + log p(θ).
Given the observations gathered up to time t, we can write the MAP estimator in a different form:
θMAP
t = arg maxθt log p(yt|θt) + log p(θt|y1:t−1). Here, instead of using the parameters prior, we

use an equivalent derivation for the parameters posterior conditioned on y1:t, based on the likelihood
of a single observation yt , y(ut) and the posterior conditioned on y1:t−1 [27]. This unique
derivation is a key step for the incremental Kalman updates and for defining LEKF

t (4). In order do
define the likelihood p(yt|θt) and the posterior p(θt|y1:t−1), we adopt the EKF model (2), and make
the following assumptions:
Assumption 1. The likelihood p(y(ut)|θt) is Gaussian: y(ut)|θt ∼ N (h(ut;θt),Pnt).

Assumption 2. The posterior distribution p(θt|y1:t−1) is Gaussian: θt|y1:t−1 ∼ N (θ̂t|t−1,Pt|t−1).
These assumptions are common when using the EKF. In the context of RL, these assumptions add
the flexibility we want: the value is treated as a RV and information is gathered on the uncertainty of
its estimate. In addition, the noisy observations (the target labels), can have different variances and
can even be correlated. Based on these Gaussian assumptions, we can derive the following Theorem:

Theorem 1. Under Assumptions 1 and 2, θ̂EKF
t|t (3) minimizes at each time step t the following

regularized objective function:

LEKF
t (θt) =

1

2
δ(ut;θt)

>P−1nt δ(ut;θt) +
1

2
(θt − θ̂t|t−1)>P−1t|t−1(θt − θ̂t|t−1). (4)

We now explicitly write the expressions that appear in Equation (3) (see the supplementary material for
Theorem 1 proof and for more detailed derivations). The derivations are based on the first order Taylor
series linearization for the observation function h(θt): h(ut;θt) = h(ut; θ̂)+∇θth(ut; θ̂)>

(
θt−θ̂

)
,

where ∇θth(ut; θ̂) =
[
∇θth(u1t ; θ̂),∇θth(u2t ; θ̂), . . . ,∇θth(uNt ; θ̂)

]
∈ Rd×N and θ̂ is typically

chosen to be the previous estimation of the parameters at time t−1, θ̂ = θ̂t|t−1. Then, the covariance
of the innovation and the Kalman gain become:

Pỹt = ∇θth(ut; θ̂)>Pt|t−1∇θth(ut; θ̂) + Pnt . (5)

Kt = Pt|t−1∇θth(ut, θ̂)
(
∇θth(ut; θ̂)>Pt|t−1∇θth(ut; θ̂) + Pnt

)−1
. (6)

Comparing between LEKF
t and LMLE

t for Optimizing Value Functions: We argue in favor of using
LEKF
t (θt) (4) for optimizing VFs instead of the commonly used LMLE

t (θt) (1). Corollary 1 will assist
us to discuss and compare between the two objective functions:
Corollary 1. Under Assumptions 1 and 2, consider a diagonal covariance Pnt with diagonal
elements σi = N and assume P0|0 = Pvt = 0, then: LEKF

t (θt) = LMLE
t (θt).

According to Corollary 1, the two objective functions are the same if we consider the parameters as
deterministic and if we assume that the noisy target labels have a fixed variance. So what are the
differences between the two objective functions? First, LEKF

t is a regularized version of LMLE
t : the

regularization is causing the parameters θt to track the recent parameters estimate, θ̂t|t−1, stabilizing
the estimate process. The error between the successive estimates is weighted with the inverse of
the uncertainty information Pt|t−1. LMLE

t does not include a regularization term, meaning it does
not account for parametrization uncertainties. Note that when adding a standard L2 regularization
to LMLE

t , often common in DNNs, it reflects staying close to the 0 vector which is not always
desired. Second, LEKF

t weights the squared Bellman TD error vector δ(ut;θt) with P−1nt which
can be interpreted as an additional regularization technique. Pnt can be viewed as the amount of
confidence we have in the observations, as defined in the EKF model (2): if the observations are noisy,
we should consider larger values for the diagonal elements in the covariance Pnt . In addition, LEKF

t

allows us to model correlations between observations errors, unlike the i.i.d assumption in LMLE
t . In

Section 4 we discuss possible options for Pnt .
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Figure 2: Mean episode reward during training for Mujoco environments. (a) on-policy algorithms:
PPO, TRPO, ACKTR; (b) off-policy algorithm SAC. We present the average (solid lines) and standard
deviation (shaded area) of the mean episode reward over 8 runnings, generated from random seeds.

Looking at the parameters update in Equation (3) and the definition of the Kalman gain Kt in
Equation (6), we can see that the Kalman gain propagates the new information from the noisy target
labels, back down into the parameters uncertainty set Θ, before combining it with the estimated
parameter value. Actually, Kt can be interpreted as an adaptive learning rate for each individual
parameter that implicitly incorporates the uncertainty of each parameter. This approach resembles
familiar stochastic gradient optimization methods such as Adagrad [6], AdaDelta [29], RMSprop
[25] and Adam [14], for different choices of Pt|t−1 and Pnt . We refer the reader to Ruder [19].

The following Theorem formalizes the connection between LEKF
t and two separate KL-

divergences. It illustrates how EKF is aimed at minimizing two separate KL-divergences. The
first is the KL divergence between two conditional distributions and it is equivalent to the loss in
LMLE
t (1). The second is the KL divergence between two different parameterizations of the joint

learned distribution Pu,y . This term imposes trust region on the VF parameters in LEKF
t (4).

Theorem 2. Assume the inputs u are drawn independently from a training distribution Q̂u, and the
observations y are drawn from a conditional training distribution Q̂y|u. Let Pu,y(θ) and Py|u(θ)

be the learned joint and conditional distributions, respectively. Define C = log
(

1
(2π)N/2|Pnt |1/2

)
.

Under Assumptions 1 and 2, consider Pnt with diagonal elements σi = N , then:
LEKF
t (θt) = C +NEQ̂u [DKL

(
Q̂y|u||Py|u(θ)

)
] + t ·DKL

(
Pu,y(θ + ∆θ)||Pu,y(θ)

)
+O(‖∆θ‖3).

Practical algorithm: KOVA optimizer.
We now derive a practical algorithm for ap-
proximating VFs, by minimizing LEKF

t (4).
In practice we use the update Equations (3)
and the Kalman gain Equations in (5)-(6) in
order to avoid inversing Pt|t−1. In addition,
we add a fixed learning rate α to smooth the
update. The KOVA optimizer is presented
in Algorithm 1. Notice that R is a sample
generator whose structure depends on the
policy algorithm for which KOVA is used as
a VF optimizer. R can contain trajectories
from a fixed policy or it can be an experi-
ence replay which contains transitions from
several different policies.

Algorithm 1 KOVA Optimizer

Input: P0|0, Pvt , Pnt , α,R. Initialize: θ̂0|0.
1: for t = 1, . . . , T do

2: Set predictions:
{
θ̂ = θ̂t|t−1 = θ̂t−1|t−1

Pt|t−1 = Pt−1|t−1 +Pvt

3: Sample N tuples {y(ui), h(ui; θ̂)}Ni=1 fromR.
4: Construct N -dim vectors y(ut) and h(ut, θ̂).
5: Compute (d×N)-dim matrix∇θh(ut; θ̂).
6: Compute Pỹt (5) and Kt (6).
7: Set updates:{

θ̂t|t = θ̂t|t−1 + αKt

(
y(ut)− h(ut; θ̂t|t−1)

)
Pt|t = Pt|t−1 − αKtPỹtK

>
t

8: end for
Output: θ̂t|t and Pt|t

4 Experiments
We now present experiments that illustrate the performance attained by our KOVA optimizer. Techni-
cal details on policy and VF networks, on hyper-parameters grid search, on the hyper-parameters we
used and on the running time of the algorithms are described in the supplementary material.

KOVA optimizer for policy evaluation in on-policy setting: We tested the performance of KOVA
in domains with continuous state and action spaces: the robotic tasks benchmarks implemented in
OpenAI Gym [3], which use the MuJoCo physics engine [26]. In this experiment we used on-policy
algorithms for policy training: PPO [23] and TRPO [21] with their baselines implementations [5].
For VF training we replaced the originally used Adam optimizer [14] with our KOVA optimizer
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Figure 3: Mean episode reward, policy entropy and the policy loss for a PPO agent in Swimmer-v2
and HalfCheetah-v2. We compare between optimizing the VF with Adam vs. our KOVA optimizer.
We present three different values for η = 0.1, 0.01, 0.001 and two different values for the diagonal
elements in Pnt : (a) max-ratio and (b) batch-size. We present the average (solid lines) and standard
deviation (shaded area) of the mean episode reward over 8 runnings, generated from random seeds.

(Algoritm 1) and compared their effect on the mean episode reward in each environment. In addition,
we tested the performance of ACKTR [28] which uses second order optimization for both policy
and value functions. During training, each episode reward was recorded and in every optimization
update we calculated the mean over the last 100 episodes. An optimization update is executed after
several timesteps, defined by the horizon hyper-parameter of the algorithm. The results are presented
in Figure 2(a), where we chose to use timesteps in order to compare between different algorithms
on the same graph. We can see that KOVA improved the agent’s performance in four out of five
environments, both for PPO and TRPO. In Ant-v2 it kept approximately the same performance. In all
environments KOVA outperformed ACKTR.

KOVA optimizer for policy evaluation in off-policy setting:: We investigated how the KOVA
optimizer affects the performance of off-policy algorithms. For the policy training we used SAC
[11] with their stable baselines implementations [12]. For VF training we replaced the originally
used Adam optimizer with our KOVA optimizer (Algoritm 1) and compared their effect on the mean
episode reward in each environment. In addition, we tested how we can benefit from the KOVA
performance and keep the running time low. For this purpose we performed an additional experiment,
where we applied the KOVA optimizer only on the last layer of the VF. The experiment description
for the off-policy setting is similar to the on-policy setting. The results are presented in Figure
2(b). We can see that KOVA improved the agent’s performance in four out of five environments. In
Walker2d-v2 it kept approximately the same performance.

We believe that these improvements, in the on-policy and off-policy settings, come from both using
a full covariance instead of a diagonal one, and from properly using Pnt to include observations
variance. These improvements demonstrate the importance of incorporating uncertainty estimation in
value function approximation for improving the agent’s performance and suggest that EKF should
not be neglected and should be considered as a better optimizer for VFs.

Investigating the evolution and observation noises: The most interesting hyper-parameters in
KOVA are related to the covariances Pvt and Pnt . As seen in Corollary 1, for deterministic
interpretation of the parameters we simply set Pvt = 0. However, the more interesting setting would
be Pvt = η

1−ηPt−1|t−1 with η being a small number that controls the amount of fading memory [18].
Pnt can be used for incorporating prior domain knowledge. For example, a diagonal matrix implies
independent observations , while if observations are known to be correlated, additional non-diagonal
elements can be added. We investigated the effect of different values of η and Pnt in the Swimmer
and HalfCheetah environments, where KOVA gained the most success. The results are depicted in
Figure 3. We tested two different Pnt settings: the batch-size setting where σi = σ = N and the
max-ratio setting where σi = N max(1, 1

πold(ai|si)
πnew(ai|si)

+ε
). Interestingly, although using KOVA results in

lower policy loss (which we try to maximize), it actually increases the policy entropy and encourages
exploration, which we believe helps in gaining higher rewards during training. We can clearly see
how the mean rewards increases as the policy entropy increases, for different values of η. This insight
was observed in both tested Mujoco environments and in both settings of Pnt .
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