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Abstract

While deep reinforcement learning systems have demonstrated impressive results in
domains ranging from game playing and robotic control, sample efficiency remains
a major challenge, particularly as these algorithms learn individual tasks from
scratch. Multi-task and goal-conditioned reinforcement learning have emerged
as promising approaches for sharing structure across multiple tasks to enable
more efficient learning. However, challenges in optimization have hamstrung such
methods from realizing efficiency gains compared to learning tasks independently
from scratch. Motivated by these challenges, we develop a general approach that
can change the multi-task optimization landscape to alleviate conflicting gradients
across tasks. In particular, we introduce two instantiations of this approach, one
architectural and one algorithmic, that prevent gradients for different tasks from
interfering with one another. On two challenging multi-task RL problems, we find
that our approaches leads to greater final performance and learning efficiency in
comparison to prior approaches.

1 Introduction

While reinforcement learning (RL) is a promising approach for enabling agents to autonomously
acquire behaviors, the data requirements of current methods preclude the ability to learn a breadth of
behaviors, if all tasks are learned individually from scratch. A natural approach to such multi-task
RL problem settings is to train on all tasks jointly, with the aim of using shared structure to achieve
greater efficiency and performance than solving tasks individually. However, learning multiple tasks
all at once has led to significant challenges in optimization (Parisotto et al., 2015; Rusu et al., 2015),
often leading to worse asymptotic performance and sample efficiency compared to learning tasks
individually, particularly when aiming to learn a diverse set of discrete tasks. In this work, we aim to
study whether such challenges can be overcome with simple changes to the architecture or learning
algorithm.

We hypothesize that difficulties in multi-task optimization are caused by interference between the
gradients of multiple tasks (Schaul et al., 2019). To address this issue, prior works have attempted
to learn tasks in independent networks and then distill these networks into a single policy (Levine
et al., 2016; Parisotto et al., 2015; Rusu et al., 2015; Ghosh et al., 2017; Teh et al., 2017). While
this can alleviate optimization issues, these approaches have been most successful in settings where
different tasks correspond to continuously varying goals within the same underlying problem. Further,
because these approaches decouple the optimization problem by task, they are often unable to acquire
efficiency gains by recognizing the shared structure, especially when considering multiple distinct
tasks. Instead, we hope to develop a simple yet general approach for preventing gradient interference
while still allowing for positive transfer.

In this work, we find that simple changes to the architecture or gradient application can prevent these
optimization challenges entirely. Geometrically, we consider interference to be caused by gradients
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with a negative cosine similarity, and our key insight is to prevent the interfering components of the
gradient from being applied to the learned network. This can be accomplished both with a simple
architectural change, by rotating the activations at each layer in a learned and differentiable way per
task, and in an algorithmic way, by altering the gradients for each task.

The key contribution of this work is a multi-task reinforcement learning algorithm that avoids gradient
interference and, as a result, can scale to large sets of discrete tasks. Our approach for deconflicting
gradients (D-Grad) requires only a single modification to either the architecture or the application of
gradients, and hence can easily be combined with existing reinforcement learning algorithms. We
combine our approach with the soft actor-critic method (Haarnoja et al., 2018b), and evaluate it on
two challenging sets of distinct manipulation tasks in the Meta-World benchmark (Yu et al., 2019).
In our evaluation, we find that D-Grad leads to significant improvements in terms of both learning
efficiency and performance compared to joint multi-task training.

2 Related Work

Algorithms for multi-task learning typically consider how to train a single model that can solve a
variety of different tasks (Caruana, 1997; Bakker & Heskes, 2003; Espeholt et al., 2018). Many
multi-task RL approaches aim to decompose the problem into multiple local problems, e.g. each
task, that are significantly easier to learn akin to divide and conquer algorithms (Levine et al., 2016;
Teh et al., 2017; Ghosh et al., 2017; Rusu et al., 2016a; Czarnecki et al., 2019; Parisotto et al.,
2015). Eventually, the local models are combined into a single, multi-task policy using different
distillation techniques (outlined in (Czarnecki et al., 2019)). While these algorithms tend to perform
well in the context of multi-goal RL, they limit the potential benefits of multi-task learning such
as sharing data between the tasks (Riedmiller et al., 2018; Andrychowicz et al., 2017) or small
memory footprint, and can suffer from challenges associated with supervised policy learning such
as compounding errors (Ross et al., 2011). As a result, these methods have been most successful in
settings where the tasks share considerable structure. In contrast, we propose a simple and cogent
scheme for multi-task RL that retains many of the benefits while not requiring the additional memory
and complex machinery required for distillation-style algorithms.

Approached from an alternative perspective, a number of more architectural solutions have been
proposed to the multi-task RL problem based on multiple modules or paths (Fernando et al., 2017;
Devin et al., 2016; Misra et al., 2016; Rusu et al., 2016b; Rosenbaum et al., 2017; Vandenhende
et al., 2019; Wulfmeier et al., 2019), using attention-based architectures (Liu et al., 2018; Maninis
et al., 2019), or using the idea of network superposition (Cheung et al., 2019). Another set of
approaches (Hausman et al., 2018; Tirumala et al., 2019; Heess et al., 2016; Haarnoja et al., 2018a)
focus on the right task representation that simplifies learning multi-task policies, which can be
later utilized as a part of a hierarchical policy. In contrast to these works, our work focuses on the
conflicting gradients aspect of multi-task RL, and we propose simple architectural and optimization
changes to address this problem directly.

Similarly to our work, a number of prior approaches have observed the difficulty of optimization in
the multi-task learning setting (Hessel et al., 2019; Sener & Koltun, 2018; Chen et al., 2018; Schaul
et al., 2019). Schaul et al. (2019) studies the challenges that arise in multi-task RL from performing
multi-objective optimization in a setting where learning and data generation are coupled, and the
learned behavior controls the future data distribution. This work attributes the problem to the concept
of “ray interference”, which is related to the conflicting gradients problem, but the work does not
provide solutions to this challenge. Alternatively, Chen et al. (2018); Kendall et al. (2018) attribute
the challenges of multi-task learning to the imbalance between gradient magnitudes across different
tasks and propose an adaptive gradient normalization to account for it. Hessel et al. (2019) considers
a similar insight in the case of reinforcement learning. Building on this, Sener & Koltun (2018) aims
to find a pareto-optimal solution to the multi-objective optimization rather than trying to optimize
a weighted sum of the multi-task objectives. Our work, in contrast to many of these optimization
schemes, suggests that the challenge in multi-task learning can be attributed to the problem of
conflicting gradients, which we can address directly by introducing practical, gradient-deconflicting
algorithms.
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Figure 1: Visual depiction of conflicting gradients phenomenon. In (a), we see that tasks A and B
have conflicting gradient directions, which can lead to destructive interference and unstable learning.
In (b), we illustrate the D-Grad (O) algorithm in cases where gradients are conflicting - we project
the gradient onto the normal plane. In (c), we show that tasks with non-conflicting gradients are not
altered under D-Grad (O), thereby keeping tasks with constructive interference.

3 Preliminaries

We utilize the formalism of finite-horizon Markov Decision Processes (MDPs) where each task
is defined by its own MDP M = (S,A, P,R,H, γ), where s ∈ S correspond to states, a ∈ A
correspond to the available actions, P (st+1|st, at) represents the stochastic transition dynamics,
R(s, a) is a reward function, H is the horizon and γ is the discount factor.

While the goal in single-task reinforcement learning is to learn a policy π(a|s) that maximizes the
sum of discounted task-specific rewards: Eπ[

∑T
t=0 γ

tRt(st, at)], also known as the return, multi-task
reinforcement learning assumes access to a distribution of tasks p(T ) and aims to find a policy that
maximizes the expected return across all tasks drawn from p(T ): ET ∼p(T )[Eπ[

∑T
t=0 γ

tRt(st, at)]].
In order to obtain a policy that solves a specific task from the task distribution p(T ), multi-task
reinforcement learning defines a task-conditioned policy π(a|s, z) where z is an encoding of the
task ID, which could be provided as a one-hot vector or in any other, unique form. Multi-task
reinforcement learning algorithms are commonly evaluated based on their average performance over
the training tasks.

4 Multi-Task Reinforcement Learning without Conflict

While the multi-task problem can in principle be solved by simply applying a standard single-task RL
algorithm with a suitable goal identifier provided to the policy, a number of prior works (Ghosh et al.,
2017; Teh et al., 2017) have found this learning problem to be extremely difficult in the reinforcement
learning setting. In this work, we hypothesize that one of the main challenges of multi-task RL can be
characterized as conflicting or thrashing gradients and find that it can significantly impede learning
progress when combined with iterative data collection. We identify possible causes for this problem,
and propose two different algorithms to mitigate it in the multitask reinforcement learning setting.

4.1 Avoiding Conflicting Gradients

The phenomenon of conflicting and thrashing gradients can be easily understood pictorially as shown
in Fig 1. When multiple tasks are trained simultaneously with shared parameters, then the gradients
which are being applied from different tasks will conflict with each other when their cosine similarity
is negative. When the sum of these gradients is applied to the parameters in a gradient descent step,
the resulting step may be highly suboptimal, since the gradient for one task effectively cancels the
other one out. Essentially, if the gradients across tasks for the current parameters are opposing, the
application of those gradients may lead to minimal learning progress since the gradients cancel each
other out. Empirically, we see that this manifests through the process of thrashing gradients where
the gradients don’t cancel each other out but instead change direction very frequently across batches,
leading to a system where learning is very difficult since the learning direction is constantly changing.

How do we devise learning algorithms which can learn in multi-task settings without suffering
from the problems associated with thrashing and conflicting gradients? Our goal is to deconflict
the task-specific gradients throughout the learning process so as to limit the negative interference
between the tasks. One approach for doing this is to introduce architectural changes to our models,
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which make the issue of conflicting gradients less prevalent, while retaining the same optimization
process. Alternatively, we can change the optimization process to directly eliminate the problem
of conflicting and thrashing gradients, while retaining standard network architectures. We propose
two algorithms based on these principles - deconflicting gradients via architecture (DGrad-A) and
deconflicting gradients via optimization (DGrad-O).

4.2 Architectural Solution: D-Grad via Architecture

Figure 2: D-Grad (A) architecture. (a) A task network receives a one-hot task vector z as input and
produces a matrix M(z) and vector β(z). (b) A D-Grad(A) Layer applies a matrix multiplication
and vector addition to an input vector x. The matrix and vector used to linearly transform the input
vector are given by a task network. (c) The modified RL policy or critic model with a D-Grad(A)
layer added after each fully-connected layer.

To mitigate the problem of conflicting gradients during optimization, we can employ a few very
simple architectural changes in the neural network model being learned to encourage the model to
have orthogonal gradients. Intuitively, we simply introduce a particular variant of multiplicative
interactions with network activations, which greatly reduces the occurrence of conflicting gradients
during optimization.

Let us consider the optimization of a task-conditioned policy π(a|s, z), where z is a one-hot vector
denoting the task and s, a are the current state and action respectively. Given this setup, and some
intermediate layer l of the network, with associated activations x, we introduce a transformation
via multiplicative interactions which encourages the activations of each layer of the network to be
orthogonal to the layer’s activations when conditioned on other task vectors. Associated with each
layer l of the network, we randomly initialize a task network which takes as input z and outputs a
matrix Ml(z) and a vector βl(z). We then transform the activations of l using a D-Grad A layer, as
defined below.
Definition 1. A D-Grad (A) layer applies the following transformation to an activation vector
x ∈ Rn:

D-Grad A(x) = M(z)x+ β(z) (1)
where M(z) ∈ Rn×n is an z-dependent matrix and β(z) ∈ Rn is a z-dependent vector.

While at first glance, this simple change seems to be very similar to FiLM (Perez et al., 2018), it is
subtly different in the way the conditioning layer interacts with the network. While FiLM interacts
elementwise with activations per-layer, the D-Grad (A) employs a matrix multiplication which allows
for a more expressive rotation via the conditioning layer. We find empirically that using D-Grad (A)
provides significant gains over baseline variants of SAC, since it allows the gradients to deconflict
from each other for different tasks.

4.3 Algorithmic Solution: D-Grad via Optimization

The method described in Section 4.2, considers how to modify the model architecture to minimize the
chance of gradient conflict across tasks. While this simple proposal should allow us to partly address
the conflicting gradients problem, we demonstrate an alternative method to directly modify the
optimization so as to deconflict gradients across different tasks. The key insight we leverage to here
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Algorithm 1 DGrad-O algorithm

1: for taski = A,B,C..K do
2: Compute gradient gi of taski
3: for taskj = A,B,C, ...K \ taski do
4: Compute gradient gj of task j.
5: Compute project direction of gi onto gj as d =

gi·gj
‖gj‖‖gj‖

.
6: if d < 0 then
7: Set gi = gi − gj

‖gj‖
gi·gj
‖gj‖

// Subtract the projection of gi onto gj
8: end if
9: end for

10: Store gproj
taski

= gi
11: end for

12: Apply combined sum of gradients across tasks θ
′
= θ − α

∑
τ=A,B,C,D,...

[
gproj
τ

]

is to note that we can characterize tasks as conflicting by noting the cosine similarity between their
respective gradient directions. In particular, negative cosine similarity between the gradient vectors
indicates that the tasks are likely to be interfering negatively, while the positive cosine similarity
indicates constructive interference.

Since the thrashing gradients issue is largely caused by negative interference, we can adopt a simple
procedure to deconflict gradients during optimization - if the gradients between tasks are in conflict,
we simply project the gradient along the normal plane of the gradient of the other task. This amounts
to removing the conflicting part of the gradient for the task, thereby reducing the amount of destructive
gradient interference between tasks. Suppose the gradient for task A is gA, and the gradient for task
B is gB , then we can deconflict gradients as follows - (1) First determine whether gA conflicts with
gB . We can determine this by computing the cosine similarity between vectors gA and gB : negative
values indicating conflicting gradients. (2) In case the gradients are conflicting, replace gA by its
projection onto the normal plane of gB : gA = gA − gB

‖gb‖
gA·gB
‖gB‖ . If the gradients are non-conflicting,

then we simply leave gA as is. (3) We can then repeat this with all the other tasks sampled in the
current batch C,D, ... to get the eventual gradient gproj

A to apply for task A. We can then use the same
procedure for the other tasks in the batch B,C,D... to get the applicable gradients gproj

B , gproj
C and so

on. These can then be applied to the parameters via a descent step, with learning rate α.

θ
′
= θ − α

∑
τ=A,B,C,D,...

[
gproj
τ

]
(2)

This procedure, while simple to implement, ensures that the gradients which we apply for each task
per batch are minimally interfering with the other tasks in the batch, mitigating the conflicting gradient
problem to a large extent. The algorithm is described in detail in Algorithm 1. Our experimental
results verify the hypothesis that this procedure boosts learning progress, and significantly reduces
the problem of conflicting gradients while learning. A pictoral description can be found in Fig 1.

While this procedure can be applied to any gradient-based reinforcement learning algorithm, we
instantiate it to be applied with an off-policy actor-critic algorithm (soft actor-critic by Haarnoja et al.
(2018b)). In SAC, we apply D-Grad (O) to the gradient updates for both the actor and the critic, as
described further in our experimental evaluation.

5 Experiments

The goal of our experimental evaluation is to answer the following question: how does D-Grad
compare to prior approaches to multi-task learning when solving distinct task families?

To answer these questions, we evaluate D-Grad on two sets of manipulation tasks, MT10 and MT50,
from the Meta-World benchmark (Yu et al., 2019), shown in Figures 5 and 4. The two task sets
are challenging for multi-task RL algorithms to tackle as the agent is required to master a variety
of distinct skills such as reaching and grasping to solve all tasks. We train D-Grad using SAC and
compare it to a number of methods on MT10 and MT50:
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Figure 3: Learning curves on MT10 (left) and MT50 (right). The two D-Grad variants outperform the other
methods in the two settings in terms of both success rates and data efficiency.

• SAC: the vanilla SAC algorithm conditioned on the task one-hot vectors.

• Multi-head SAC: Both the policy and Q networks of SAC are multi-head feedforward
neural networks where each head output the result of each task.

We represent D-Grad (A) as 3-layer fully-connected feedforward neural networks with 160 hidden
units for both the actor and the critic. Since we apply a matrix-vector multiplication after the activation
of each layer, we use a 6-layer fully-connected feedforward neural networks with 160 hidden units
for D-Grad (O) and all the three baselines such that they enjoy about the same expressiveness as that
of D-Grad (A). For D-Grad (O), we apply the deconflicting gradient procedure for both the critic and
actor networks. We adopt the default hyperparameters from SAC for training all the methods.

5.1 MT10 evaluation

For this evaluation, we test all methods on a subset of the 50 manipulation tasks shown in Figure 5.
Specifically, we conduct comparisons on 10 tasks shown in Figure 4. The results are shown in
Figure 3 on the left. The success rates are averaged across tasks and we adopt the success metrics
used in the Meta-World benchmark. D-Grad (O) learns all tasks with the best data efficiency, while
D-Grad (A) also successfully solves all 10 tasks in 3 million environment steps. Training a single
SAC policy and a multi-head policy turns out to be unable to acquire half of the skills, suggesting that
eliminating gradient interference across tasks can significantly boost performance of multi-task RL.

As noted in Yu et al. (2019), these tasks involve fairly distinct behavior motions, which makes
learning all of them with a single policy quite challenging. The ability to learn these tasks together
opens the door for a number of interesting extensions to meta-learning, goal conditioned RL and
generalization to novel task families.

5.2 MT50 evaluation

We conduct a more challenging experiment where all methods are evaluated on all 50 tasks from
Meta-World. In this hard setting, as shown on the right in Figure 3, D-Grad (A) quickly learns to
solve more than 60% of tasks in 20 million environment steps while SAC and SAC with multi-head
architectures struggled in solve 40% of the tasks after 35 million steps. This result demonstrates that
D-Grad leads to notable improvement in challenging multi-task RL domains.

6 Conclusion

In this paper, we presented an approach mitigating optimization issues in multi-task reinforcement
learning by deconflicting gradients. We introduced two instantiations of this approach using changes
to the architecture or to the gradient application. Our results indicate that, on a challenging set of 10
and 50 distinct tasks respectively, our approach learns significantly faster and reaches significantly
greater final performance in comparison to training networks jointly. This paper opens up several
interesting directions for future investigation. In particular, the ideas described in the paper are not
specific to multi-task reinforcement learning, and can also, in principle, be applied to multi-task
supervised learning, goal-conditioned reinforcement learning, and meta-learning problem settings.
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A Appendix

We show the visualizations of all tasks evaluated in MT10 and MT50 in Figure 4 and Figure 5
respectively, which demonstrates the diversity of tasks that we evaluate methods on.
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Figure 4: Visualization of 10 tasks used in Meta-World MT10 evaluation.
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Figure 5: Visualization of the 50 tasks from Meta-World used in the MT50 evaluation.
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