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Abstract

The policy gradient theorem is defined based on an objective with respect to the
initial distribution over states. In the discounted case, this results in policies that are
optimal for one distribution over initial states, but may not be uniformly optimal
for others, no matter where the agent starts from. Furthermore, to obtain unbiased
gradient estimates, the starting point of the policy gradient estimator requires
sampling states from a normalized discounted weighting of states. However, the
difficulty of estimating the normalized discounted weighting of states, or the
stationary state distribution, is quite well-known. Additionally, the large sample
complexity of policy gradient methods is often attributed to insufficient exploration,
and to remedy this, it is often assumed that the restart distribution provides sufficient
exploration in these algorithms. In this work, we propose exploration in policy
gradient methods based on maximizing entropy of the discounted future state
distribution. The key contribution of our work includes providing a practically
feasible algorithm to estimate the normalized discounted weighting of states, i.e, the
discounted future state distribution. We propose that exploration can be achieved
by entropy regularization with the discounted state distribution in policy gradients,
where a metric for maximal coverage of the state space can be based on the entropy
of the induced state distribution. The proposed approach can be considered as a
three time-scale algorithm and under some mild technical conditions, we prove its
convergence to a locally optimal policy. Experimentally, we demonstrate usefulness
of regularization with the discounted future state distribution in terms of increased
state space coverage and faster learning on a range of complex tasks.

1 Introduction

Exploration in policy optimization methods is often tied to exploring in the policy parameter space.
This is primarily achieved by adding noise to the gradient when following stochastic gradient
ascent. More explicit forms of exploration within the state and action space include policy entropy
regularization. This promotes stochasticity in policies, thereby preventing premature convergence to
deterministic policies [Mnih et al., 2016a, Schulman et al., 2017]. Such regularization schemes play
the role of smoothing out the optimization landscape in non-convex policy optimization problems
[Ahmed et al., 2018]. Deep reinforcement learning algorithms have had enormous success with
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entropy regularized policies, commonly known as maximum entropy RL framework [Ziebart, 2010].
These approaches ensure exploration in the action space, which indirectly contributes to exploration
in the state space, but do not explicitly address the issue of state space exploration. This leads us to
the question : how do we regularize policies to obtain maximal coverage in the state space?

One of the metrics to measure coverage in state space is the entropy of the discounted future state
distribution, as proposed in [Hazan et al., 2018]. In their work, they prove that using the entropy
of discounted future state distribution as a reward function, we can achieve improved coverage of
the state space. Drawing inspiration from this idea, and to provide a practically feasible construct,
we first propose an approach to estimate the discounted future state distribution. We then provide
an approach for efficient exploration in policy gradient methods, to reduce sample complexity, by
regularizing policy optimization based on the entropy of the discounted future state distribution.
The implication of this is that the policy gradient algorithm yields policies that improve state space
coverage by maximizing the entropy of the discounted future state distribution induced by those
policies as an auxiliary regularized objective. This distribution takes into account when various
states are visited in addition to which states are visited. The main contribution of our work is
to provide a practically feasible way to estimate the discounted future state distribution with a
density estimator. Furthermore, we show that regularizing policy gradients with the entropy of this
distribution can improve exploration. To the best of our knowledge, there are no previous works that
provide a practical realization for estimating and regularizing with the entropy of the discounted state
distribution. It is worthwhile to note that the estimation of the discounted/stationary state distribution
is not readily achievable in practice. This is because the stationary distribution requires an estimate
based on rollouts, as in value function estimates, under a given policy π. In contrast, the discounted
state distribution requires estimation of discounted occupancy measures for the various states. Since
the discounted occupancy measure is purely a theoretical construct, it is not possible to sample
from this distribution using rollouts. In order to use this as an entropy regularizer, we also need the
discounted or stationary distributions to be explicitly dependent on the policy parameters, which is
not straightforward in practice.

To address this, we estimate the state distribution by separately training a density estimator based
on sampled states in the rollout. The crucial step here is that, we use a density estimator that is
explicitly a function of the policy parameters θ. In other words, our density estimator takes as input,
the parameters θ of the policy itself (for instance, weights of a policy neural network) through which
we now obtain an estimate of pθ : θ 7→ ∆(S), where pθ(s) is the occupancy probability (discounted
or otherwise) of state s. We use a variational inference based density estimator, which can be
trained to maximize a variational lower bound to the the log-likelihood of pθ(s). As a result, we can
obtain an estimation of dπθ since in case of stationary distributions, we have log pθ(s) = log dπθ (s).
Estimation of dπθ under any policy πθ requires collecting a large number of samples from the rollout.
Instead of this, we can use ideas from multi-scale stochastic algorithms to learn this in an online
manner. Hence, we require a separate time-scale for training the density estimator, in addition to
learning the policy and value functions in policy gradient based approaches. We formally state and
prove the corresponding three time-scale algorithm.

2 State Distribution in Policy Gradient Methods

Policy gradient theorem [Sutton et al., 1999] for the starting state formulation are given for an initial
state distribution α, where the exact solution for the discounted objective is given by Jθ = αT vθ =
αT (I− γPθ)−1rθ. In [Sutton et al., 1999], this is often known as the discounted weighting of states
defined by dTα,γ,π = αT (I − γPθ)−1, where in the average reward case this reaches a stationary
distribution implying that the process is independent of the initial states. However, the discounted
weighting of states is not a distribution, or a stationary distribution in itself, since the rows of the
matrix (I− γPθ)−1 do not sum to 1. The normalized version of this is therefore often considered,
commonly known as the discounted future state distribution [Kakade, 2003] or the discounted state
distribution [Thomas, 2014]. Detailed analysis of the significance of the state distribution in policy
gradient methods is further given in [Bacon, 2018].

d̄α,γ,π = (1− γ)dα,γ,π = (1− γ)αT (I− γPπ)−1 = (1− γ)αT
∞∑
t=0

γtPπ(st = s) (1)
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Given an infinite horizon MDP, and a stationary policy π(a, s), equation (1) is the γ discounted
future state distribution, i.e., the normalized version for the discounted weighting of states. We can
draw samples from this distribution, by simulating π and accepting each state as the sample with
a probability (1− γ). With the discounted future state distribution, the equivalent policy gradient
objective can therefore be given by J(θ) = d̄Tα,γ,θrθ. In practice, we want to express the policy
gradient theorem with an expectation that we can estimate by sampling, but since the discounted
weighting of states dα,γ,π is not a distribution over states, we often use the normalized counterpart of
the discounted weighting of states d̄α,γ,π and correct the policy gradient with a factor of 1

(1−γ) .

∇θJ(θ) =
1

(1− γ)
Ed̄α,γ,θ,a∼πθ [∇θ log πθ(a, s)Qπθ (s, a)] (2)

However, since the policy gradient objective is defined with respect to an initial distribution over
states, the resulting policy is not optimal over the entire state space, ie, not uniformly optimal, but
are rather optimal for one distribution over the initial states but may not be optimal for a different
starting state distribution. This often leads to the large sample complexity of policy gradient methods
[Kakade, 2003] where a large number of samples may be required for obtaining good policies. The
lack of exploration in policy gradient methods may often lead to large sample complexity to obtain
accurate estimates of the gradient direction. It is often assumed that the restart, or starting state
distribution in policy gradient method provides sufficient exploration. In this work, we tackle the
exploration problem in policy gradient methods by explicitly using the entropy of the discounted
future state distribution. We show that even for the starting state formulation of policy gradients, we
can construct the normalized discounted future state distribution, where instead of sampling from this
distribution (which is hard in practice, since sampling requires discounting with (1− γ), we instead
regularize policy optimization with the entropy H((1− γ)dα,γ,θ)

3 Entropy Regularization with Discounted Future State Distribution

The key idea behind our approach is to use regularization with the entropy of the state distribution in
policy gradient methods. In policy optimization based methods, the state coverage, or the various
times different states are visited can be estimated from the state distribution induced by the policy.
This is often called the discounted (future) state distribution, or the normalized discounted weighting
of states. In this work, our objective is to promote exploration in policy gradient methods by using the
entropy of the discounted future state distribution dα,γ,π (which we will denote as dπθ ) where α is
the distribution over the initial states and to explicitly highlight that this distribution is dependent on
the changes in the policy parameters θ, and we propose a practically feasible algorithm for estimating
and regularizing policy gradient methods with the discounted state distribution for exploration and
reducing sample complexity. We propose the following state distribution entropy regularized policy
gradient objective: J̃(θ) = Eπθ

[∑∞
t=0 γ

tr(St, At)
∣∣∣ S0

]
+ λH(dπθ ), where dπθ is the discounted

state distribution induced by the policy π. We can estimate ∇θJ(θ) while using stochastic policies
from [Sutton et al., 1999] or deterministic policies from [Silver et al., 2014]. The regularized policy
gradient objective is: ∇θJ̃(θ) = ∇θJ(θ) + λ∇θH(dπθ ).

Entropy of the discounted state distribution H(dα,γ,π) : The discounted state distribution
dα,γ,πθ can be computed as: dα,γ,πθ (s) = (1− γ)αT

∑∞
t=0 γ

tP (St = s), ∀s ∈ S
We note that this is a theoretical construct and we cannot sample from this distribution, since it would
require sampling each state with a probability (1− γ) such that the accepted state is then distributed
according to dα,γ,πθ . However, we can modify the state distribution p(s) to a weighted distribution
p̃(s) as follows. We estimate p(s) from samples as: p(s) = 1

T

∑T
t=0 1(St = s), where the weight

of each sample is 1/T . To estimate p̃(s), we use an importance sampling weighting of (1− γ)γt to
yield:

p̃(s)
(a)
=

(1− γ)

T

T∑
t=0

γt1(St = s)
(b)
= (1− γ)

T∑
t=0

(γtP (St = s | S0))
(c)≈ dγ,πθ (s), (3)

where (a) follows from the importance sampling approach, (b) follows from the fact that 1(St=s)
T =

P (St = s | So) and (c) follows from above where the approximation is due to the finite truncation of
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the infinite horizon trajectory. Note that due to this finite truncation, our estimate of dγ,πθ will be
sub-stochastic. Therefore, we can estimate the entropy of this distribution as:

H(dα,γ,πθ ) ≈ −
1

T

T∑
t=0

log p̃(St). (4)

Entropy of the stationary state distribution H(d1,πθ ) : For the average reward case with infinite
horizon MDPs, we can similarly compute the entropy of the stationary state distribution. The
stationary distribution d1,πθ is a solution of the following fixed point equation satisfying d1,πθ =
P ᵀ
πθ
d1,πθ , where Pπθ is the transition probability matrix corresponding to policy πθ. In practice,

this is the long term state distribution under policy πθ, which is denoted as p(s). In infinite horizon
problems, the stationary state distribution is indicative of the majority of the states visited under the
policy. We expect the stationary state distribution to change slowly, as we adapt the policy parameters
(especially for a stochastic policy). Hence, we assume that the states have mixed, as we learn the
policy over several iterations. In practice, instead of adding a mixing time specifically, we can use
different time-scales for learning the policy and estimating the stationary state distribution. The
entropy of the stationary state distribution can therefore be computed as :

H(d1,πθ )
(a)
= −

∑
s∈S

d1,πθ (s) log(d1,πθ (s))
(b)≈ − 1

T

T∑
t=0

log d1,πθ (St)
(c)
= − 1

T

T∑
t=0

log p(St), (5)

where T is a finite number of time-steps after which an infinite horizon episode can be truncated due
to discounting. In deriving (5), (a) follows from the definition of entropy, (b) follows by assuming
ergodicity, which allows us to replace an expectation over the state space with an expectation over
time under all policies. The approximation here is due to the finite truncation of the infinite horizon
to T . Step (c) follows from the density estimation procedure.

Estimating the entropy of discounted future state distribution: In practice, we use a neural
density estimator for estimating the discounted state distribution, based on the states induced by
the policy πθ. The training samples for the density estimator is obtained by rolling out trajectories
under the policy πθ. We train a variational inference based density estimator (similar to a variational
auto-encoder) to maximize variational lower bound log p(s), where for the discounted case, we
denote this as log p̃(s), as given in (3) and (4). We therefore obtain an approximation to the entropy
of discounted future state distribution which can be used in the modified policy gradient objective,
where for the discounted case, with stochastic policies [Sutton et al., 1999], we have

J̃(θ) = Eπθ
[ ∞∑
t=0

γtr(St, At)− λ log dα,γ,πθ (st)
∣∣∣ S0

]
(6)

The objective in the stationary case can be obtained by substituting the dα,γ,πθ (st) with d1,πθ (st)
in (6). The neural density estimator is independently parametrized by φ, and is a function that maps
the policy parameters θ to a state distribution. The loss function for this density estimator is the KL
divergence between KL(qφ(Z | θ)||p(Z|θ)). The training objective for our density estimator in the
stationary case is given by :

Lγ(φ, θ) = (1− γ)γkEqφ(Z|θ)
[

log pφ(S|θ)
]
−KL

(
qφ(Z|θ)||p(θ)

)
(7)

Equation (7) gives the expression for the loss function for training the state density estimator (which
is the variational inference lower bound loss for estimating log(p(s)),i.e.,ELBO Kingma and Welling
[2013]. Here θ are the parameters of the policy network πθ, φ are the parameters of the density
estimator. The novelty of our approach is that the density estimator takes as input the parameters of the
policy network directly (similar to hypernetworks Krueger et al. [2017], Ha et al. [2016]). The encoder
then maps the policy parameters θ into the latent space Z given by qφ(Z | θ) with a Gaussian prior
over the policy parameters θ. During implementation we feed the parameters of the last two layers of
the policy network, assuming the previous layers extract the relevant state features and the last two
layers map the obtained features to a distribution over actions. Hence θ only comprises of the weights
of these last two layers ensuring computation tractability. We take this approach since the discounted
future state distribution is a function of the policy parameters θ. Our overall gradient objective with
the regularized update is therefore given by J̃(θ) = Eπθ

[∑∞
t=0 γ

tr(St, At) − λLγ(φ, θ)
]
, where
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Lγ(φ, θ) directly depends on the policy parameters θ. This gives the regularized policy gradient
update with the entropy of the discounted future state distribution, for stochastic policies as :

∇θJ̃(θ) = Eπθ
[
∇θ log π(At | St)Qπ(St, At)−λ∇θLγ(φ, θ).

]
,where Lγ(φ, θ) = (1− γ)γtL(φ, θ)

(8)

4 Experiments

In this section, we demonstrate our approach based on entropy regularization with the normalized
discounted weighting of states, also known as the discounted future state distribution. Our method
can be applied on top of any existing RL algorithm. In all our experiments, we use γ-StateEnt (or
Discounted StateEnt) for denoting entropy regularization with the discounted future state distribution,
and StateEnt for denoting the unnormalized counterpart of the discounted weighting of states.

Entropy regularization in Exact Policy Gradients with H(dπ): We first verify that entropy reg-
ularization with exact discounted future state distribution H(dπθ ) can lead to benefits in policy
optimization when used as a regularizer. We demonstrate this on three toy domains, varying the
amount λ of state distribution regularization, in the case where we can compute exact policy gradient
given by J(π) = (I − γPπ)−1R. In all these examples, the optimal solution can be found with value
iteration algorithm.
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Figure 1: State distribution entropy regularized exact policy gradient can lead to a better converged
solution on a simple two state MDP (taken from [Dadashi et al., 2019] (Figure (a)) and a discrete
GridWorld domain (Figure (b)). The regularized objective has a faster convergence rate compared
to the unregularized objective (with λ = 0.0). Interestingly, in toy MDPs where there exists state
aliasing, as in Figure (c) for MDP taken from the counterexample domain [Imani et al., 2018], we
find that state distribution entropy does not lead to significant improvements. This is an interesting
result justifying that state space exploration may not necessarily be needed in all MDPs, especially
when states are aliased

Toy Domains: Having verified our hypothesis in figure 1, we now present our approach based on
separately learning a density estimator for the state distribution, on tabular domains with actor-critic
algorithms. We compare our results for both the discounted state distributions and the unnormalized
counterpart, with a baseline actor-critic (with λ = 0.0 for the regularizer). Figure 2 summarizes our
results.

Complex Sparse Reward GridWorld Tasks: We demonstrate the usefulness of our approach, with
entropy of stationary (denoted StateEnt) and discounted (denoted γ StateEnt) state distributions, on
sparse reward complex gridworld domains. These are hard exploration tasks, where the agent needs
to pass through slits and walls to reach the goal state (placed at the top right corner of the grid). We
use REINFORCE [Williams, 1992] as the baseline algorithm, and for all comparisons use standard
policy entropy regularization (denoted PolicyEnt for baseline).

Continuous Control Tasks: We extend our proposed regularized policy gradient objective on stan-
dard continuous control Mujoco domains [Todorov et al., 2012]. First, we examine the significance
of the state distribution entropy regularizer in DDPG algorithm [Lillicrap et al., 2016]. In DDPG,
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Figure 2: We show benefits of state distribution entropy regularization on toy domains, especially hard
exploration tabular tasks such as FrozenLake. In all the tasks, we find that regularization with entropy
of discounted state distribution performs significantly better compared to baseline and regularization
with the unnormalized state distribution. In all tasks, we use λ = 0.1 for our methods.

(a) γ StateEnt (b) StateEnt (c) PolicyEnt

Figure 3: State space coverage on complex sparse reward double-slit-double-wall gridworld domains.
Figure shows that regularization with the discounted state distribution indeed has more useful effects
in terms of exploration and state space coverage compared to regularization with policies. We also
find that state space coverage is more with entropy of discounted state distribution compared to
stationary state distribution. All state visitation heat maps are shown after only 1000 time steps of
initial training phase.

policy entropy regularization cannot be used due to existence of deterministic policies [Silver et al.,
2014]. In Figure 4, we show that by inducing policies to maximize state space coverage, we can
enhance exploration that leads to significant improvements on standard benchmark tasks, especially
in environments where exploration in the state space plays a key role (e.g HalfCheetah environment)
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Figure 4: Significant performance improvements with state entropy regularization with DDPG,
especially in tasks like HalfCheetah-v1 and Hopper-v1 where exploration plays a key role. In all
the experiments, we use a state entropy regularization coefficient of λ = 0.1 for our approach, and
λ = 0.0 for the baseline DDPG. Experiment results are averaged over 10 random seeds [Henderson
et al., 2018]

5 Summary and Discussion

In this work, we provided a practically feasible algorithm for entropy regularization with the state
distributions in policy optimization. We present a practically feasible algorithm, based on estimating
the discounted future state distribution, for both episodic and infinite horizon environments. The key
to our approach relies on using a density estimator for the state distribution dπθ , which is a direct
function of the policy parameters θ itself, such that we can regularize policy optimization to induce
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policies that can maximize state space coverage. We demonstrate the usefulness of this approach
on a wide range of tasks, starting from simple toy tasks to sparse reward gridworld domains, and
eventually extending our results to a range of continuous control suites. We re-emphasize that our
approach gives a practically convenient handle to deal with the discounted state distribution, that are
difficult to work with in practice. In addition, we provided a proof of convergence of our method as
a three time-scale algorithm, where learning a policy depends on both a value function and a state
distribution estimation.
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