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Abstract

Consider a two-player zero-sum stochastic game where the transition function can
be embedded in a given feature space. We propose a two-player Q-learning algo-
rithm for approximating the Nash equilibrium strategy via sampling. The algorithm
is shown to find an ε-optimal strategy using sample size linear to the number of
features. To further improve its sample efficiency, we develop an accelerated algo-
rithm by adopting techniques such as variance reduction, monotonicity preservation
and two-sided strategy approximation. We prove that the algorithm is guaranteed
to find an ε-optimal strategy using no more than Õ(K/(ε2(1− γ)4)) samples with
high probability, where K is the number of features and γ is a discount factor. The
sample, time and space complexities of the algorithm are independent of original
dimensions of the game.

1 Introduction

Two-player turn based stochastic game (2-TBSG) is a generalization of Markov decision process
(MDP), both of which are widely used models in machine learning and operations research. While
MDP involves one agent with its simple objective to maximize the total reward, 2-TBSG is a zero-sum
game involving two players with opposite objectives: one player seeks to maximize the total reward
and the other player seeks to minimize the total reward. In a 2-TBSG, the set of all states is divided
into two subsets that are controlled by the two players, respectively. We focus on the discounted
stationary 2-TBSG, where the probability transition model is invariant across time and the total
reward is the infinite sum of all discounted rewards. Our goal is to approximate the Nash equilibrium
of the 2-TBSG, whose existence is proved in Shapley (1953).

There are two practical obstacles standing in solving 2-TBSG:
• We usually do not know the transition probability model explicitly;
• The number of possible states and actions are very large or even infinite.

In this paper we have access to a sampling oracle that can generate sample transitions from any state
and action pair. We also suppose that a finite number of state-action features are available, such that
the unknown probability transition model can be embedded using the feature space. These features
allow us to solve 2-TBSG of arbitrary dimensions using parametric algorithms.

A question is raised naturally, that is, how many samples are needed in order to find an approximate
Nash equilibrium? For solving the one-player MDP to ε-optimality using K features, Yang and Wang
(2019) proves an information-theoretic lower bound of sample complexity Ω(K/((1−γ)3ε2)). Since
MDP is a special case of 2-TBSG, the same lower bound applies to 2-TBSG. Yet there has not been
any provably efficient algorithm for solving 2-TBSG using features.

To answer this question, we propose two sampling-based algorithms and provide sample complexity
analysis. Motivated by the value iteration and Q-learning like algorithms given by Hansen et al.
(2013); Yang and Wang (2019), we propose a simple two-player Q-learning algorithm for solving
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2-TBSG using given features. When the true transition model can be fully embedded in the feature
space without losing any information, our algorithm finds an ε-optimal strategy using no more
than Õ(K/((1 − γ)7ε2)) sample transitions, where K is the number of state-action features. The
algorithm, together with its analysis, can be viewed in the appendix (Section B).

To further improve the sample complexity, we use a variance reduction technique, together with
a specifically designed monotonicity preservation technique which were previously used in Yang
and Wang (2019), to develop an algorithm that is even more sample-efficient. This algorithm uses
a two-sided approximation scheme to find the equilibrium value from both above and below. It
computes the final ε-optimal strategy by sticking two approximate strategies together. This algorithm
is proved to find an ε-optimal strategy with high probability using Õ(K/((1 − γ)4ε2)) samples,
which improves significantly from our first result. Our results are the first and sharpest sample
complexity bounds for solving two-player stochastic game using features, to our best knowledges.
Our algorithms are the first ones of their kind with provable sample efficiency. It is also worth noting
that the algorithms are space and time efficient, whose complexities depend polynomially on K and
1

1−γ , and are free from the game’s dimensions. Moreover, we also provide model misspecification
error bound for the case where the features cannot fully embed the transition model.

Section 2 presents the problem formulation and basics. The accelerated two-player Q-learning
algorithm and its analysis are presented in Section 3 and Section 4. The related literatures has been
deferred to the appendix (Section A).

2 Preliminaries

Basics of 2-TBSG A discounted 2-TBSG (2-TBSG for short) consists of a tuple (S,A, P, r, γ),
where S = S1 ∪ S2,A = A1 ∪ A2 and S1,S2,A1,A2 are state sets and action sets for Player 1 and
Player 2, respectively. P ∈ R|S×A|×|S| is a transition probability matrix, where P (s′|s, a) denotes
the probability of transitioning to state s′ from state s if action a is used. r ∈ R|S|×|A| is the reward
vector, where r(s, a) ∈ [0, 1] denotes the immediate reward received using action a at state s.

For a given state s ∈ S , we use As to denote the available action set for state s. A value function is a
mapping from S to R. A deterministic strategy (strategy for short) π = (π1, π2) is defined such that
π1, π2 are mappings from S1 to A1 and from S2 to A2, respectively. Given a strategy π, the value
function of π is defined to be the expectation of total discounted reward starting from s, i.e.,

V π(s) = E

[ ∞∑
i=0

γir(si, π(si))
∣∣∣s0 = s

]
, ∀s ∈ S, (1)

where γ ∈ [0, 1) is the discounted factor, and the expectation is over all trajectories starting from s.

Two players in a 2-TBSG has opposite objectives. While the first player seeks to maximize the value
function (1), the second player seeks to minimize it. In the following we present the definition of the
equilibrium strategy.
Definition 1. A strategy π∗ = (π∗1 , π

∗
2) is called a Nash equilibrium strategy (equilibrium strategy

for short), if V π1,π
∗
2 ≤ V π∗ ≤ V π∗1 ,π2 for any player 1’s strategy π1 and player 2’s strategy π2.

The existence of the Nash equilibrium strategy is proved in Shapley (1953). And all equilibrium
strategies share the same value function, which we denote by v∗ ∈ R|S|.
Notice that v∗ is the equilibrium value if and only if it satisfies the following Bellman equation
Hansen et al. (2013):

v∗ = T v∗, (2)

where T is an operator mapping a value function V into another:

T V (s) =

{
maxa∈As [r(s, a) + γP (·|s, a)TV ], ∀s ∈ S1,
mina∈As [r(s, a) + γP (·|s, a)TV ], ∀s ∈ S2.

(3)

We give definitions of ε-optimal values and ε-optimal strategies.
Definition 2. We call a value function V an ε-optimal value, if ‖V − v∗‖∞ ≤ ε.
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Definition 3. We call a strategy π = (π1, π2) an ε-optimal strategy, if for any s ∈ S,

max
π1

[
V π1,π2(s)− v∗(s)

]
≤ ε, min

π2

[
V π1,π2(s)− v∗(s)

]
≥ −ε.

Since minπ2
V π1,π2 ≤ v∗ ≤ maxπ1

V π1,π2 , the above definition is equivalent to ‖minπ2
V π1,π2 −

v∗‖∞ ≤ ε and ‖maxπ1
V π1,π2 − v∗‖∞ ≤ ε.

Features and Probability Transition Model Suppose we have K feature functions φ =
{φ1, · · · , φK} mapping from S ×A into R. For every state-action pair (s, a), these features give a
feature vector

φ(s, a) = [φ1(s, a), · · · , φK(s, a)]T ∈ RK .

Throughout this paper, we focus on 2-TBSG where the probability transition model can be nearly
embedded using the features φ without losing any information.

Definition 4. We say that the transition model P can be embedded into the feature space φ, if there
exists functions ψ1, . . . , ψK : S 7→ R such that

P (s′|s, a) =
∑
k∈[K]

φk(s, a)ψk(s′), ∀s′ ∈ S, (s, a) ∈ S ×A.

The preceding model is closely related to linear model for Q functions. When P can be fully
embedded using φ, the Q-functions belong to span{r, φ} so we can parameterize them using K-
dimensional vectors. Note that the feature representation is only concerned with the probability
transition but has nothing to do with the reward function. It is pointed out by Yang and Wang (2019)
that having a transition model which can be embedded into φ is equivalent to using linear Q-function
model with zero Bellman error. In our subsequent analysis, we also provide approximation guarantee
when P cannot be fully embedded using φ.

It is worth noting that Definition 4 has a kernel interpretation. It is equivalent to that the left
singular functions of P belong to the Hilbert space with the kernel function K((s, a), (s′, a′)) =
φ(s, a)Tφ(s′, a′). Our model and method can be viewed as approximating and solving the 2-TBSG
in a given kernel space.

Notations For two value functions V1, V2, we use V1 ≤ V2 to denote V1(s) ≤ V2(s),∀s ∈ S.
We use

∏
[a,b] V (s) to denote the projection of V (s) into the interval [a, b]. The total variance

(TV) distance between two distributions P1, P2 on the state space S is defined as ‖P1 − P2‖TV =∑
s∈S |P1(s)− P2(s)|. And we use Õ(·) to hide log factors of K,L, ε, 1− γ and δ.

3 Variance-Reduced Q-Learning for Two-Player Stochastic Games

In this section, we show how to accelerate the two-player Q-learning algorithm and achieve near-
optimal sample efficiency. A main technique is to leverage monotonicity of the Bellman operator to
guarantee that solutions improve monotonically in the algorithm, which was used in Yang and Wang
(2019). The entire algorithm can be viewed in appendix (Section C).

3.1 Nonnegative Features

To preserve monotonicity in the algorithm, we assume without loss of generality the features are
nonnegative:

φk(s, a) ≥ 0, ∀k ∈ [K], ∀(s, a) ∈ S ×A

This condition can be easily satisfied. If the raw features φ does not satisfy nonnegativity, we can
construct new features φ′ to make it satisfied. For any state-action pair (s, a) we append another
1D feature φ′K+1(s, a) such that φ′k(s, a) = φk(s, a) + φ′K+1(s, a) ≥ 0 for k ∈ [K], and there is a
subset K′ of S ×A such that |K′| = K + 1 and Φ′K′ is nonsingular. Then φ′ satisfies nonnegativity
condition and Assumption 1 for some L by normalization. More details are deferred to appendix.
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3.2 Parametrization

We use a “max-linear" parameterization to guarantee that value functions improve monotonically in
the algorithm. Instead of using a single vectorw, we now use a finite collection ofK-dimensional vec-
tors θ = {w(h)}Zh=1, where Z is an integer of order 1/(1−γ). We use the following parameterization
for the Q-functions, the value functions and strategies1:

Qw(h)(s, a) = r(s, a) + γφ(s, a)Tw(h),

Vθ(s) =

{
maxh∈[Z] maxa∈As Qw(h)(s, a), ∀s ∈ S1,
maxh∈[Z] mina∈As Qw(h)(s, a), ∀s ∈ S2,

πθ(s) =

{
maxh∈[Z] [arg maxa∈As (Qw(h)(s, a))] , ∀s ∈ S1,
maxh∈[Z] [arg mina∈As (Qw(h)(s, a))] , ∀s ∈ S2.

(4)

For a given θ and s, computing the corresponding Q-value and action requires solving a one-step
optimization problem. We assume that there is an oracle that solves the problem with time complexity
M .
Remark 1. When the action space is continuous, this M may become a constant which is independent
to the state set and the action set.

3.3 Preserving Monotonicity

A drawback of value iteration-like method is: an ε-optimal value function cannot be used greedily
to obtain an ε-optimal strategy. In order for Algorithm 1 to find an π such that V π is an ε-optimal
value, it needs to find an (1− γ)ε-optimal value function first, which is very inefficient. However, if
a strategy π and a value function V satisfy following inequality

V ≤ TπV, (5)

then there is a strong connection between V π and V as follows (due to monotonicity of the Bellman
operator T ):

V ≤ TπV ≤ T 2
π V ≤ · · · ≤ T ∞π V = V π.

This relation will be used to show that if V is close to optimal, the policy π is also close to optimal.

The accelerated algorithm is given partly in Algorithm 2, which uses two tricks to preserve mono-
tonicity:

• We use parametrization (4) for Qw, Vθ and πθ. This parametrization ensures that in our
algorithm, the values and strategies keeps improving throughout iterations.

• In each iteration, we shift downwards the new parameter w(i,j) to w(i,j) by using a confi-
dence bound, such that

φ(s, a)Tw(i,j) ≤ P (·|s, a)TV (i,j−1) ≤ P (·|s, a)TV (i,j),

which uses the nonnegativity of features. The shift is used to guarantee (5).

3.4 Approximating the Equilibrium from Two Sides

Making value functions monotonically increasing is not enough to find an ε-optimal strategy for
two-player stochastic games. There are two sides of the game, and V π may be either greater or less
than the Nash value. Having a lowerbound V for V π does not lead to an approximate strategy. This
is a major difference from one-player MDP.

In order to fix this problem, we approximate the Nash equilibrium from two sides – both from
above and below. Given player 1’s strategy π1 and player 2’s strategy π2, we introduce two Bellman
operators Tπ1,min, Tmax,π2

.

Tπ1,minV =

{
r(s, π1(s)) + γP (·|s, π1(s))TV, if s ∈ S1,
mins∈As

[
r(s, a) + γP (·|s, a)TV

]
, if s ∈ S2,

Tmax,π2V =

{
maxs∈As

[
r(s, a) + γP (·|s, a)TV

]
, if s ∈ S1,

r(s, π2(s)) + γP (·|s, π2(s))TV, if s ∈ S2.

(6)

1Here maxh∈[Z][arg mina∈As Qw(h)(s, a)] is defined to be the solution of a in the max-min problem:
maxh∈[Z] mina∈As Qw(h)(s, a). The definition of maxh∈[Z][arg maxa∈As Qw(h)(s, a)] is similar.
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Then if there exist value functions V,W such that all of the following
V ≤ Tπ1,minV, Tmax,π2

W ≤W (7)
hold, then by using the monotonicity of Tπ1,min, Tπ2,max we get

V ≤ min
π2

V π1,π2 ≤ v∗ ≤ max
π1

V π1,π2 ≤W.

Hence if we have ‖V − v∗‖∞ ≤ ε and ‖W − v∗‖∞ ≤ ε, they jointly imply

‖min
π2

V π1,π2 − v∗‖∞ ≤ ε,

‖max
π1

V π1,π2 − v∗‖∞ ≤ ε,
(8)

which indicates that (π1, π2) is an ε-optimal strategy.

To achieve this goal, we construct a “flipped" instance of 2-TBSGM′ = (S,A, P, r′, γ), where the
state set and the action set for each player, the transition probability matrix and the discounted factor
are identical with those ofM. The reward function r′ is defined as

r′(s, a) = 1− r(s, a). (9)
And the objective of two players are switched, which means inM′ the first player aims to minimize
and the second player aims to maximize.M,M′ share the same optimal strategy (but flipped).

We use V ′ to denote the value function ofM′, and let W (s) = 1
1−γ − V

′(s) for any s ∈ S, which
serves as the value function approximating the equilibrium value v∗ from upper side. This W ,
together with V , forms a two-sided approximation to the equilibrium value function.

We use Algorithm 2 to solveM andM′ at the same time. Next we construct a strategy π where the
first player’s strategy is based on parameters from the lower approximation, and the second player’s
strategy is based on parameters from the upper approximation. This process is described in Algorithm
3, and its output is the following approximate Nash equilibrium strategy:

π(s) =

{
πθ(R′,R)(s), if s ∈ S1,
π′
η(R′,R)(s), if s ∈ S2,

(10)

where for η = {z(h)}Zh=1, π′ is the strategy defined as

π′η(s) =

{
maxh∈[Z]

[
arg mina∈As

(
r′(s, a) + γφ(s, a)T z(h)

)]
, ∀s ∈ S1,

maxh∈[Z]

[
arg maxa∈As

(
r′(s, a) + γφ(s, a)T z(h)

)]
, ∀s ∈ S2,

3.5 Variance Reduction

We use inner-outer loops for variance reduction in our algorithm. Let the parameters at the (i, j)-th
iteration be θ(i,j). At the beginning of the i-th outer iteration, we aim to approximate P (·|s, a)TVθ(i,0)
accurately (Step 6, 7). Then in the (i, j)-th inner iteration, we use P (·|s, a)TVθ(i,0) as a reference to
reduce the variance of estimation. That is, we estimate the difference P (·|s, a)T (Vθ(i,j−1) − Vθ(i,0))
using samples and then use the following equation (Step 11, 12 in Algorithm 2)

P (·|s, a)TVθ(i,j−1) = P (·|s, a)TVθ(i,0) + P (·|s, a)T (Vθ(i,j−1) − Vθ(i,0))
to approximate P (·|s, a)TVθ(i,j−1) . Since the infinite norm of (Vθ(i,j−1) − Vθ(i,0)) is guaranteed to
be smaller than the absolute value of Vθ(i,0) , the number of samples needed for each inner iteration
can be substantially reduced. Hence our algorithm is more sample-efficient.

3.6 Putting Together

Algorithms 2-3 puts together all the techniques that were explained. In the next section, we will
prove that they output an ε-optimal strategy with high probability. It is easy to see that the time
complexity of Algorithm 2 is Õ(Kω +MK/((1− γ)4ε2) +K2/(1− γ)). The first term Kω is the
time calculating Φ−1K . The second term is the time of sampling and calculating the value function
in each iteration, and M is the time of calculating Vθ(s) given parameter θ and state s, which can
be viewed as solving an optimization problem over the action space. The last term is due to the
calculation of ΦKM

(i,j). As for the space complexity, we only need to store Φ−1K and the parameter
θ(i,j) at each iteration, which take Õ(K2 + K/(1 − γ)) space. Hence the total time and space
complexities are independent from the numbers of states and actions.
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4 Sample Complexity of Algorithms 2-3

In this section, we analyze the sample complexity of our Algorithms 2-3.
Theorem 1. Let Assumption 1 hold and let features be nonnegative. Suppose that the transition
model P ofM can be fully embedded into φ space. Then for some ε > 0, δ ∈ (0, 1), with probability
at least 1− 2δ, the output of Algorithm 3 is an ε-optimal strategy. The number of samples used is
N = O

(
KL2

(1−γ)4ε2 · poly log(Kε−1δ−1)
)

.

We present a proof sketch here, and the complete proof is deferred to appendix.

Proof Sketch. We prove ‖Vθ(i,0) − v∗‖∞ ≤ 2−i/(1 − γ) by induction. It is easy to know that
‖Vθ(0,0) − v∗‖∞ ≤ 1/(1− γ). Next we assume ‖Vθ(i−1,0) − v∗‖∞ ≤ 2−i+1/(1− γ) holds.

The error between Vθ(i,0) and v∗ involves two types of error: the estimation error due to sampling and
the convergence error of value iteration. Due to the variance reduction technique, estimation error
has two parts. The first part is the estimation error of Φ−1K PKVθ(i−1,0) , which we denote as ε(i,0), and
the second part is the error of Φ−1K PK(Vθ(i−1,j) − Vθ(i−1,0)), which we denote as ε(i,j) for short.

According to the Hoeffding inequality, we have ε(i,0) = Õ(L/(1− γ) ·
√

1/m) and ε(i,j) = Õ(L ·
maxs |Vθ(i−1,j−1)(s)− Vθ(i−1,0)(s)| ·

√
1/m1) with high probability. By the induction hypothesis,

we have maxs |Vθ(i−1,j−1)(s)− Vθ(i−1,0)(s)| ≤ 1
2i−1(1−γ) . If we choose m = cL2/((1− γ)4ε2) and

m1 = c1L
2/(1− γ)2, we will have ε(i,0) = O(ε(1− γ)) and ε(i,j) = O(2−i).

The convergence error of value iteration in the inner loop is γR/(1 − γ). If we choose R =
cR log(ε−1(1−γ)−1)/(1−γ), we will have γR/(1−γ) = O(ε). Bringing these two types of errors
together, we have with high probability that

‖v∗ − Vθ(i,0)‖∞ ≤
γR

1− γ
+

R∑
j=1

γR−j(ε(i,0) + ε(i,j)) ≤ O
(
ε+

ε(1− γ) + 2−i

1− γ

)
= O

(
2−i

1− γ

)
,

where the last equality is due to ε ≤ 2−R
′
/(1− γ) ≤ 2−i/(1− γ). Choosing R′ = cR′ log(ε−1(1−

γ)−1), we have ‖v∗ − Vθ(R′,R)‖∞ = ‖v∗ − Vθ(R+1,0)‖∞ ≤ ε. Here we have omitted the dependence
on any constant factors.

Similarly, we can show ‖v∗ −Wη(R+1,0)‖∞ ≤ ε for the “flipped" side. Hence we have Vθ(R′,R) ≤
v∗ ≤Wη(R′,R) , therefore the combined strategy π = (π1, π2) given by Algorithm 3 is an ε-optimal
strategy since

Vθ(R′,R) ≤ min
π2

V π1,π2 ≤ v∗ ≤ max
π1

V π1,π2 ≤Wη(R,R′) , (11)

whose proof is based on the monotonicity of two operators Tπ1,min, Tmax,π2
. The total number of

samples used by Algorithm 3 is R′(R ·m1 +m) = Õ(L2/((1− γ)4ε2)).

According to Theorem 3 and 1, we have the following theorem when the transition model cannot be
embedded exactly, whose proof is deferred to appendix.
Theorem 2 (Approximation error due to model misspecification). Let Assumption 1 holds and let
features be nonnegative. If there is an another transition model P̃ which can be fully embedded into
φ space, and there exists ξ ∈ [0, 1] such that ‖P (·|s, a)− P̃ (·|s, a)‖TV ≤ ξ for ∀(s, a) ∈ S ×A and
P (·|s, a) = P̃ (·|s, a) for (s, a) ∈ K, then with probability at least 1− 2δ, the output of Algorithm
3 is an

(
2ξ/(1− γ)2 + 2ε

)
-optimal strategy, and with probability at least 1− δ, the parametrized

strategy (π1
w(R) , π

2
w(R)) according to the output of Algorithm 1 is

(
2ξ/(1− γ)2 + 2ε

)
-optimal.

5 Conclusion

In this paper, we develop a two-player Q-learning algorithm for solving 2-TBSG in feature space.
This algorithm is proved to find an ε-optimal strategy with high probability using Õ(K/((1− γ)4ε2))
samples. It is the first and sharpest sample complexity bound for solving two-player stochastic game
using features and linear models, to our best knowledges. The algorithm is sample efficient as well as
space and time efficient.
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A Related Works

The 2-TBSG is a special case of games and stochastic games (SG), which are first introduced in
Von Neumann and Morgenstern (2007) and Shapley (1953). For a comprehensive introduction on SG,
please refer to the books Neyman et al. (2003) and Filar and Vrieze (2012). A number of deterministic
algorithms have been developed for solving 2-TBSG when its explicit form is fully given, including
Littman (1996); Ludwig (1995); Hansen et al. (2013). For example Rao et al. (1973) proposes the
strategy iteration algorithm. A value iteration method is proposed by Hansen et al. (2013), which is
one of the motivation of our algorithm.

In the special case of MDP, there exist a large body of works on its sample complexity and sampling-
based algorithms. For the tabular setting (finitely many state and actions), sample complexity of
MDP with a sampling oracle has been studied in Kearns and Singh (1999); Azar et al. (2013); Sidford
et al. (2018b,a); Kakade (2003); Singh and Yee (1994); Azar et al. (2011b). Lower bounds for sample
complexity have been studied in Azar et al. (2013); Even-Dar et al. (2006); Azar et al. (2011a), where
the first tight lower bound Ω(|S||A|/(1 − γ)3) is obtained in Azar et al. (2013). The first sample-
optimal algorithm for finding an ε-optimal value is proposed in Azar et al. (2013). Sidford et al.
(2018a) gives the first algorithm that finds an ε-optimal policy using the optimal sample complexity
Õ(|S||A|/(1− γ)3) for all values of ε. For solving MDP using K linearly additive features, Yang
and Wang (2019) proved a lower bound of sample complexity that is Ω(K/((1 − γ)3ε2)). It also
provided an algorithm that achieves this lower bound up to log factors, however, their analysis of the
algorithm relies heavily on an extra “anchor state” assumption. In Chen et al. (2018), a primal-dual
method solving MDP with linear and bilinear representation of value functions and transition models
is proposed for the undiscounted MDP. In Jiang et al. (2017), the sample complexity of contextual
decision process is studied.

As for general stochastic games, the minimax Q-learning algorithm and the friend-and-foe Q-learning
algorithm is introduced in Littman (1994) and Littman (2001a), respectively. The Nash Q-learning
algorithm is proposed for zero-sum games in Hu and Wellman (2003) and for general-sum games in
Littman (2001b); Hu and Wellman (1999). Also in Perolat et al. (2015), the error of approximate
Q-learning is estimated. In Zhang et al. (2018), finite-sample analysis of multi-agent reinforcement
learning is provided. To our best knowledge, there is no known algorithm that solves 2-TBSG using
features with sample complexity analysis.

There are a large number of works analyzing linear model approximation of value and Q functions,
for examples Tsitsiklis and Van Roy (1997); Nedić and Bertsekas (2003); Lagoudakis and Parr
(2003); Melo et al. (2008); Parr et al. (2008); Sutton et al. (2009); Lazaric et al. (2012); Tagorti and
Scherrer (2015). These work mainly focus on approximating the value function or Q function for
a fixed policy. The convergence of temporal difference learning with a linear model for a given
policy is proved in Tsitsiklis and Van Roy (1997). Melo et al. (2008) and Sutton et al. (2009)
study the convergence of Q-learning and off-policy temporal difference learning with linear function
parametrization, respectively. In Parr et al. (2008), the relationship of linear transition model and
linear parametrized value functions is explained. It is also pointed out by Yang and Wang (2019) that
using linear model for Q function is essentially equivalent to assuming that the transition model can
be embedded using these features, provided that there is zero Bellman error.

The fitted value iteration for MDPs or 2TBSGs, where the value function is approximated by functions
in a general function space, is analyzed in Munos and Szepesvári (2008); Antos et al. (2008a,b);
Farahmand et al. (2010); Yang et al. (2019); Pérolat et al. (2016). In these papers, it is shown that the
error is related to the Bellman error of the function space, and depends polynomially on 1/ε, 1/(1−γ)
and the dimension of the function space. However, only convergence is analyzed in these paper.

B A Basic Two-Player Q-learning Algorithm

In this section, we develop a basic two-player Q learning algorithm for 2-TBSG. The algorithm is
motivated by the two-player value iteration algorithm Hansen et al. (2013). It is also motivated by the
parametric Q-learning algorithm for solving MDP given by Yang and Wang (2019).
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B.1 Algorithm and Parametrization

The algorithm uses a vector w ∈ RK to parametrize Q-functions, value functions and strategies as
follows:

Qw(s, a) = r(s, a) + γφ(s, a)Tw,

Vw(s) =

{
maxa∈AQw(s, a) s ∈ S1,
mina∈AQw(s, a) s ∈ S2,

πw(s) =

{
arg maxa∈AQw(s, a) s ∈ S1,
arg mina∈AQw(s, a) s ∈ S2.

(12)

The algorithm keeps tracks of the parameter vector w only. The value functions and strategies can be
obtained from w according to preceding equations when they are needed.

We present Algorithm 1, which is an approximate value iteration. Our algorithm picks a set K of
representative state-action pairs at first. Then at iteration t, it uses sampling to estimate the values
P (·|s, a)TVw(t−1) , and carries value iteration using these estimates. The set K can be chosen nearly
arbitrarily, but it is necessary that the set is representative of the feature space. It means that the
feature vectors of state-action pairs in this set cannot too be alike but need to be linearly independent.
Assumption 1. There exist K state-action pairs (s, a) forming a set K satisfying

‖φ(s, a)‖1 ≤ 1, ∀s ∈ S, a ∈ As, ∃L > 0, ‖Φ−1K ‖∞ ≤ L,

where ΦK is the K ×K matrix formed by row features of those (s, a) in K.

Algorithm 1 Sampled Value Iteration for 2-TBSG
1: Input: A 2-TBSGM = (S,A, P, r, γ), where S = S1 ∪ S2,A = A1 ∪ A2.
2: Input: ε, δ ∈ (0, 1).
3: Initialize: w(0) ← 0.
4: Initialize: R← Θ(1/(1− γ) log(1/(1− γ)ε)), T ← Θ

[(
L2 · log(KR/δ)/(ε2(1− γ)6)

)]
.

5: Pick a set K of state-action pairs, which satisfies Assumption 1.
6: for t = 1 : R do
7: M (t) ← 0 ∈ RK
8: for (s, a) ∈ K do
9: Sample P (·|s, a) for T times to obtain s(t)1 , · · · , s(t)T ∈ S.

10: Let M (t)(s, a) = 1
T

∑T
i=1 Π[0,1/(1−γ)]Vw(t−1)(s

(t)
i ), where Vw is defined in (12).

11: end for
12: w(t) ← Φ−1

K M (t).
13: end for
14: Output: w(R) ∈ RK .

B.2 Sample Complexity Analysis

The next theorem establishes the sample complexity of Algorithm 1, which is independent from |S|
and |A|. Its proof is deferred to the appendix.
Theorem 3 (Convergence of Algorithm 1). Let Assumption 1 holds. Suppose that the transition
model P of M can be fully embedded into the φ space. Then for some ε > 0, δ ∈ (0, 1), with
probability at least 1− δ, the parametrized strategy πw(R) according to the output of Algorithm 1 is
ε-optimal. The number of samples used is Õ

(
KL2

(1−γ)7ε2 · poly log(Kε−1δ−1)
)

.

B.3 Proof of Theorem 3

We first present the definition of optimal counterstrategies.
Definition 5. For player 1’s strategy π1, we call π2 a player 2’s optimal counterstrategy against
π1, if for any player 2’s strategy π2, we have V π1,π2 ≤ V π1,π2 . For player 2’s strategy π2, we
call π1 a player 1’s optimal counterstrategy against π2, if for any player 1’s strategy π1, we have
V π1,π2 ≥ V π1,π2 .

It is known in Puterman (2014) that for any player 1’s strategy π1 (player 2’s strategy π2), the optimal
counterstrategy against π1 (π2) always exists.
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Our next lemma indicates that we can use the error of parametrized Q functions to bounded the error
of value functions of parametrized strategies.
Lemma 1. If

‖Qw(s, a)−Q∗(s, a)‖∞ ≤ ζ, (13)

then we have

‖vπ1,π
∗
2 − v∗‖∞ ≤

2ζ

1− γ
, ‖vπ

∗
1 ,π2 − v∗‖∞ ≤

2ζ

1− γ
, (14)

where (π1, π2) = πw, and π∗1 , π
∗
2 are optimal counterstrategies of π2, π1.

Proof. We only prove the first inequality of (14). The proof of the second inequality is similar.

For any s ∈ S1,

|vπ1,π
∗
2 (s)− v∗(s)| = |vπ1,π

∗
2 (s)−Q∗(s, π∗(s))|

≤ |vπ1,π
∗
2 (s)−Q∗(s, π1(s))|+ |Q∗(s, π1(s))−Q∗(s, π∗(s))|

= |γP (·|s, π1(s))vπ1,π
∗
2 − γP (·|s, π1(s))v∗|+ |Q∗(s, π1(s))−Q∗(s, π∗(s))|

≤ γ|P (·|s, π1(s))(vπ1,π
∗
2 − v∗)|+ |Q∗(s, π1(s))−Q∗(s, π∗(s))|

≤ γ‖vπ1,π
∗
2 − v∗‖∞ + |Q∗(s, π1(s))−Q∗(s, π∗(s))|.

According to the definition of πw = (π1, π2) and Q∗,

Q∗(s, π1(s)) ≤ Q∗(s, π∗(s)),
Qw(s, π1(s)) ≥ Qw(s, π∗(s)).

Combine this inequality with inequality (13), we get

0 ≤ Q∗(s, π∗(s))−Q∗(s, π1(s))

≤ |Q∗(s, π∗(s))−Qw(s, π∗(s))|+Qw(s, π∗(s))−Qw(s, π1(s))

+ |Qw(s, π1(s))−Q∗(s, π1(s))|
≤ 2‖Qw −Q∗‖∞ ≤ 2ζ,

which indicates that

|vπ1,π
∗
2 (s)− v∗(s)| ≤ γ‖vπ1,π

∗
2 − v∗‖∞ + 2ζ, ∀s ∈ S1.

Furthermore, for s ∈ S2, we have

|vπ1,π
∗
2 (s)− v∗(s)| = min

a∈As

[
r(s, a) + γP (·|s, a)TV π1,π

∗
2

]
− min
a∈As

[
r(s, a) + γP (·|s, a)TV ∗

]
≤ max
a∈As

[
γP (·|s, a)TV π1,π

∗
2 − γP (·|s, a)TV ∗

]
≤ γ‖vπ1,π

∗
2 − v∗‖∞.

Therefore, we have
‖vπ1,π

∗
2 − v∗‖∞ ≤ γ‖vπ1,π

∗
2 − v∗‖∞ + 2ζ,

which indicates that
‖vπ1,π

∗
2 − v∗‖∞ ≤

2ζ

1− γ
.

The first inequality of (14) is verified.

Proof of Theorem 3. We define

T V (s) =

{
maxa∈As r(s, a) + γPTs,aV, ∀s ∈ S1,
mina∈As r(s, a) + γPTs,aV, ∀s ∈ S2,

T̂ (t)V (s) =

{
maxa∈As r(s, a) + γφ(s, a)TΦ−1K P̂

(t)
K V, ∀s ∈ S1,

mina∈As r(s, a) + γφ(s, a)TΦ−1K P̂
(t)
K V, ∀s ∈ S2,
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where P̂ (t) ∈ RK×|S| (1 ≤ t ≤ R) is the approximate transition probability matrix obtained by
sampling at t-th iterations:

P̂
(t)
(s,a),s′ =

1

T

T∑
i=1

1
[s

(t)
i =s′]

, ∀(s, a) ∈ K, s
(t)
1 , · · · , s(t)T ∼ P (·|s, a).

Then our algorithm can be written as

Vw(t) ← T̂ (t)V̂w(t−1) , ∀1 ≤ l ≤ R,

where V̂w(t−1) = Π[0,1/(1−γ)]Vw(t−1) .

We define the following event as Et:

‖(P̂ (t)
K − PK)V̂wt−1‖∞ ≤ ε1 := c · 1

1− γ

√
log(KR/δ)

T
.

According to Hoeffding inequality for both state-action pairs in K and applying their union bound,
the event Et holds with probability at least 1− δ/R. Also Et indicates that for any s ∈ S, a ∈ As,
we have∣∣∣γφ(s, a)TΦ−1K P̂

(t)
K V̂w(t−1) − γPTs,aV̂w(t−1)

∣∣∣ ≤ ∣∣∣φ(s, a)TΦ−1K (P̂
(t)
K − PK)V̂w(t−1)

∣∣∣ ≤ Lε1, (15)

where we let Ps,a = P (·|s, a) and the last inequality comes from the assumption ‖φ(s, a)‖1 ≤ 1 and
‖Φ−1K ‖∞ ≤ L. Noting that for any s ∈ S,

|[T̂ (t)V̂w(t−1) ](s)− [T V̂w(t−1) ](s)| ≤ max
a∈As

∣∣∣γφ(s, a)TΦ−1K P̂
(t)
K V̂w(t−1) − γPTs,aV̂w(t−1)

∣∣∣ ,
and T v∗ = v∗, we have

‖Vw(t) − v∗‖∞ ≤ ‖T̂ (t)V̂w(t−1) − T V̂w(t−1)‖∞ + ‖T V̂w(t−1) − T v∗‖∞
≤ Lε1 + ‖T V̂w(t−1) − T v∗‖∞
≤ Lε1 + γ‖V̂w(t−1) − v∗‖∞,

where in the last inequality we use the contraction property of T .

Therefore, when E(1), · · · , E(R) all hold, we get

‖Vw(R) − V ∗‖∞ ≤ Lε1 + γ‖V̂w(R−1) − v∗‖∞
≤ Lε1 + γ‖Vw(R−1) − v∗‖∞
≤ γ · Lε1 + Lε1 + γ2‖V̂w(R−2) − v∗‖∞
≤ · · ·

≤ γ

1− γ
· Lε1 +

γR

1− γ
,

where we use the fact ‖Vw(0) − V ∗‖∞ ≤ 1/(1− γ) in the last inequality. Furthermore, according to
Qw(R)(s, a) = r(s, a) + γφ(s, a)TΦ−1K P̂

(R)
K V̂w(R−1) , we have

‖Qw(R) −Q∗‖∞ ≤ Lε1 + γ‖V̂w(R−1) − v∗‖∞ ≤
γ · Lε1
1− γ

+
γR

1− γ
,

when E(R) holds, similar to the derivation in (15). Finally if we suppose π1
w(R) , π

2
w(R) are optimal

counterstrategies against π2
w(R) , π

1
w(R) , using Lemma 1 we get∥∥∥V π1

w(R) ,π
2

w(R) − V ∗
∥∥∥
∞
≤ 2γ · Lε1

(1− γ)2
+

2γR

(1− γ)2∥∥∥V π1

w(R) ,π
2

w(R) − V ∗
∥∥∥
∞
≤ 2γ · Lε1

(1− γ)2
+

2γR

(1− γ)2
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if events E1, · · · , ER all hold. Since every Et holds with probability at least 1− δ/R, the probability
when all these events hold is at least 1− δ.

Hence if we choose

R =
1

1− γ
log

1

ε(1− γ)
, ε1 = O

(
ε(1− γ)2

L

)
, T = O

(
log(KR/δ)

ε21(1− γ)2

)
= O

(
L2 · log(KR/δ)

ε2(1− γ)6

)
,

we can obtain a strategy π(R) such that∥∥∥V π1

w(R) ,π
2

w(R) − V ∗
∥∥∥
∞
≤ ε,

∥∥∥V π1

w(R) ,π
2

w(R) − V ∗
∥∥∥
∞
≤ ε

with probability at least 1− δ. And the number of samples required is

T ·R · k = Õ
(

kL2

ε2(1− γ)7

)
.

C Variance Reduced Q Learning Algorithm

In this section, we will present the whole algorithm described in Section 3.

Algorithm 2 One-side Parametric Q-Learning with Variance Reduction for 2-TBSG
1: Input: A two-TBSGM = (S,A, P, r, γ) with feature map φ, where S = S1 ∪ S2,A = A1 ∪ A2

2: Input: ε, δ ∈ (0, 1)
3: Initialize:

R′ ← Θ(log 1/(ε(1− γ))), R← Θ(R′/(1− γ)), θ(0,0) ← {0} ∈ RK

m← Θ(L2 log(R′RKδ−1)/(ε2(1− γ)4)), m1 ← Θ(L2 log(R′RKδ−1)/((1− γ)2)),

ε1 ← Θ[L/(1− γ) ·
√

log(RR′Kδ−1)/m],

ε(i) ← ε1 + Θ[L · 2−i/(1− γ)
√

log(RR′Kδ−1)/m1], ∀0 ≤ i ≤ R

4: for i = 0, 1, · · · , R′ do
5: for k ∈ [K] do
6: Generate state samples x(1)k , · · · , x(m)

k ∈ S from P (·|sk, ak) for (sk, ak) ∈ K.
7: Let M (i,0)(k)← 1

m

∑m
l=1 Vθ(i,0)(x

(l)
k )

8: end for
9: for j = 1, · · · , R do

10: for k ∈ [K] do
11: Generate state samples x(1)k , · · · , x(m1)

k ∈ S from P (·|sk, ak) for (sk, ak) ∈ K.

12: Let M (i,j)(k)← 1
m1

∑m1
l=1

(
Vθ(i,j−1)(x

(l)
k )− Vθ(i,0)(x

(l)
k )
)

+M (i,0)

13: end for
14: w(i,j) ← Φ−1

K M (i,j)

15: w(i,j)(k)← w(i,j)(k)− ε(i), ∀k ∈ [K]

16: θ(i,j) ← θ(i,j−1) ∪ {w(i,j)}
17: end for
18: θ(i+1,0) ← θ(i,R)

19: end for
20: Output: θ(R

′,R)

D Construction of Non-negative Feature

In this section, we discuss how to construct nonnegative features such that the Assumption 1 holds.
Theorem 4. Suppose the transition model P can be embedded into φ. If there exists a set K of
state-action pair such that |K| = K and ΦK is nonsingular, then we can construct dimension-(k+ 1)
nonnegative features φ′(s, a) for every state action pairs (s, a) such that P can also be embedded
into φ′, and Assumption 1 holds for a state-action pair set K′ and some constant L.
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Algorithm 3 Two-side Parametric Q-Learning with Variance Reduction
1: Input: A two-TBSGM = (S,A, P, r, γ) with feature map φ, where S = S1 ∪ S2,A = A1 ∪ A2

2: Input: ε, δ ∈ (0, 1)
3: ConstructM′ = (S,A, P, 1− r, γ) where objectives of two players are switched
4: Solve θ(R

′,R) using Algorithm 2 with inputM and ε, δ
5: Solve η(R

′,R) using Algorithm 2 with inputM′ and ε, δ
6: Construct a strategy π : S → A:

π(s) =

{
π
θ(R
′,R)(s), ∀s ∈ S1,

π′
η(R
′,R)(s), ∀s ∈ S2.

(16)

7: Output: π

We first present a lemma which is useful in proving Theorem 4.
Lemma 2. If A is a non-singular matrix and k ∈ [K], and A′(l) is the following matrix

A′(l)i,j =

{
Ai,j + l, if i = k;

Ai,j , if i 6= k.

Then for any N > 0, there exists l > N such that A′(l) is non-singular.

Proof. This lemma directly follows from the fact that det(A′(l)) is a linear function of l.

Proof of Theorem 4. We construct a feature map L from φ′(s, a) to φ(s, a) in the following way.

L
(
[φ′1(s, a), φ′2(s, a), · · · , φ′K(s, a), φ′K+1(s, a)]

)
= [φ′1(s, a)− φ′K+1(s, a), φ′2(s, a)− φ′K+1(s, a), · · · , φ′K(s, a)− φ′K+1(s, a)]

= [φ1(s, a), φ2(s, a), · · · , φK(s, a)],

(17)

which means φk(s, a) = φ′k(s, a)− φ′K+1(s, a) for any k ∈ [K]. Adopting this feature map, P can
be embedded into φ′. Hence we only need to construct nonnegative features φ′ satisfying both (17)
and Assumption 1.

For any (s, a) there exists N(s, a) such that for any φ′K+1(s, a) ≥ N(s, a), we have φk(s, a) +
φ′K+1(s, a) ≥ 0 for any k ∈ [K]. We choose arbitrarily a state-action pair (s′, a′) not in K, and
let K′ to be the union of K and {(s′, a′)}. If we choose φ′K+1(s′, a′) > max{0, N(s′, a′)} and
φ′k(s′, a′) = φk(s′, a′) + φ′K+1(s′, a′), we will have

det


φ1(s1, a1) · · · φK(s1, a1) 0
φ1(s2, a2) · · · φK(s2, a2) 0

...
. . .

...
...

φ1(sK , aK) · · · φK(sK , aK) 0
φ′1(s′, a′) · · · φ′K(s′, a′) φ′K+1(s′, a′)

 6= 0

since ΦK is nonsingular, where K = {(s1, a1), · · · , (sK , aK)}. Next for k ∈ [K], we iteratively
choose φ′K+1(sk, ak) ≥ N(sk, ak) and add it to the k-th row of the feature matrix Φ′K′ such that
the matrix is still nonsingular. (According to Lemma 2, such φ′K+1(sk, ak) exists.) After these K
operations, we have

det Φ′K′ = det


φ′1(s1, a1) · · · φ′K(s1, a1) φ′K+1(s1, a1)
φ′1(s2, a2) · · · φ′K(s2, a2) φ′K+1(s2, a2)

...
. . .

...
...

φ′1(sK , aK) · · · φ′K(sK , aK) φ′K+1(sK , aK)
φ′1(s′, a′) · · · φ′K(s′, a′) φ′K+1(s′, a′)

 6= 0,

where φ′k(sk, ak) = φk(sk, ak) + φ′K+1(sk, ak). This indicates that Φ′K′ is nonsingular. Next for
(s, a) not in K′, we choose φ′K+1(s, a) = N(s, a) and let φ′k(s, a) = φk(s, a) + φ′K+1(s, a).

Then we have φ′(s, a) ≥ 0 for any (s, a) ∈ S × A and Φ′K′ is nonsingular. Finally we normalize
all features such that ‖φ′(s, a)‖1 ≤ 1 while keeping φ′(s, a) ≥ 0 for any (s, a) ∈ S × A. And
Assumption 1 holds for L = ‖(Φ′K)−1‖∞.
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E Proof of Theorem 1

In this section, we present the formal proof of Theorem 1. In the following, we assume that all
features φ(s, a) are nonnegative, and Assumption 1 holds for all the time.

E.1 Notations

We define the following T -operators and Q functions:

[T V ](s) =

{
maxa∈A r(s, a) + γP (·|s, a)TV, ∀s ∈ S1,
mina∈A r(s, a) + γP (·|s, a)TV, ∀s ∈ S2,

[TπV ](s) = r(s, π(s)) + γP (·|s, π(s))TV,

Qθ(i,j)(s, a) = r(s, a) + γφ(s, a)Tw(i,j),

Qθ(i,j)(s, a) = r(s, a) + γP (·|s, a)TVθ(i,j−1) .

For these T and Tπ operators, we have the following monotonicity and contraction property:

Proposition 1. For any value function V, V ′, if V ≤ V ′, we have

T V ≤ T V ′, TπV ≤ TπV ′

‖T V − T V ′‖∞ ≤ γ‖V − V ′‖∞, ‖TπV − TπV ′‖∞ ≤ γ‖V − V ′‖∞

for any strategy π. Furthermore, v∗ and V π are unique fixed points of T and Tπ , respectively, and

lim
t→∞

T tV = v∗, lim
t→∞

T tπV = vπ.

Next we use the following events to describe properties of our algorithm.

• Let G(i) to be the event

0 ≤ Vθ(i,0)(s) ≤ [T Vθ(i,0) ] (s) ≤ v∗(s),

Vθ(i,0)(s) ≤
[
Tπ

θ(i,0)
Vθ(i,0)

]
(s),

v∗(s)− Vθ(i,0)(s) ≤
2−i

1− γ
;

• E(i,0) to be the event of

‖w(i,0) − Φ−1K PKVθ(i,0)‖∞ ≤ ε1,

where w(i,0) = Φ−1K M (i,0);

• E(i,j) to be the event of

‖w(i,j) − w(i,0) − Φ−1K PK(Vθ(i,j−1) − Vθ(i,0))‖∞ ≤ Θ

L · 2−i
1− γ

√
log(RR′Kδ−1)

m1

 .
E.2 Preserving the Monotonicity

We first present several lemmas to establish some properties of T and Tπ
θ(i,j)

on Vθ(i,j) .

Lemma 3. Suppose G(i), E(i,0), · · · , E(i,j) holds. We have

0 ≤ Vθ(i,j′)(s) ≤ [T Vθ(i,j′) ] (s) ≤ v∗(s),

Vθ(i,j′)(s) ≤
[
Tπ

θ(i,j
′)Vθ(i,j′)

]
(s),

for ∀0 ≤ j′ ≤ j.
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Proof. We prove this result by induction. When j′ = 0, these conditions already hold according to
the event G(i). Now assuming these conditions hold for j′ − 1 ≥ 0, we consider the case of j′.

According to the construction of Vθ(i,j′) ,

Vθ(i,j′)(s) = max

{
Vθ(i,j′−1)(s), max

a∈As
Qθ(i,j)(s, a)

}
≥ Vθ(i,j′−1)(s), ∀s ∈ S1,

Vθ(i,j′)(s) = max

{
Vθ(i,j′−1)(s), min

a∈As
Qθ(i,j)(s, a)

}
≥ Vθ(i,j′−1)(s), ∀s ∈ S2,

(18)

Hence for any s ∈ S, there are two cases:

1. Vθ(i,j′)(s) = Vθ(i,j′−1)(s). Then πθ(i,j′)(s) = πθ(i,j′−1)(s);

2. (a) Vθ(i,j′)(s) = maxaQθ(i,j′)(s, a) and πθ(i,j′) = arg maxa∈As Qθ(i,j′)(s, a) if s ∈ S1;
(b) Vθ(i,j′)(s) = minaQθ(i,j′)(s, a) and πθ(i,j′) = arg mina∈As Qθ(i,j′)(s, a) if s ∈ S2.

In the first case, according to induction results and the monotonicity of T , Tπ , we have

Vθ(i,j′)(s) = Vθ(i,j′−1)(s) ≤ [T Vθ(i,j′−1) ](s) ≤ [T Vθ(i,j′) ](s)

Vθ(i,j′)(s) = Vθ(i,j′−1)(s) ≤
[
Tπ

θ(i,j
′−1)

Vθ(i,j′−1)

]
(s) =

[
Tπ

θ(i,j
′)Vθ(i,j′−1)

]
(s) ≤

[
Tπ

θ(i,j
′)Vθ(i,j′)

]
(s)

In the second case, according to the event E(i,0), E(i,j′), we obtain

‖w(i,j′) − Φ−1K PKVθ(i,j′−1)‖∞
≤ ‖w(i,j′) − w(i,0) − Φ−1K PK(Vθ(i,j′−1) − Vθ(i,0))‖∞ + ‖w(i,0) − Φ−1K PKVθ(i,0)‖∞

≤ Θ

L · 2−i
1− γ

√
log(RR′Kδ−1)

m1

+ ε1

= ε(i),

which indicates that

w(i,j′) − Φ−1K PKVθ(i,j′−1) = w(i,j′) − ε(i) − Φ−1K PKVθ(i,j′−1) ≤ 0.

Since all features are nonnegative, we have the following inequality for ∀a ∈ As.

Qθ(i,j′)(s, a) = r(s, a) + γφ(s, a)Tw(i,j′) ≤ r(s, a) + γφ(s, a)TΦ−1K PKVθ(i,j′−1)

= r(s, a) + γP (·|s, a)TVθ(i,j′−1) = Qθ(i,j′)(s, a).

Therefore, we have

Vθ(i,j′)(s) = max
a∈As

Qθ(i,j′)(s, a) ≤ max
a∈As

Qθ(i,j′)(s, a) = [T Vθ(i,j′−1) ] (s), if s ∈ S1;

Vθ(i,j′)(s) = min
a∈As

Qθ(i,j′)(s, a) ≤ min
a∈As

Qθ(i,j′)(s, a) = [T Vθ(i,j′−1) ] (s), if s ∈ S2;

Vθ(i,j′)(s) = Qθ(i,j′)(s, πθ(i,j′)(s)) ≤ Qθ(i,j′)(s, πθ(i,j′)(s)) =
[
Tπ

θ(i,j
′)Vθ(i,j′−1)

]
(s).

Noticing Vθ(i,j′−1) ≤ Vθ(i,j′) and the monotonicity of T and Tπ
θ(i,j

′−1)
, we have

Vθ(i,j′)(s) ≤ [T Vθ(i,j′−1) ] (s) ≤ [T Vθ(i,j′) ] (s),

Vθ(i,j′)(s) ≤
[
Tπ

θ(i,j
′−1)

Vθ(i,j′)
]

(s).

Therefore, for all s ∈ S,
Vθ(i,j′)(s) ≤ [T Vθ(i,j′) ] (s),

Vθ(i,j′)(s) ≤
[
Tπ

θ(i,j
′−1)

Vθ(i,j′)
]

(s).

Again according to the monotonicity of T , we have

Vθ(i,j′)(s) ≤ [T Vθ(i,j′) ] (s) ≤
[
T 2Vθ(i,j′)

]
(s) ≤ · · · ≤ v∗(s).

This completes the induction.
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Next, we will exhibit an approximate contraction property of our algorithm.

Lemma 4. If G(i), E(i,0), · · · , E(i,j) holds, then for 1 ≤ j′ ≤ j we have

v∗(s)− Vθ(i,j′)(s) ≤ max
a∈As

[
γP (·|s, a)T (v∗ − Vθ(i,j′−1))

]
+ 2ε(i), ∀s ∈ S.

Proof. According to Algorithm 2,

w(i,j′) = w(i,j′) − ε(i) ≥ Φ−1K PTKVθ(i,j′−1) − 2ε(i).

Using Vθ(i,j′−1) ≤ Vθ(i,j′) ≤ v∗ in Lemma 3, we have for ∀s ∈ S1,

v∗(s)− Vθ(i,j′)(s) ≤ v
∗(s)− max

a∈As

[
r(s, a) + γφ(s, a)Tw(i,j′)

]
≤ v∗(s)− max

a∈As

[
r(s, a) + γφ(s, a)T (Φ−1K PTKVθ(i,j′−1) − 2ε(i))

]
= max
a∈As

[
r(s, a) + γP (·|s, a)T v∗

]
− max
a∈As

[
r(s, a) + γφ(s, a)T (Φ−1K PTKVθ(i,j′−1) − 2ε(i))

]
≤ max
a∈As

[
γP (·|s, a)T v∗ − γP (·|s, a)TVθ(i,j′−1) + 2ε(i)‖φ(s, a)‖1

]
≤ max
a∈As

[
γP (·|s, a)T (v∗ − Vθ(i,j′−1))

]
+ 2ε(i),

where the first inequality is due to Vθ(i,j′)(s) ≥ maxa∈As

[
r(s, a) + γφ(s, a)Tw(i,j′)

]
, and the third

equality is due to the property of v∗. And for s ∈ S2, similarly we have

v∗(s)− Vθ(i,j′)(s) ≤ v
∗(s)− min

a∈As
[r(s, a) + γφ(s, a)Tw(i,j′)]

≤ v∗(s)− min
a∈As

[
r(s, a) + γφ(s, a)T (Φ−1K PTKVθ(i,j′−1) − 2ε(i))

]
= min
a∈As

[
r(s, a) + P (·|s, a)T v∗

]
− min
a∈As

[
r(s, a) + γφ(s, a)T (Φ−1K PTKVθ(i,j′−1) − 2ε(i))

]
≤ max
a∈As

[
γP (·|s, a)T v∗ − γP (·|s, a)TVθ(i,j′−1) + 2ε(i)‖φ(s, a)‖1

]
≤ max
a∈As

[
γP (·|s, a)T (v∗ − Vθ(i,j′−1))

]
+ 2ε(i).

The proof is completed.

E.3 Analysis of the Confidence Bounds

In this subsection, we analyze the confidence bound of sampling.
Lemma 5. For 0 ≤ i ≤ R′,

Pr
(
E(i,0), · · · , E(i,R)|G(i)

)
≤ 1− δ

R′

Proof. Conditioned on G(i), we have

0 ≤ Vθ(i,0)(s) ≤ v∗(s) ≤
1

1− γ
,

v∗(s)− Vθ(i,0)(s) ≤
2−i

1− γ
.

For any k ∈ [K] and δ ∈ (0, 1), according to Hoeffding inequality, with probability at least 1− δ,

|M (i,0)(k)− P (·|sk, ak)Vθ(i,0) | ≤ c1 ·max
s∈S
|Vθ(i,0) | ·

√
log[δ−1]

m
≤ c1 ·

1

1− γ

√
log[δ−1]

m

holds for some constant c1. If we switch δ into δ/(RR′K), then we obtain

|M (i,0)(k)− P (·|sk, ak)Vθ(i,0) | ≤ ε1/L
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holds with probability at least 1− δ/(RR′K). Next using the fact ‖ΦK‖∞ ≤ L and apply the union
bound for all k ∈ [K], we have

‖w(i,0) − Φ−1K PKVθ(i,0)‖∞ = ‖Φ−1K (M (i,0) − PKVθ(i,0))‖∞ ≤ ε1

holds with probability at least 1− δ/(RR′). This indicates that E(i,0) holds with probability at least
1− δ/(RR′).

As for E(i,1), since M (i,1) = M (i,0) and w(i,1) = w(i,0), the event E(i,1) holds with probability 1.

For 2 ≤ j ≤ R, again using the Hoeffding inequality and the event G(i), we have

|M (i,j)(k)−M (i,0)(k)− P (·|sk, ak)T (Vθ(i,j−1) − Vθ(i,0)) |

=

∣∣∣∣∣ 1

m1

m1∑
l=1

(
Vθ(i,j−1)(x

(l)
k )− Vθ(i,0)(x

(l)
k )
)
− P (·|sk, ak)T (Vθ(i,j−1) − Vθ(i,0))

∣∣∣∣∣
≤ c1 max

s∈S
|Vθ(i,j−1)(s)− Vθ(i,0)(s)| ·

√
log(δ−1)

m1

≤ c1 max
s∈S
|v∗(s)− Vθ(i,0)(s)| ·

√
log(δ−1)

m1

≤ c1 ·
2−i

1− γ

√
log(δ−1)

m1

with probability at least 1 − δ. Since w(i,j) = Φ−1K M (i,j), w(i,0) = Φ−1K M (i,0), we switch δ into
δ/(RR′K) and apply the union bound for all k ∈ [K] to obtain that

‖w(i,j) − w(i,0) − Φ−1K PK(Vθ(i,j−1) − Vθ(i,0))‖∞

= ‖Φ−1K
(
M (i,j) −M (i,0) − PK(Vθ(i,j−1) − Vθ(i,0))

)
‖∞

≤ L · ‖M (i,j) −M (i,0) − PK(Vθ(i,j−1) − Vθ(i,0))‖∞

≤ Θ

L · 2−i
1− γ

√
log(RR′Kδ−1)

m1


holds with probability at least 1 − δ/(RR′). So is the probability of E(i,j) conditioned on G(i).
Applying the union bound for all E(i,0), E(i,1), E(i,2) · · · , E(i,R), we have

Pr
(
E(i,0), · · · , E(i,R)|G(i)

)
≤ 1− δ

R′
,

which completes the proof.

E.4 Analysis of the Error in the Next Iteration

Lemma 6. For ∀1 ≤ i ≤ R′, we have

Pr(G(i+1), E(i,0), · · · , E(i,R)|G(i)) ≥ 1− δ

R′
.
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Proof. Conditioned on G(i), suppose E(i,0), · · · , E(i,R) all hold. Using Lemma 4 for R times, there
exists a constant C such that

‖v∗ − Vθ(i,R)‖∞ ≤ max
s∈S,a∈A

[
γP (·|s, a)T (v∗ − Vθ(i,R−1))

]
+ 2ε(i)

≤ γ‖v∗ − Vθ(i,R−1)‖∞ + 2ε(i)

≤ · · ·

≤ γR‖v∗ − Vθ(i,0)‖∞ + 2

R−1∑
j′=0

γj
′
ε(i)

≤ γR

1− γ
+

C

1− γ

 2−iL

1− γ

√
log(RR′Kδ−1)

m1
+

L

1− γ

√
log(RR′Kδ−1)

m

 ,
where the last inequality is due to events E(i,0), · · · , E(i,R) and ‖v∗−Vθ(i,0)‖∞ ≤ 1/(1−γ) according
to G(i). Hence if we choose

R = CR ·
log(1/(ε(1− γ)))

1− γ
, m = C1 ·

L2 log(R′RKδ−1)

ε2(1− γ)4
,

m1 = C2 ·
L2 log(R′RKδ−1)

(1− γ)2
, ε ≤ 2−i

1− γ
,

where CR, C1, C2 are constant numbers, we will have

‖v∗ − Vθ(i,R)‖∞ ≤
2−i−1

1− γ
.

Furthermore, since θ(i+1,0) = θ(i,R), the following inequalities

0 ≤ Vθ(i+1,0)(s) ≤ [T Vθ(i+1,0) ] (s) ≤ v∗(s),

Vθ(i+1,0)(s) ≤
[
Tπ

θ(i+1,0)
Vθ(i+1,0)

]
(s)

v∗(s)− Vθ(i+1,0)(s) ≤
2−i−1

1− γ

hold according to Lemma 3. Hence the event G(i+1) holds when G(i), E(i,0), · · · , E(i,R) all hold.
Therefore, according to Lemma 5 we have proved that

Pr(G(i+1), E(i,0), · · · , E(i,R)|G(i)) ≥ 1− δ

R′
.

E.5 Analysis of Approximation from Two Sides

Lemma 7. With probability at least 1− δ, G(0),G(i), E(i−1,j) hold for ∀1 ≤ i ≤ R′, 0 ≤ j ≤ R and
Vθ(R′,R) is an ε-optimal value.

Proof. First of all, according to the initialization,

Vθ(0,0)(s) =

{
maxa∈As r(s, a) ≥ 0, if s ∈ S1,
mina∈As r(s, a) ≥ 0, if s ∈ S2.

This indicates that

[T Vθ(0,0) ] (s) =

{
maxa∈As r(s, a) + γP (·|s, a)TVθ(0,0) ≥ maxa∈As r(s, a) = Vθ(0,0)(s), if s ∈ S1,
mina∈As r(s, a) + γP (·|s, a)TVθ(0,0) ≥ mina∈As r(s, a) = Vθ(0,0)(s), if s ∈ S2.

and [
Tπ

θ(0,0)
Vθ(0,0)

]
(s) = r(s, πθ(0,0)) + γP (·|s, πθ(0,0))Vθ(0,0)(s) ≥ r(s, πθ(0,0)) = Vθ(0,0)(s).
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According to the monotonicity of T ,

0 ≤ Vθ(0,0) ≤ T Vθ(0,0) ≤ · · · ≤ v∗ ≤
1

1− γ
.

Hence G(0) always holds.

Next based on Lemma 6, we have

Pr(G(i), E(i−1,j),∀1 ≤ i ≤ R′, 0 ≤ j ≤ R|G(0))

= Pr(G(i), E(i−1,j),∀1 ≤ i ≤ R′ − 1, 0 ≤ j ≤ R|G(0))Pr(G(R
′), E(R

′−1,0), · · · , E(R
′−1,R)|G(R

′−1))

≥ Pr(G(i), E(i−1,j),∀1 ≤ i ≤ R′ − 1, 0 ≤ j ≤ R|G(0)) · (1− δ/R′)
≥ Pr(G(i), E(i−1,j),∀1 ≤ i ≤ R′ − 2, 0 ≤ j ≤ R|G(0)) · (1− δ/R′)2

≥ · · ·

≥ (1− δ/R′)R
′

≥ 1− δ.

If G(R′) holds, then we obtain

‖v∗ − Vθ(R,R′)‖∞ ≤
2−R

′

1− γ
.

Hence when choosing R′ = Θ[log(ε−1(1− γ)−1)], we have

‖v∗ − Vθ(R,R′)‖∞ ≤ ε,
which indicates that Vθ(R,R′) is an ε-optimal value. Therefore, the event that Vθ(R,R′) is an ε-optimal
value, together with G(i), E(i,j), happens with probability at least 1− δ.

Next, we provide some notations and lemmas for the 2-TBSGM′. Suppose the equilibrium value
function ofM′ is v′. For η = {z(h)}Zh=1, we define

V ′η(s) =

{
maxh∈[Z] mina∈As

(
r′(s, a) + γφ(s, a)T z(h)

)
, ∀s ∈ S1,

maxh∈[Z] maxa∈As
(
r′(s, a) + γφ(s, a)T z(h)

)
, ∀s ∈ S2,

π′η(s) =

{
maxh∈[Z]

[
arg mina∈As

(
r′(s, a) + γφ(s, a)T z(h)

)]
, ∀s ∈ S1,

maxh∈[Z]

[
arg maxa∈As

(
r′(s, a) + γφ(s, a)T z(h)

)]
, ∀s ∈ S2,

Wη(s) =
1

1− γ
− V ′η(s).

To describe the connection between values ofM andM′, we introduce the following lemma, whose
proof is obvious.
Lemma 8. v′(s) = 1/(1 − γ) − v(s). Any equilibrium strategy for M′ is also an equilibrium
strategy forM. And if ‖V ′η − v′‖ ≤ ε, then Wη is an ε-optimal value.

Next we define events G(0),G(i)1 , E(i−1,j)1 for 1 ≤ i ≤ R′, 0 ≤ j ≤ R similar to the case ofM.

• Let G(i)1 to be the event

0 ≤ V ′η(i,0)(s) ≤
[
T ′V ′η(i,0)

]
(s) ≤ v′(s),

V ′η(i,0)(s) ≤
[
T ′π′

η(i,0)
V ′η(i,0)

]
(s),

v′(s)− V ′η(i,0)(s) ≤
2−i

1− γ
,

where T ′ and T ′π′ is defined as

[T ′V ′](s) =

{
mina∈As [r

′(s, a) + γP (·|s, a)TV ], ∀s ∈ S1,
maxa∈As [r

′(s, a) + γP (·|s, a)TV ], ∀s ∈ S2.
[T ′π′V ′](s) = r′(s, π′(s)) + γP (·|s, π′(s))TV ′, ∀s ∈ S.

(19)
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This event is equivalent to the event

1

1− γ
≥Wη(i,0)(s) ≥

[
TWη(i,0)

]
(s) ≥ v∗(s),

Wη(i,0)(s) ≥
[
Tπ′

η(i,0)
Wη(i,0)

]
(s),

v∗(s)−Wη(i,0)(s) ≥
2−i

1− γ
;

• E(i,0)1 to be the event of
‖z(i,0) − Φ−1K PKV

′
η(i,0)‖∞ ≤ ε1;

• E(i,j)1 to be the event of

‖z(i,j) − z(i,0) − Φ−1K PK(V ′η(i,j−1) − V ′η(i,0))‖∞ ≤ Θ

L · 2−i
1− γ

√
log(RR′Kδ−1)

m1

 .
We present two following lemmas, which can be viewed as counterparts for W of Lemma 3 and
Lemma 7.

Lemma 9. Suppose G(i)1 , E(i,0)1 , · · · , E(i,j)1 holds. We have

1/(1− γ) ≥Wθ(i,j′)(s) ≥ [TWθ(i,j′) ] (s) ≥ v∗(s),

Wθ(i,j′)(s) ≥
[
Tπ′

η(i,j
′)
Wθ(i,j′)

]
(s),

for ∀0 ≤ j′ ≤ j.

Proof. The proof is similar to Lemma 3.

Lemma 10. With at least probability 1− δ, Algorithm 2 forM′ will output η(R,R
′) which satisfies

‖V ′
η(R,R′)

− v′‖ ≤ ε, together with events G(0)1 ,G(i)1 , E(i−1,j)1 for 1 ≤ i ≤ R′, 0 ≤ j ≤ R.

Proof. The proof is similar to Lemma 7.

Our next lemma indicates that if Vθ and Wη are both ε-optimal values, then the strategy obtained
from Algorithm 3 is an ε-optimal strategy.

Lemma 11. If Vθ(R′,R) and Wη(R′,R) are both ε-optimal values, where θ(R
′,R), η(R

′,R) are param-
eters obtained from Algorithm 2 with inputs M and M′, respectively. and G(0),G(i), E(i−1,j),
G(0)1 ,G(i)1 , E(i−1,j)1 all hold for ∀1 ≤ i ≤ R′, 0 ≤ j ≤ R, then the strategy π = (π1, π2) output from
Algorithm 3 is an ε-optimal strategy.

Proof. We define the following operators mapping from value functions to value functions.

[Tmax,π2
V ](s) =

{
maxa∈As [r(s, a) + γP (·|s, a)T ]V, ∀s ∈ S1,
r(s, π2(s)) + γP (·|s, π2(s))TV, ∀s ∈ S2,

[Tπ1,minV ](s) =

{
r(s, π1(s)) + γP (·|s, π1(s))TV, ∀s ∈ S1,
mina∈As [r(s, a) + γP (·|s, a)T ]V, ∀s ∈ S2.

Then Tmax,π2 , Tπ1,min are both monotonic and contracting operators with contraction factor γ, and it
is easy to see that V π1,π2 , V π1,π2 are fixed points of T1, T2, respectively, where π1, π2 are optimal
counterstrategies against π2, π1.

We next prove that V π1,π2 satisfies

v∗ ≤ V π1,π2 ≤Wη(R′,R) . (20)
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According to Lemma 9, for any s ∈ S1, we have[
Tmax,π2Wη(R′,R)

]
(s) = max

a∈As
r(s, a) + γP (·|s, a)TWη(R′,R) =

[
TWη(R′,R)

]
(s) ≤Wη(R′,R)(s),

and for any s ∈ S2, we have[
Tmax,π2

Wη(R′,R)

]
(s) = r(s, π2(s)) + γP (·|s, π2(s))TWη(R′,R)

=

[
Tπ′

η(R
′,R)

Wη(R′,R)

]
(s) ≤Wη(R′,R)(s).

These inequalities indicates that Tmax,π2Wη(R′,R) ≤Wη(R′,R) . Hence according to the monotonicity

of Tmax,π2 , we have V π1,π2 ≤W (R′,R)
η (s). Moreover, since π1 is an optimal counterstrategy against

π2, we have v∗ ≤ V π1,π2 . The inequalities (20) has been proved.

Next noticing that ‖Wη(R′,R) − v∗‖ ≤ ε, we have

‖V π1,π2 − v∗‖ ≤ ε.

Similarly we have ‖V π1,π2 − v∗‖ ≤ ε considering the operator Tπ1,min. These two inequalities
together indicate that π is an ε-optimal strategy.

E.6 Proof of Theorem 1

Proof of Theorem 1. According to Lemma 7 and 10, the event that Vθ(R,R′) ,Wη(R,R′) are both ε-

optimal values, together with events G(0),G(i), E(i,j),G(0)1 ,G(i)1 , E(i,j)1 for 1 ≤ i ≤ R′, 0 ≤ j ≤ R,
happen with probability at least 1− 2δ. Hence according to Lemma 11, the output π of Algorithm 3
is ε-optimal strategy with probability at least 1− 2δ. The total samples used in our algorithm is

2(R′RKm1 +R′Km) = Õ
(

KL2

ε2(1− γ)4

)
samples.

F Proof of Theorem 2

We first present a proposition indicating that an approximate optimal strategy ofM = (S,A, P, r, γ)
is also an approximate optimal strategy ofM′ = (S,A, P ′, r, γ).

Proposition 2. Suppose P, P̃ are two transition models such that

‖P (·|s, a)− P ′(·|s, a)‖TV ≤ ξ, ∀(s, a) ∈ S ×A.

Then for two 2-TBSGsM = (S,A, P, r, γ),M′ = (S,A, P ′, r, γ), if π is an ε-optimal strategy of

M, π is also an
(

2ξ
(1−γ)2 + 2ε

)
-optimal strategy ofM′.

Proof. Suppose π = (π1, π2), π1, π2 are optimal counterstrategies against π2, π1 inM, and π′1, π
′
2

are optimal counterstrategy against π2, π1 inM′. We also assume that V,U are value functions of
M andM′, respectively.

According to the TV condition, for any strategy π we have

‖V π − Uπ‖∞ = ‖(I − γPπ)−1rπ − (I − γP ′π)−1rπ‖∞
= ‖(I − γP ′π)−1(γPπ − γP ′π)(I − γPπ)−1rπ‖∞
≤ ‖(I − γP ′π)−1‖∞‖γPπ − γP ′π‖∞‖(I − γPπ)−1‖∞‖rπ‖∞

≤ 1

1− γ‖P ′π‖∞
· ‖γPπ − γP ′π‖∞ ·

1

1− γ‖Pπ‖∞
‖rπ‖∞

≤ ξ

(1− γ)2
,
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where the last inequality follows the facts

‖Pπ‖∞ = ‖P ′π‖∞ = 1, ‖rπ‖∞ ≤ 1, ‖Pπ−P ′π‖∞ = max
s∈S
‖P (·|s, π(s))−P ′(·|s, π(s))‖TV ≤ ξ.

Next, since π2, π
′
2 are optimal counterstrategies against π1 inM andM′, we have

V π1,π2 ≤ V π1,π
′
2 , Uπ1,π2 ≥ Uπ1,π

′
2 .

Hence for any s ∈ S,

− ξ

(1− γ)2
≤ V π1,π2(s)−Uπ1,π2 ≤ V π1,π2(s)−Uπ1,π

′
2(s) ≤ V π1,π

′
2(s)−Uπ1,π

′
2(s) ≤ ξ

(1− γ)2
,

which indicates that ∥∥∥V π1,π2 − Uπ1,π
′
2

∥∥∥
∞
≤ ξ

(1− γ)2
.

Similarly, we have ∥∥∥V π1,π2 − Uπ
′
1,π2

∥∥∥
∞
≤ ξ

(1− γ)2
.

Moreover, since π is an ε-optimal strategy ofM, we have

‖V π1,π2 − V π1,π2‖∞ ≤ ‖V π1,π2 − v∗‖+ ‖V π1,π2 − v∗‖∞ ≤ 2ε,

where v∗ is the equilibrium value of M′. This inequality, together with above two inequalities,
indicates that ∥∥∥Uπ1,π

′
2 − Uπ

′
1,π2

∥∥∥ ≤ 2ξ

(1− γ)2
+ 2ε.

Next noting that
Uπ1,π

′
2 ≤ u∗ ≤ Uπ

′
1,π2 ,

where u∗ is the equilibrium value ofM′, we have∥∥∥Uπ1,π
′
2 − u∗

∥∥∥
∞
≤ 2ξ

(1− γ)2
+ 2ε,

∥∥∥Uπ′1,π2 − u∗
∥∥∥
∞
≤ 2ξ

(1− γ)2
+ 2ε.

These two inequalities indicate that π is an
(

2ξ
(1−γ)2 + 2ε

)
-optimal strategy ofM′.

Proof of Theorem 2. Since Algorithm 1, 2 and 3 only sample from P (·|s, a) for (s, a) ∈ K, and P
and P ′ agree on K, the results of these algorithms executing onM = (S,A, P, r, γ) are same as
the results of these algorithms executing onM′ = (S,A, P ′, r, γ). According to Theorem 3 and
Theorem 1, with probability at least 1− δ, Algorithm 1 outputs w(R) such that πw(R) is an ε-optimal
strategy ofM, and with probability at least 1− 2δ, Algorithm 3 outputs an ε-optimal strategy π of
M. Therefore, according to Proposition 2, πw(R) and π are

(
2ξ

(1−γ)2 + 2ε
)

-optimal strategies ofM′.
The proof is completed.
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