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Abstract

We present the first provably convergent off-policy actor-critic algorithm with
function approximation (COF-PAC). Key to COF-PAC is the introduction of a new
critic, emphasis critic, which is trained via Gradient Emphasis Learning (GEM),
a novel combination of the key ideas of Gradient Temporal Difference Learning
and Emphatic Temporal Difference Learning. With the help of the emphasis critic
and the canonical value function critic, we show almost sure convergence for COF-
PAC, where the policy parameterization can be nonlinear. This document is heavily
outdated and we refer the reader to https://arxiv.org/abs/1911.04384 for
the latest version.

1 Introduction

The policy gradient algorithm (Williams, 1992) and its actor-critic extension (Sutton et al., 2000;
Konda, 2002) have recently enjoyed great success in various domains, e.g., defeating the top human
player in the game Go (Silver et al., 2016), achieving human level control in Atari games (Mnih et al.,
2016). The canonical actor-critic algorithm is provably convergent under function approximation
(Konda, 2002). However, it is on-policy and suffers from significant data inefficiency (Mnih et al.,
2016). While there have been efforts to combine actor-critic algorithms with off-policy learning
(Degris et al., 2012; Imani et al., 2018; Zhang et al., 2019), none of the resulting off-policy actor-critic
algorithms is provably convergent under function approximation.

In this paper, we present COF-PAC, the first provably convergent off-policy actor-critic algorithm
with function approximation. COF-PAC builds on Actor-Critic with Emphatic weightings (ACE,
Imani et al. 2018), which reweights policy updates with emphasis through the followon trace (Sutton
et al., 2016). The emphasis corrects the state distribution and the followon trace approximates the
emphasis (see Sutton et al. 2016).1 However, the followon trace can have unbounded variance
(Sutton et al., 2016). Hence its approximation to the emphasis can have arbitrarily large error,
complicating convergence analysis and hindering finite-sample performance. Instead of using the
followon trace, we present a novel learning-based method, Gradient Emphasis Learning (GEM), to
approximate the emphasis, inspired by the Gradient TD methods (Sutton et al., 2009b,a; Maei, 2011),
Emphatic TD methods (Sutton et al., 2016), and “reversed TD” methods (Hallak and Mannor, 2017;
Gelada and Bellemare, 2019). We prove the almost sure convergence of GEM under linear function
approximation. By contrast, the convergence of the followon trace is only in expectation. In previous

1We use emphasis to denote the limit of the expectation of the followon trace, which is slightly different from
Sutton et al. (2016) and is clearly defined in the next section.
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actor-critic algorithms, we have only a value function critic. In COF-PAC, we introduce a new kind
of critic, the emphasis critic, which is trained via GEM. With the help of both critics, we prove the
almost sure convergence of COF-PAC.

2 Background

We use || · || to denote `2 norm for vectors and matrices. We use ||x||d
.
=
√∑

i x
2
i di to denote

weighted `2 norm for vectors. All vectors are column. We use “0” to denote an all-zero vector and an
all-zero matrix when the dimension can be easily deduced from the context. The use of notation “1”
is similar. For a vector x, xi denotes its i-th component. When not causing confusion, we use vectors
and functions interchangeably. Proofs of all lemmas, propositions, and theorems are in the appendix.

We consider a finite Markov Decision Process (MDP) with a finite state space S with |S| states,
a finite action space A with |A| actions, a transition kernel p : S × S × A → [0, 1], a reward
function r : S × A → R, and a discount factor γ ∈ [0, 1). At time step t, an agent at a state
St takes an action At according to µ(·|St), where µ : A × S → [0, 1] is a behavior policy. The
agent then gets a reward Rt+1 satisfying E[Rt+1] = r(St, At) and proceeds to a new state St+1

according to p(·|St, At). In the off-policy setting, the agent is interested in a target policy π. We
use Gt

.
=
∑∞
k=1 γ

k−1Rt+k to denote the return at time step t when following π. Consequently, we
define the state value function vπ and the state action value function qπ as vπ(s)

.
= Eπ[Gt|St = s]

and qπ(s, a)
.
= Eπ[Gt|St = s,At = a]. We use ρ(s, a)

.
= π(a|s)

µ(a|s) to denote the importance sampling
ratio and define ρt

.
= ρ(St, At) (Assumption 1 below ensures ρ is well-defined).

2.1 Policy Evaluation

We consider linear function approximation for policy evaluation. Let x : S → RK1 be the state feature
function, and x̃ : S ×A → RK2 denote the state-action feature function. We use X ∈ R|S|×K1 and
X̃ ∈ RNsa×K2(Nsa

.
= |S| × |A|) to denote feature matrices, where each row of X is x(s) and each

row of X̃ is x̃(s, a). Let dµ ∈ R|S| be the stationary distribution of µ, we define d̃µ ∈ RNsa where
d̃µ(s, a)

.
= dµ(s)µ(a|s). We define D .

= diag(dµ) ∈ R|S|×|S| and D̃ .
= diag(d̃µ) ∈ RNsa×Nsa .

Assumption 1 below ensures dµ exists and D is invertible, as well as D̃. Let Pπ ∈ R|S|×|S| be the
state transition matrix and P̃π ∈ RNsa×Nsa be the state-action transition matrix, i.e., Pπ(s, s′)

.
=∑

a π(a|s)p(s′|s, a), P̃π((s, a), (s′, a′))
.
= p(s′|s, a)π(a′|s′).

We first consider Gradient TD methods. For a vector v ∈ R|S|, we define a projection Πv
.
=

Xy∗, y∗
.
= arg miny ||Xy − v||2dµ . We have Π = X(X>DX)−1X>D (Assumption 2 below

ensures the existence of (X>DX)−1). Similarly, for a vector q ∈ RNsa , we define a projection
Π̃
.
= X̃(X̃>D̃X̃)−1X̃>D̃. The value function vπ is the unique fixed point of the Bellman operator

T : T v .
= rπ + γPπv where rπ(s)

.
=
∑
a r(s, a)π(a|s). Similarly, qπ is the unique fixed point for

the operator T̃ : (T̃ q)(s, a)
.
= r + γP̃πq. GTD2 (Sutton et al., 2009a) learns an estimate v for vπ,

minimizing ||ΠT v−v||2dµ . GQ(0) (Maei, 2011) learns an estimate q for qπ , minimizing ||Π̃T̂ q−q||2dµ .
The original convergence analysis of Gradient TD methods assumes i.i.d. data (Sutton et al., 2009b,a;
Maei, 2011), where the transitions {(st, at, rt, s′t)}t=0... are i.i.d. with st ∼ dµ(·), at ∼ µ(·|st), s′t ∼
p(·|st, at),E[rt] = r(st, at) and have bounded second moments. Wang et al. (2017) showed that
Gradient TD methods remain convergent when this i.i.d. assumption is relaxed to Markov data (e.g.,
{S0, A0, R1, S1, . . . }).
Besides Gradient TD methods, Emphatic TD (ETD, Sutton et al. 2016) is also used for off-policy
policy evaluation. We use v .

= Xν to denote an estimate for vπ , where ν is the learnable parameters.
ETD(0) updates ν as

Mt
.
= i(St) + γρt−1Mt−1, (1)

νt+1
.
= νt + αMtρt(Rt+1 + γx(St+1)>νt − x(St)

>νt)x(St)
>, (2)

where α is a step size, Mt is the followon trace, and i : S → R+ is the interest function reflecting the
user’s preference for different states (Sutton et al., 2016).
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2.2 Control

Off-policy actor-critic methods (Degris et al., 2012; Imani et al., 2018) typically aim to maximize the
excursion objective,

J(π)
.
=
∑
s dµ(s)i(s)vπ(s),

by adapting the target policy π. We assume π is parameterized by θ ∈ RK , and use θ and π
interchangeably in the rest of this paper when this does not cause confusion.

According to the off-policy policy gradient theorem (Imani et al., 2018), the policy gradient is
∇θJ(θ) =

∑
s m̄(s)

∑
a qπ(s, a)∇θπ(a|s), where m̄ .

= (I − γP>π )−1Di ∈ R|S|. We rewrite m̄ as
DD−1(I − γP>π )−1Di and define

mπ
.
= D−1(I − γP>π )−1Di.

We therefore have m̄ = Dmπ , i.e., m̄(s) = dµ(s)mπ(s). Alternatively, we can rewrite∇θJ(θ) as

∇θJ(θ) =
∑
s dµ(s)mπ(s)

∑
a µ(a|s)ψθ(s, a)qπ(s, a), (3)

where ψθ(s, a)
.
= ρ(s, a)∇θ log π(a|s) ∈ RK . We refer to mπ as the emphasis in the rest of this

paper. For computing ∇θJ(θ), we need mπ and qπ, to which we typically do not have access.
Imani et al. (2018) approximate mπ(St) with the followon trace Mt, yielding the ACE update
θt+1

.
= θt + αMtρtqπ(St, At)∇ log π(At|St). Assuming limt→∞ Eµ[Mt|St = s] exists, Sutton

et al. (2016) show that limt→∞ Eµ[Mt|St = s] = mπ(s). The existence of this limit is later
established in Lemma 1 in Zhang et al. (2019).

2.3 Assumptions and Lemmas

Assumption 1. The expected reward is bounded by Rmax, i.e., ∀(s, a), |r(s, a)| < Rmax. The
Markov Reward Process (MRP) induced by the behavior policy µ is ergodic, and ∀(s, a), µ(a|s) > 0.

Let Aθ
.
= X>(I − γP>π )DX,C

.
= X>DX, Ãθ

.
= X̃>D̃(I − γP̃π)X̃, C̃

.
= X̃>D̃X̃ and ξ(·) be

the minimum singular value of a matrix, we assume

Assumption 2. ξ(C) > 0, ξ(C̃) > 0, infθ ξ(Aθ) > 0, infθ ξ(Ãθ) > 0, and C is positive definite.

Remark 1. The non-singularity for a fixed θ is essential for Gradient TD methods to ensure the
problem of policy evaluation is solvable (see Sutton et al. (2009b,a); Maei (2011)). We make a slightly
stronger assumption that the minimum singular value does not approach 0 during the optimization
of θ. As the `2 norm of a matrix is the minimum singular value of its inverse, this assumption helps
establish the boundedness of A−1

θ and Ã−1
θ .

Assumption 3. (Policy Parameterization) (a) There exists a constant C0 <∞ such that ∀(s, a),

||ψθ(s, a)|| < C0, ||∇θψθ(s, a)|| < C0

|πθ1(a|s)− πθ2(a|s)| < C0||θ1 − θ2||, ||ψθ1(s, a)− ψθ2(s, a)|| < C0||θ1 − θ2||

(b) infθ ξ(I − γPπ) > 0.

Remark 2. The bounded∇θψθ(s, a) is also assumed in on-policy actor-critic algorithms (Assump-
tion 5.4 in Konda (2002)). As γ < 1, ξ(I − γPπ) > 0 holds for any fixed θ. Our assumption states
the minimum singular value of I − γPπ does not approach 0 during the optimization of θ.

Lemma 1. Under Assumptions 1 and 3, there exists a constant C1 <∞ such that ∀(s, a, θ1, θ2)

||∇θJ(θ1)|| < C1, ||∇θJ(θ1)−∇θJ(θ2)|| < C1||θ1 − θ2||, ||H(J(θ1))|| < C1,

where H(J(θ)) is the Hessian of J(θ).

3 Gradient Emphasis Learning

To motivate, we first discuss the disadvantages of the followon trace Mt. The first problem lies in
the large variance. Empirically, it has been observed that the variance of Mt can be unbounded
(Sutton et al., 2016), which leads to problems in real applications of ETD. For example, as pointed
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out in Sutton and Barto (2018), “it is nigh impossible to get consistent results in computational
experiments” in Baird’s counterexample, a benchmark domain in measuring RL algorithms’ off-
policy performance. Theoretically, this unbounded variance may preclude a convergent analysis for
ACE. Under mild conditions, the on-policy actor-critic (Konda, 2002) visits regions near the local
maxima (and saddle points) infinitely often, where the radius of those regions are determined by the
approximation error of the critic (i.e., the distance between q and qπ) (Konda, 2002). Similarly, we
would expect an off-policy actor-critic algorithm to visit the regions whose radius are determined by
the approximation error of both themπ estimate and the qπ estimate (We formalize this in Theorem 1).
As Mt has unbounded variance, its approximation error for mπ(St) can be arbitrarily large. The
negative influence of the approximation error of the canonical critic can be eliminated if compatible
features are considered (Sutton et al., 2000; Konda, 2002). However, this technique is not compatible
with the followon trace Mt as it does not have any features. Consequently, those regions become
arbitrarily large.

The second problem is that Mt is almost memoryless. Mt is only a scalar random variable but we
expect it to track mπ, a vector in R|S|. It is the expectation of Mt, not Mt itself, that converges.
However, in Eq (1), Mt+1 is bootstrapped by Mt, not its expectation, indicating this bootstrap for
Mt+1 can be poor. By contrast, in canonical learning-based methods, e.g., the ETD value update
Eq (2), the approximation itself, e.g., νt, converges and we bootstrap via this approximation. The
quality of this bootstrap is therefore likely to be high, which is particularly important when π is
changing, so that the critic can adapt to the new policy quickly. The followon trace, however, can
hardly provide a good bootstrap due to its lack of memory, yielding an obstacle in the convergence
analysis for ACE. Moreover, the expectation of Mt tracks mπ(St) only in a limiting sense for a fixed
π. If π is changing, it is questionable whether the expectation of Mt can track the changing mπ,
not to say Mt itself given the possibly unbounded variance. By contrast, in the canonical on-policy
actor-critic, the critic’s ability to track a changing actor is clearly proven (Konda, 2002). In this paper,
we propose to use stochastic approximation to approximate mπ .

We now derive the Gradient Emphasis Learning (GEM) algorithm. Throughout this section, we
assume π is fixed. We consider linear function approximation, and our estimate for mπ is m .

= Xw,
where w ∈ RK1 is the learnable parameters. For a vector y ∈ R|S|, we define an operator T̂ as
T̂ y .

= i+ γD−1P>π Dy. We have

Proposition 1. T̂mπ = mπ and ∀y, limk→∞ T̂ (k)y = mπ , where T̂ (1) .
= T̂ , T̂ (k+1) .

= T̂ (T̂ (k)).

Given Proposition 1, it is tempting to compose a semi-gradient update rule for updating w:

wt+1 ← wt + α[i(St+1) + γρ(St, At)x(St)
>wt − x(St+1)>wt]x(St+1),

analogously to the semi-gradient reversed TD algorithm (discounted) COP-TD (Hallak and Mannor,
2017; Gelada and Bellemare, 2019). All semi-gradient reversed TD methods, however, can diverge
under linear function approximation for the same reason as the divergence of off-policy linear TD: the
A matrix (defined in Assumption 2) is not guaranteed to be negative semi-definite (see Sutton et al.
(2016)). Motivated by the long-standing convergent Gradient TD methods, we seek an approximate
solution m that satisfies m = ΠT̂m via minimizing a projected objective Jπ(w)

.
= 1

2 ||Πδ̄w||
2
dµ

,

where δ̄w
.
= T̂ (Xw)−Xw. With p̄(s̄, ā|s) .

= dµ(s)−1dµ(s̄)µ(ā|s̄)p(s|s̄, ā), we have

Lemma 2.
∑
s̄,ā p̄(s̄, ā|s) = 1, δ̄w(s) = i(s) + γ

∑
s̄,ā p̄(s̄, ā|s)ρ(s̄, ā)(Xw)(s̄)− (Xw)(s).

Intuitively, (s̄, ā) stands for a previous state-action pair. We now compute ∇wJπ(w). Similar to
Gradient TD methods, we have

Jπ(w) =
1

2
δ̄>wΠ>DΠδ̄w = (δ̄>wDX)(X>DX)−1(X>Dδ̄w),

∇wJπ(w) = ∇w(X>Dδ̄w)>(X>DX)−1(X>Dδ̄w),

X>Dδ̄w = Es∼d(s),(s̄,ā)∼p̄(s̄,ā|s)[i(s) + γρ(s̄, ā)x(s̄)>w − x(s)>w]x(s),

∇wX>Dδ̄w = Es∼d(s),(s̄,ā)∼p̄(s̄,ā|s)[γρ(s̄, ā)x(s)x(s̄)> − x(s)x(s)>].

Here (X>DX)−1(X>Dδ̄w) is the solution to the supervised learning problem of predicting δ̄w with
features X . Similar to GTD2 (Sutton et al., 2009a), we use another set of parameters κ ∈ RK1 to
approximate (X>DX)−1(X>Dδ̄w).
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In this section we consider the same i.i.d. transitions {(s̄t, āt, st)}t=0,... for analysis as Sutton et al.
(2009b,a), where s̄t ∼ dµ(·), āt ∼ µ(·|s̄t), st ∼ p(·|s̄t, āt) and the transitions have bounded second
moments. The joint distribution is therefore p(s̄t, āt, st) = dµ(s̄t)µ(āt|s̄t)p(s|āt, s̄t). A convergent
analysis for sequential Markov data can be done with similar techniques as Wang et al. (2017) or
Yu (2017), which we leave for future work. As dµ is the stationary distribution, the marginalized
distribution of st is therefore also dµ. Consequently, we have p(s̄t, āt|st) = p(s̄t, āt, st)dµ(st)

−1 =
p̄(s̄t, āt|st), indicating we can now use samples (s̄t, āt, st) to estimate δ̄w and∇wX>Dδ̄w, as well
as∇wJπ(w). Now we are ready to present GEM, which updates κ and w recursively as

κt+1
.
= κt + αt(it + γρ̄tx̄

>
t wt − x>t wt − x>t κt)xt,

wt+1
.
= wt + αt(xt − γρ̄tx̄t)x>t κt, (4)

where x̄t
.
= x(s̄t), ρ̄t

.
= ρ(s̄t, āt), it

.
= i(st), xt

.
= x(st), and αt is a deterministic sequence

satisfying the Robbins-Monro condition (Robbins and Monro, 1951), i.e., {αt} is non-increasing
positive and

∑
t αt =∞,

∑
t α

2
t <∞. We now characterize the asymptotic behavior of GEM. With

b
.
= X>Di,w∗

.
= A−1

θ b, we have

Proposition 2. ΠT̂ (Xw∗) = Xw∗.
Proposition 3. (Convergence of GEM) Under Assumptions (1, 2), the iterates {wt} generated by (4)
converges to w∗ almost surely.

We use similar techniques as Hallak and Mannor (2017) in proving Proposition 2 and the proof of
Proposition 3 is similar to Sutton et al. (2009a) up to a change of notations. Although reversed TD
has been explored by Hallak and Mannor (2017); Gelada and Bellemare (2019), GEM is the first
provably convergent reversed TD method under linear function approximation.

4 Convergent Off-Policy Actor Critic

We drop the subscript θ in ∇θ for simplicity in this section. To estimate ∇J(θ), we need both mπ

and qπ. The former can be learned via GEM. For the latter, we consider GQ(0) with linear function
approximation, Our estimate for qπ is q .

= X̃u, where u ∈ RK2 is the learnable parameters. GQ(0)
minimizes the objective Jπ(u)

.
= ||Π̃T̂ q − q||2dµ . Under Assumptions 1 and 2, GQ(0) converges to

u∗
.
= Ã−1

θ b̃ almost surely, where b̃ .= X̃>D̃r (Maei, 2011).

Algorithm 1: Convergent Off-Policy Actor-Critic (COF-PAC)
Input:
θ: parameters of π
βt: a sequence of deterministic step sizes
x, x̃: feature functions

Get S0 and set t← 0
while True do

Get At ∼ µ(·|St)
Execute At and get Rt+1, St+1

wt ← arg minw Jθt(w) // e.g., using GEM with historical transitions
ut ← arg minu Jθt(u) // e.g., using GQ(0) with historical transitions
θt+1 ← θt + βt(w

>
t xt)(u

>
t x̃t)ρt∇ log π(At|St)

t← t+ 1
end

With a slight abuse of notation, we now present the Convergent Off-Policy Actor-Critic (COF-PAC)
algorithm in Algorithm 1, where xt

.
= x(St), x̃t

.
= x̃(St, At), and βt is a deterministic sequence

satisfying the Robbins-Monro condition (Robbins and Monro, 1951), i.e., {βt} is non-increasing
positive and

∑
t βt = ∞,

∑
t β

2
t < ∞. In Algorithm 1, wt and ut are uniquely determined by

θt due to Assumption 2, so we use wt, ut and wθt , uθt interchangeably. Particularly, we define
wθ

.
= arg minw Jθ(w), uθ

.
= arg minu Jθ(u),m(s; θ)

.
= w>θ x(s), q(s, a; θ)

.
= u>θ x̃(s, a). We first

show the Lipschitz continuity of GEM and GQ(0) solutions.
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Proposition 4. (Lipschitz continuity of GEM and GQ(0) solutions) Under Assumptions (1,2, 3), there
exists a constant C1 <∞ such that ∀θ1, θ2

max(||wθ1 ||, ||uθ1 ||) < C1, max(||wθ1 − wθ2 ||, ||uθ1 − uθ2 ||) ≤ C1||θ1 − θ2||.

Before proceeding to a convergence analysis of COF-PAC, we first analyze a noise term intro-
duced by the estimates m and q. With ĝ(θ)

.
=
∑
s dµ(s)m(s; θ)

∑
a µ(a|s)ψθ(s, a)q(s, a; θ), ψt

.
=

ρ(St, At)∇ log π(At|St), mt
.
= w>t xt, qt

.
= u>t x̃t, we have

Lemma 3. Under Assumptions (1,2, 3), |
∑
t βt∇J(θt)

>(mtqtψt − ĝ(θt))| <∞ a.s. 2

Proof. (Sketch) This lemma plays a central role in the following Theorem 1. The proof is inspired by
Konda (2002). We first construct several auxiliary MDPs. The differential state-action value function
of those MDPs help make a transformation of the original noise. We then decompose the transformed
noise into four components. The first component is a Martingale with bounded second moments
thus converges. We then verify the boundedness of the remaining three components, which involve
Proposition 4. Details are in the appendix.

The bias introduced by the estimates m and q is ∇θJ(θ)− ĝ(θ) = b(1)(θ) + b(2)(θ) where

b(1)(θ)
.
=
∑
s

dµ(s)(mπ(s)−m(s; θ))
∑
a

µ(a|s)ψθ(s, a)q(s, a; θ),

b(2)(θ)
.
=
∑
s

dµ(s)mπ(s)
∑
a

µ(a|s)ψθ(s, a)(qπ(s, a)− q(s, a; θ)).

If the estimate m is accurate, b(1)(θ) will be 0. If the estimate q is accurate, b(2)(θ) will be 0. The
accuracy of m and q determines where COF-PAC converges to.

Theorem 1. (Convergence of COF-PAC) Under Assumptions 1-3, the iterates {θt} generated by
COF-PAC (Algorithm 1) satisfy

lim inf
t

[
||∇J(θt)|| −

(
||b(1)(θt)||+ ||b(2)(θt)||

)]
≤ 0,

almost surely, i.e., {θt} visits any neighborhood of the set {θ : ||∇J(θ)|| ≤ ||b(1)(θ)||+ ||b(2)(θ)||}
infinitely often almost surely.

The proof of Theorem 1 is standard and follows the same routine as Konda (2002). Noise is dealt
with Lemma 3. According to Theorem 1, COF-PAC has reached the same convergence level as the
canonical on-policy actor-critic (Konda, 2002). We present experimental results and related work in
the appendix.

5 Conclusion

In this paper, we present COF-PAC, the first provably convergent off-policy actor-critic algorithm
under function approximation. Key to COF-PAC is GEM, which can be combined with any emphatic
algorithm (e.g., ETD). The GEM algorithm presented in this paper is of its simplest form. A possibility
for future work is to extend GEM to GEM(λ, β) in analogue to ETD(λ, β) (Hallak et al., 2016) and
GTD(λ) (Yu, 2015). Our COF-PAC is presented in a bi-level optimization form, similar to Sutton
et al. (2000). A possibility for future work is to adapt it into a two-timescale form as Konda (2002).
Furthermore, we consider only general features for the emphasis critic and the value function critic.
A natural extension is to specify compatible features as used by Sutton et al. (2000); Konda (2002),
so that the bias b(1)(θ) and b(2)(θ) can be reduced to 0 even if there is still approximation error in m
and q. COF-PAC optimizes the excursion objective. Developing convergent off-policy actor-critic
algorithms under some potentially better objectives, e.g., the counterfactual objective (Zhang et al.,
2019), is also worth further investigation.

2By |
∑

t xt| < ∞ we mean there exists a constant C < ∞ such that ∀T, |
∑T

t=0 xt| < C.
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A Proofs

A.1 Proof of Lemma 1

Proof. (1) According to Assumption 3, there exists a constant ε > 0 such that ∀θ, ξ(I − P>π ) > ε.
We have

||mπ|| ≤ ||D−1|| ||(I − γP>π )−1|| ||D|| ||i|| < 1

ε
||D−1|| ||D|| ||i||, (5)

||vπ|| = ||(I − γPπ)−1rπ|| <
√
|S|Rmax

ε
. (6)

According to the analytical expression of ∇θJ(θ) in Eq (3), it follows easily that there exists a
constant C1 such that ||∇θJ(θ)|| < C1 holds for all θ.

(ii) As π is Lipschitz continuous in θ, it follows easily that Pπ is also Lipschitz continuous in θ. To
show the Lipschitz continuity of∇θJ(θ) in θ, it suffices to show mπ and vπ are Lipschitz continuous.
Using the fact ||Y −1

1 − Y −1
2 || = ||Y

−1
1 (Y1 − Y2)Y −1

2 || ≤ ||Y
−1
1 || ||Y1 − Y2|| ||Y −1

2 ||, we have

||(I − γP>θ1)−1 − (I − γP>θ2)−1|| ≤ ||(I − γP>θ1)−1|| γ||P>θ1 − P
>
θ2 || ||(I − γP

>
θ2)−1||

≤ γ

ε2
||P>θ1 − P

>
θ2 ||.

(I − γP>θ )−1 is therefore Lipschitz continuous in θ. It follows easily that mπ is Lipschitz continuous
in θ. As rπ is bounded and Lipschitz continuous in θ, vπ is therefore also Lipschitz continuous in θ
as it is a product of two bounded Lipschitz function.

(iii) For the sake of clarity, in this part use ∇θ to denote the gradient w.r.t. one dimension of θ. We
first show ∇θvπ(s) is bounded. As vπ = rπ + γPπvπ , we have

∇θvπ = ∇θrπ + γPπ∇θvπ + γ∇θPπvπ,
∇θvπ = (I − γPπ)−1(∇θrπ + γ∇θPπvπ).

According to Assumptions (1, 3) and Eq (6), there exists a constant C1 <∞ such that

||∇θrπ + γ∇θPπvπ|| < C1.

Consequently, ||∇θvπ|| < C1

ε . It follows easily that ||∇θqπ|| is bounded.

We then show∇θmπ(s) is bounded. We have

i+ γD−1P>π Dmπ = i+ γD−1P>π (I − P>π )−1Di (7)

=
(
D−1(I − γP>π ) + γD−1P>π

)
(I − P>π )−1Di

= D−1(I − P>π )>Di = mπ.

Consequently,

∇θmπ = γD−1∇θP>π Dmπ + γD−1P>π D∇θmπ

∇θmπ = (I − γD−1P>π D)−1γD−1∇θP>π Dmπ

=
(
D−1(I − γP>π )D

)−1

γD−1∇θP>π Dmπ

= D−1(I − γP>π )−1DγD−1∇θP>π Dmπ

= γD−1(I − γP>π )−1∇θP>π Dmπ.

According to Assumption 3 and Eq (5), it follows easily that there exists a constant C1 <∞ such
that ||∇θmπ|| < C1.

We now take gradients w.r.t. θ in both sides of Eq (3) and use the product rule of calculus, it follows
easily that there exists a constant C1 <∞ such that ||H(J(θ))|| < C1.

Note we have considered three different constants to establish the boundedness in (i)(iii) and the
Lipschitz continuity in (ii). The C1 in the statement of this Lemma can be simply set to the largest
one.
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A.2 Proof of Proposition 1

Proof. T̂mπ = mπ follows directly from Eq (7). As Pπ is a stochastic matrix, we have

I + γP>π + (γP>π )2 + · · · = (I − γP>π )−1.

For any y,

T̂ (2)y = i+ γD−1P>π D(i+ γD−1P>π Dy)

= i+D−1γP>π Di+ γD−1(γP>π )2Dy

T̂ (∞)y = D−1IDi+D−1γP>π Di+D−1(γP>π )2Di+ . . .

= D
( ∞∑
k=0

(γP>π )k
)
D−1

= D−1(I − γP>π )−1Di

= mπ

A.3 Proof of Lemma 2

Proof. As dµ is the stationary distribution under µ and p, we have∑
s̄,ā

p̄(s̄, ā|s) = dµ(s)−1
∑
s̄,ā

dµ(s̄)µ(ā|s̄)p(s|s̄, ā) = dµ(s)−1dµ(s) = 1.

According to the definition of δ̄w and T̂ , we have

δ̄w(s) = i(s) + γdµ(s)−1
∑
s̄,ā

dµ(s̄)π(ā|s̄)p(s|s̄, ā)(Xw)(s̄)− (Xw)(s)

The rest follows immediately from the definition of p̄(s̄, ā|s).

A.4 Proof of Proposition 2

Proof. Using similar techniques as Hallak and Mannor (2017), we have

ΠT̂ (Xw∗) = X(X>DX)−1X>D
(
i+ γD−1P>π DXw

∗
)

= X(X>DX)−1b+ γX(X>DX)−1X>P>π DXA
−1
θ b

= X(X>DX)−1
(
Aθ + γX>P>π DX

)
A−1
θ b

= X(X>DX)−1X>DXA−1
θ b (Definition of Aθ)

= Xw∗

A.5 Proof of Proposition 3

Proof. This proof is very similar to Sutton et al. (2009a). We first define d>t
.
= [κ>t , w

>
t ], which can

be expressed in a recursive form as

dt+1 = dt + αt(Gt+1dt + gt+1),

where

Gt+1 =

[
−xtx>t xt(γρ̄tx̄t − xt)>

(xt − γρ̄tx̄t)x>t 0

]
, gt+1 =

[
itxt

0

]
.
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Note

E[xt(xt − γρ̄tx̄t)>] = X>D(X − γD−1P>π DX) = X>(I − γP>π )DX = Aθ,

E[itxt] = X>Di = b,

E[xtx
>
t ] = C.

We therefore have

G
.
= E[Gt+1] =

[
−C −Aθ
A>θ 0

]
, g

.
= E[gt+1] =

[
b
0

]
Now we rewrite the update for dt as

dt+1 = dt + αt[Gdt + g + (Gt+1 −G)dt + (gt+1 − g)]

= dt + αt[h(dt) +Mt+1],

where

h(d)
.
= Gd+ g

Mt+1
.
= (Gt+1 −G)dt + (gt+1 − g)

We can now imitate the proof of the convergence of GTD2 in Section 5 of Sutton et al. (2009a)
directly, up to a change of notations. Particularly, our A is the transpose of their A, our b is defined
with i while their b is defined with rπ , and we set their η to 1. It is straightforward to verify that these
differences do not influence their convergent arguments and the iterates {dt} converges to −G−1b
almost surely. It can be easily verified by block matrix inversion that the second half of −G−1b is
indeed A−1

θ b.

A.6 Proof of Proposition 4

Proof. From Assumption 2, there exists a constant C1 <∞ such that ∀θ, ||A−1
θ || < C1, ||Ã−1

θ || <
C1. As both b and b̃ are bounded and independent of θ, wθ = A−1

θ b, uθ = Ã−1
θ b̃, it follows easily

that ||wθ|| and ||uθ|| are bounded. We show only the Lipschitz continuity of wθ here. The Lipschitz
continuity of uθ can be established with the same routine. We have

||A−1
θ1
−A−1

θ2
|| = ||A−1

θ1
(Aθ1 −Aθ2)A−1

θ2
||

≤ ||A−1
θ1
|| ||A−1

θ2
|| ||Aθ1 −Aθ2 ||

≤ γ||A−1
θ1
|| ||A−1

θ2
|| ||X>|| ||Dµ|| ||X|| ||P>θ1 − P

>
θ2 ||.

Due to Assumption 3, ||P>θ1 − P
>
θ2
|| < C1||θ1 − θ2|| for some constant C1 <∞. The rest follows

easily.

A.7 Proof of Lemma 3

Proof. We first make a transformation of the original noise. We define

r̂θ(s, a)
.
= w>θ x(s)u>θ x̃(s, a)ψθ(s, a) ∈ RK .

Proposition 4 and Assumption 3 imply that there exists a constant C1 <∞ such that

∀(θ, s, a), ||r̂θ(s, a)|| < C1.

For each i ∈ {1, . . . ,K}, we consider an MDP where the state space is S , the action space is A, the
transition kernel is p, and the reward function is r̂θi (s, a). Under the i-th MDP, the average reward of
the behavior policy µ is

r̄i(θ)
.
=
∑
s

dµ(s)
∑
a

µ(a|s)r̂θi (s, a) = ĝi(θ).

We consider the differential state-action value function q̂θi (s, a) of this MDP, where

q̂θi (s, a)
.
= Eµ

[ ∞∑
k=0

(
r̂θi (Sk, Ak)− r̄i(θ)

)
| S0 = s,A0 = a

]
.
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According to the standard MDP theory (e.g., Section 8.2.1 in Puterman 2014), we have

q̂θi = Hµr̂
θ
i , (8)

where q̂θi ∈ RNsa , r̂θi ∈ RNsa , and Hµ
.
= (I − Pµ + P ∗µ)−1(I − P ∗µ) ∈ RNsa×Nsa refers to the

fundamental matrix which depends only on µ and p. Here Pµ[(s, a), (s′, a′)]
.
= p(s′|s, a)µ(a′|s′)

and each row of P ∗µ is d̃µ. The corresponding Bellman equation for q̂θi is

q̂θi (s, a) =
(
r̂θi (s, a)− r̄i(θ)

)
+
∑
s′,a′

p̃(s′, a′|s, a)q̂θi (s′, a′). (9)

From Eq (8), we have

|q̂θ(s, a)| < C1 <∞, ∀(θ, s, a) (10)

for some constant C1. For a fixed (s, a), r̂θ(s, a) is a product of three bounded Lipschitz continuous
functions (Assumption 3 and Proposition 4). It is, therefore, also Lipschitz continuous. Eq (8) and
the fact we only have finite states and actions imply

||q̂θ1(s, a)− q̂θ2(s, a)|| ≤ C1||θ1 − θ2|| ∀(s, a, θ1, θ2) (11)

for some constant C1.

Now we are ready to decompose the noise∇J(θt)
>(mtqtψt − ĝ(θt)) as

∇J(θt)
>(mtqtψt − ĝ(θt))

=∇J(θt)
>(r̂θt(St, At)− r̄(θt)) (Definition of r̂θt and r̄(θt))

=∇J(θt)
>
(
q̂θt(St, At)−

∑
s′,a′

p(s′|St, At)µ(a′|s′)q̂θt(s′, a′)
)

(Eq (9))

=

4∑
i=1

ε
(i)
t ,

where

ε
(1)
t

.
= ∇J(θt)

>
(
q̂θt(St+1, At+1)−

∑
s′,a′

p(s′|St, At)µ(a′|s′)q̂θt(s′, a′)
)
,

ε
(2)
t

.
=
βt−1∇J(θt−1)>q̂θt−1(St, At)− βt∇J(θt)

>q̂θt(St+1, At+1)

βt
,

ε
(3)
t

.
=
βt − βt−1

βt
∇J(θt−1)>q̂θt−1(St, At),

ε
(4)
t

.
= ∇J(θt)

>q̂θt(St, At)−∇J(θt−1)>q̂θt−1(St, At).

We now show |
∑
t βtε

(i)
t | <∞ a.s. for i = 1, 2, 3, 4.

(1) We first state a Martingale Convergence Theorem (see Proposition 4.3 in Bertsekas and Tsitsiklis
1996).

Lemma 4. Assuming {Ml}l=1,... is a Martingale sequence and there exists a constant C1 <∞ such
that ∀l,E[|Ml|2] < C1, then {Ml} converges almost surely.

Let Fl
.
= σ(S0, A0, θ0, . . . , Sl, Al, θl, Sl+1, Al+1) be the σ-algebra and Ml

.
=
∑l
t=0 βtε

(1)
t . It

is easy to see that Ml is adapted to Fl. Due to Lemma 1 and Eq (10), |ε(1)
t | < C1, implying

E[|Ml|] <∞ holds for any fixed l. Moreover,

E[Ml+1|Fl] = Ml + Eθl+1,Sl+2,Al+2
[βl+1ε

(1)
l+1|Fl]

= Ml + βl+1Eθl+1

[
ESl+2,Al+2

[ε
(1)
l+1|θl+1,Fl]

]
= Ml + βl+1Eθl+1

[0] = Ml
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Ml is therefore a Martingale. We now verify that Ml has bounded second moments, then {Ml}
converges according to Lemma 4. For any t1 < t2, we have

E[ε
(1)
t1 ε

(1)
t2 ] = E

[
E[ε

(1)
t1 ε

(1)
t2 |Ft2−1]

]
= E

[
ε
(1)
t1 E[ε

(1)
t2 |Ft2−1]

]
= E

[
ε
(1)
t1 0
]

= 0.

Consequently,

∀l, E[|Ml|2] = E[

l∑
t=0

β2
t

(
ε
(1)
t

)2
] ≤ C1

∞∑
t=0

β2
t <∞

for some constant C1. Therefore, {Ml} indeed converges and |
∑
t βtε

(1)
t | <∞ a.s.

(2)
∑l
t=1 βtε

(2)
t = β0∇J(θ0)>q̂θ0(S1, A1) − βl∇J(θl)

>q̂θl(Sl+1, Al+1). The rest follows from
the boundedness of ∇J(θ) and q̂θ(s, a) (Lemma 1 and Eq (10)).

(3)

|
l∑
t=1

βtε
(3)
t | ≤

l∑
t=1

|βt − βt−1| |∇J(θt−1)>q̂θt−1(St, At)|

≤ C1

l∑
t=1

(βt−1 − βt) ≤ C1(β0 − βl) < C1β0 a.s.

(4) Eq (11), Eq (10) and Lemma 1 imply ∇J(θ)>q̂θ(St, At) is Lipschitz continuous in θ, yielding

|ε(4)
t | < C1||θt − θt−1|| = C1||βtmtqtψt|| ≤ βtC2,

where the last inequality comes from the Assumption 3 and Proposition 4. Consequently,

|
l∑
t=1

βtε
(4)
t | < C2

l∑
t=1

β2
t < C2

∞∑
t=1

β2
t <∞ a.s.

A.8 Proof of Theorem 1

Proof. This proof is standard and follows the same routine as Konda (2002). We first rewrite the
update as

θt+1 = θt + βtmtqtψt

= θt + βt

(
∇J(θt)− ĝ(θt)− b(1)(θt)− b(2)(θt)

)
+ βtmtqtψt

Using the second order Taylor expansion and y>1 y2 ≤ ||y1|| ||y2||, we have

J(θt+1) ≥J(θt) + βt||∇J(θt)||2

− βt||∇J(θt)|| ||b(1)(θt)|| − βt||∇J(θt)|| ||b(2)(θt)||
+ βt∇J(θt)

>(mtqtψt − ĝ(θt))

− 1

2
C1||βtmtqtψt||2,

where C1 reflects the bound of the Hessian. Due to Assumption 3 and Proposition 4, |mtqtψt|2 is
bounded by some constant C2 <∞ for all t. Therefore,∑

t

||βtmtqtψt||2 ≤ C2
2

∑
t

β2
t <∞ a.s. (12)

Lemma 3 states

|
∑
t

βt∇J(θt)
>(mtqtψt − ĝ(θt))| <∞ a.s. (13)
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Figure 1: A variant of Baird’s counterexample. This figure is adapted from Sutton and Barto (2018).
The solid action always leads to the state 7 and a reward 0, and the dashed action leads to states 1 -
6 with equal probability and a reward +1.

If Theorem 1 does not hold, there must exist t0 > 0, ε > 0 such that

||∇J(θt)|| −
(
||b(1)(θt)||+ ||b(2)(θt)||

)
> ε

holds for all t ≥ t0. Consequently,

J(θt+1) ≥J(θt) + βtε
2 (14)

+ βt∇J(θt)
>(mtqtψt − ∇̂(θt))

− 1

2
C3||βtmtqtψt||2.

holds for all t ≥ t0. Together with Eq (12), Eq (13) and
∑
t βt =∞, iterating Eq (14) implies

lim
t→∞

J(θt) =∞,

which contradicts the fact that J(θ) is always bounded for all θ as γ < 1 and |r(s, a)| < Rmax.

B Experiments

We design experiments to answer the following questions:

• Can GEM approximate the emphasis as promised?

• Can the learned emphasis boost performance?

We consider variants of Baird’s counterexample (Baird, 1995; Sutton and Barto, 2018) as shown
in Figure 1. In Baird’s counterexample, there are two actions and the behavior policy µ always
chooses the dashed action with probability 6

7 . The initial state is chosen from all the states with
equal probability, and the interest i is 1 for all states. We consider four different sets of features:
original features, one-hot features, zero-hot features, and aliased features. Original features are
the features used by Sutton and Barto (2018), where the feature for each state lies in R8 (We
will detail these features in the end of the appendix). This set of features is somehow uncommon
as the number of states is usually much larger than the number of features in practice. One-hot
features use one-hot encoding, where each feature lies in R7, which indeed degenerates to a tabular
setting. Zero-hot features are the complements of one-hot features, e.g., the feature of the state 1
is [0, 1, 1, 1, 1, 1, 1]> ∈ R7. The quantities of interest, e.g., mπ and vπ, can always be expressed
accurately under all the three sets of features. In the fourth set of features, we consider state aliasing,
which is common in practical settings. In Baird’s counterexample, the states 1-6 are equivalent. We
therefore alias the state 7 to the state 6. To be more specific, we still consider the original features but
now the feature of the state 7 is modified to be identical as the feature of the state 6. The last two
dimensions of features then become identical for all states and we therefore removed them, resulting
in features lying in R6. Now there is no guarantee that the quantities of interest still lie in the feature
space.
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Figure 2: Averaged emphasis approximation error in recent 1000 steps for the followon trace and
GEM with different features. Curves are averaged over 30 independent runs. Shadowed regions
indicate one standard derivation. Learning rates are bracketed.

B.1 Approximating Emphasis

In this section, we compare the accuracy of approximating the emphasis mπ with GEM (Eq. (4)) and
the followon trace (Eq. (1)). We report the emphasis approximation error in Figure 2. At time step
t, the emphasis approximation error is computed as |Mt −mπ(St)| and |w>t x(St) −mπ(St)| for
the followon trace and GEM respectively, where the oracle mπ is computed analytically, M−1 = 0,
and w0 is drawn from a unit normal distribution. For GEM, we tune the learning rate α from
{0.1×21, . . . , 0.1×2−6}. We consider two target policies: π(solid|·) = 0.1 and π(solid|·) = 0.3.

As shown in Figure 2, the GEM approximation enjoys lower variance than the followon trace
approximation and has lower approximation error under all four sets of features. It is interesting
to note that when the original features are used, the C matrix is indeed singular, which violates the
Assumption 2. However, the algorithm does not diverge. This may suggest that the Assumption 2 can
be relaxed in practice.

B.2 Policy Evaluation with GEM

The followon trace Mt is originally used in ETD to reweigh updates (Eq (1) and Eq (2)). Here we
compare two algorithms, ETD(0) and GEM-ETD(0). In GEM-ETD(0) (Algorithm 2), instead of using
Mt, we use w>t x(St) to reweigh updates. To make a fair comparison with ETD(0), we formulate
GEM-ETD(0) in a two-timescale form in Algorithm 2. If we assume mπ lies in the spanning space of
X , a convergent analysis of a bi-level optimization version of GEM-ETD(0) will be straightforward.

We consider a target policy π(solid|·) = 0.05. We report the root mean squared value error
(RMSVE) at each time step during training in Figure 3. RMSVE is computed as ||v − vπ||dµ , where
vπ is computed analytically. For ETD(0), we tune the learning rate α from {0.1×20, . . . , 0.1×2−19}.
For GEM-ETD(0), we set α1 = 0.025 and tune α2 in the same range as the α. For both algorithms,
we report the results with learning rates that minimized the area under curve (AUC) in solid lines in
Figure 3.

In our policy evaluation experiments, GEM-ETD(0) has a clear win over ETD(0) under all four sets
of features. Note the AUC-minimizing learning rate for ETD(0) is usually several orders smaller
than that of GEM-ETD(0), which explains why ETD(0) curves tend to have smaller variance than
GEM-ETD(0) curves. When we decrease the learning rate of GEM-ETD(0) (as indicated by the red
dashed lines in Figure 3), the variance of GEM-ETD(0) can be reduced and the AUC is still smaller
than that of ETD(0).
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Algorithm 2: GEM-ETD(0) with linear function approximation
Input:
ν: parameters for approximating vπ
κ,w: parameters of GEM
α1, α2: learning rates

Get S0 and set t← 0
while True do

Get At ∼ µ(·|St)
Execute At and get Rt+1, St+1

κt+1 ← κt + α1(i(St+1) + γρtx
>
t wt − x>t+1wt − x>t+1κt)xt+1

wt+1 ← wt + α1(xt+1 − γρtxt)x>t+1κt
νt+1 ← νt + α2x

>
t wt+1ρt(Rt+1 + γx>t+1νt − x>t νt)xt

t← t+ 1
end

0 105
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0

300

RM
SV

E

Original
Gem-ETD(0)( 2 = 0.1 × 2 5)
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ETD(0)( = 0.1 × 2 15)

0 105

steps

OneHot

Gem-ETD(0)( 2 = 0.1 × 2 5)
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ETD(0)( = 0.1 × 2 14)

Figure 3: Averaged RMSVE in recent 1000 steps for GEM-ETD(0) and ETD(0) with four different
sets of features. Curves are averaged over 30 independent runs. Shadowed regions indicate one
standard derivation.

ETD(0) is the simplest emphatic algorithm and is a special case of ETD(λ, β) (Hallak et al., 2016),
where λ and β are used for bias-variance trade-off. Similarly, we can have GEM-ETD(λ, β) by
introducing λ and β to our GEM operator T̂ in the same manner as ETD(λ, β). A comparison
between ETD(λ, β) and GEM-ETD(λ, β) is a possibility for future work.

GEM-ETD is indeed a way for bias-variance trade-off. If the states are heavily aliased, the GEM
emphasis estimation may be heavily biased, so does GEM-ETD. We do not aim to claim that GEM-
ETD is always better than ETD. For example, if we consider the original Baird’s counterexample,
where the target policy is π(solid|·) = 1, there is no observable progress for both GEM-ETD(0) and
ETD(0) with reasonable computation resources (This target policy is problematic for GEM-ETD(0)
mainly because the corresponding δ̄w tends to be highly imbalanced, i.e., one dimension can be much
larger than the others. Consequently, the supervised learning process of κ becomes problematic.).
When it comes to bias-variance trade-off, the optimal choice is usually task-dependent. And our
empirical results do suggest GEM-ETD is a promising approach for this trade-off.

C Related Work

Off-Policy Actor-Critic (Degris et al., 2012) is the first provably convergent off-policy actor-critic
algorithm in the tabular setting 3 and inspired the invention of many other off-policy actor-critic
algorithms, e.g., (Deep) Deterministic Policy Gradient (Silver et al., 2014; Lillicrap et al., 2015),
Actor-Critic with Experience Replay (Wang et al., 2016), Interpolated Policy Gradient (IPG, Gu et al.
2017), Off-policy Expected Policy Gradients (Ciosek and Whiteson, 2017), and IMPALA (Espeholt
et al., 2018). However, none of them has a convergent analysis under function approximation.

3See Errata in Degris et al. (2012)
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Previously, Maei (2018) proposes the Gradient Actor Critic under a different objective
∑
s dµ(s)v(s)

for off-policy training with function approximation. This objective is different from the excursion
objective in that it replaces the true value function vπ with an estimate v. Furthermore, the policy
gradient estimator proposed by Maei (2018) tracks the true gradient only in a limiting sense for a
fixed π (see Theorem 2 in Maei (2018)) and has potentially unbounded variance, similar to how Mt

tracks mπ(St). It is questionable whether that policy gradient estimator can track the true policy
gradient under a changing π.

D Original Features of Baird’s Counterexample

According to Sutton and Barto (2018), we have

x(s1)
.
= [2, 0, 0, 0, 0, 0, 0, 1]>

x(s2)
.
= [0, 2, 0, 0, 0, 0, 0, 1]>

x(s3)
.
= [0, 0, 2, 0, 0, 0, 0, 1]>

x(s4)
.
= [0, 0, 0, 2, 0, 0, 0, 1]>

x(s5)
.
= [0, 0, 0, 0, 2, 0, 0, 1]>

x(s6)
.
= [0, 0, 0, 0, 0, 2, 0, 1]>

x(s7)
.
= [0, 0, 0, 0, 0, 0, 1, 2]>
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