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Abstract

We prove under commonly used assumptions the convergence of episodic, that is,
sequence-based, actor-critic-like reinforcement algorithms for which the policy
becomes more greedy during learning. The most prominent example of such algo-
rithms is the recently introduced RUDDER method, which speeds up the learning of
delayed reward problems by reward redistribution. RUDDER is based on simulta-
neously learning a policy and a reward redistribution network similar to actor-critic
methods. We show the convergence of RUDDER which can be generalized to
similar actor-critic-like algorithms. In contrast to previous convergence proofs
for actor-critic-like methods, we consider whole episodes as learning examples,
undiscounted reward, and a policy that becomes more greedy during learning. We
employ recent techniques from two time-scale stochastic approximation theory
which are equipped with a controlled Markov process to account for the policy
getting more greedy. We expect our framework to be useful to prove convergence
of other algorithms based on reward shaping or on attention mechanisms.

1 Introduction

In this work we focus on convergence proofs for actor-critic-like learning methods based on episodic
examples, that is, MDPs with finite horizon or absorbing states. In particular we consider rewards that
are not discounted. Furthermore we are interested in policies that are “greedy in the limit with infinite
exploration” (GLIE) [20]. GLIE policies change toward greediness with respect to the Q-values
during learning and allow to prove convergence of tabular SARSA to the optimal policy [20]. GLIE
is typically realized by a softmax with exploration coefficient on the Q-values. Our main focus is
on proving convergence of learning algorithms for which whole episodes serve as samples. Such
methods keep the dependencies between actions and their delayed rewards within episodes. Only
if whole episodes are kept and analyzed, long-term dependencies between rewards and the actions
which caused them can be detected. The most prominent approach based on learning on whole
episodes is RUDDER with overwhelming success for delayed rewards [3, 2]. RUDDER allows for
reward redistribution which gives a new redistributed reward to each time point after having seen the
reward for the whole episode. Another method that considers the whole episode is Temporal Value
Transport (TVT) which uses an attentional memory mechanism to learn a value function that serves
as fictitious reward [7].

Convergence of actor-critic algorithms have already been shown using the two time-scale stochastic
approximation framework [15, 14, 18, 9]. They mainly rely on techniques summarized e.g. in [4].
However all these approaches are based on state-actions samples or samples of their transitions. We
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aim at generalizing these proofs to a learning setting where episodes serve as samples. Therefore
the idea of stationary distributions on state-action pairs [15, 14] does not apply. We also generalize
these methods by allowing the policy becoming more greedy over time. Consequently the two
time-scale stochastic approximation framework has to be enriched by a controlled Markov process
which describes how the policy becomes more greedy. To the best of our knowledge, this is the
first time a two time-scale approximation scheme with an additional control was applied to ensure
convergence of a reinforcement learning setting where episodes serve as samples and where the policy
is allowed to become more greedy over time. We only prove convergence but not convergence to an
optimal policy. Such proofs are in general difficult, since locally stable attractors may not correspond
to optimal policies [19, 8, 17]. However, convergence to an locally optimal policy can be proven for
linear approximation to Q-values [21, 16].

Our article is structured as follows: the next section very briefly introduces the notation and concepts
used for RUDDER [3, 2]. The third section starts with an overview on the results from stochastic
approximation theory described in [4] and [9]. Subsequently the setting introduced in the second
section is cast in this framework, so that it is also compatible with practical applications. Section 4
finishes with a rigorous proof for the assumptions needed to ensure convergence to a local optimum.

2 Sequence-based Reinforcement learning at the example of RUDDER

2.1 The RUDDER Algorithm

RUDDER is a novel reinforcement learning approach for delayed rewards in finite Markov decision
processes (MDPs). We briefly outline its main ideas, for further details consider the original paper
[3, 2]. In MDPs the Q-values are equal to the expected immediate reward plus the expected future
rewards. Estimating the latter leads to bias problems in temporal difference (TD) learning and to high
variance problems in Monte Carlo (MC) learning. These problems are even more severe when one
has to deal with delayed rewards. RUDDER aims at making the expected future rewards zero, which
simplifies Q-value estimation to computing the mean of the immediate reward. This is realized with
the following two new concepts:

• Reward redistribution that leads to return-equivalent decision processes with the same
optimal policies and, when optimal, zero expected future rewards.

• Return decomposition via contribution analysis which transforms the reinforcement learning
task into a regression task at which deep learning excels.

It turns out that RUDDER is significantly faster than previously used methods in this setting.

We introduce the RUDDER algorithm as a minimization problem of square losses defined below,
while sticking to the notation proposed in [3, 2]:

Lh(θn,ωn) = Eπ̆

[
1

2

T∑
t=0

(
Rt+1((s, a)0:T ;ωn) − q̂(st, at;θn)

)2
]

(1)

h(θn,ωn) = ∇θnLh(θn,ωn) (2)

Lg(θn,ωn, zn) = Eπ(θn,zn)

[
1

2

( T∑
t=0

R̃t+1 − g((s, a)0:T ;ωn)

)2
]

(3)

f(θn,ωn, zn) = ∇ωnLg(θn,ωn, zn) , (4)

where:

• g denotes the return decomposition function, which is parametrized by ωn ∈ Rm.
It predicts the return

∑T
t=0 R̃t+1 given a complete state-action sequence (s, a)0:T =(

s0, a0, s1, a1, . . . , sT , aT
)
. In practise g is an LSTM-network.

• R̃ is the original reward provided by the environment.
• R(ωn) is the redistributed reward based on the return decomposition of g with parameter

vector ωn. For a state-action sequence (s, a)0:T the realization of its redistributed reward R
is computed from g((s, a)0:T ;ωn) and the realization of return variable

∑T
t=0 R̃t+1.
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• q̂(s, a;θn) is a function parametrized by θn ∈ Rd that approximates the Q-value q(s, a) =
r(s, a) = E [R | s, a]. We will specify its precise properties later.

• π̆ is a behavioral policy that doesn’t have to depend on the parameters.
• zn denotes an additional controlled Markov process with values in the compact set [1, β]

for some β > 1, whose value will be determined later. We will also postpone the precise
construction of this process.

• π(θn, zn) is the policy that is learned by q̂ and is updated in every time-step. It will
additionally depend on zn. We will describe the precise construction later.

• Eπ(θn,zn) [.] (Eπ̆ [.]) is an expectation over sequences (s0, a0, s1, a1, . . . , st, aT ), which are
sampled with policy π(θn, zn) (π̆).

The overall aim is to minimize (1) and (3) by stochastic gradient descent. We continue to describe
the formal setup in more detail, and to this end we start by showing that if the policy is sufficiently
greedy, the optimal policy can be deduced.

2.2 Sufficient Greediness to Deduce the Optimal Policy

The RUDDER algorithm makes the policy more greedy during learning. We show that we can
estimate how greedy the policy must become in order to deduce the optimal policy. We have to
guess the minimal difference of the expected return between following the optimal policy and another
deterministic policy across all state-action pairs.

The optimal policy will be denoted by π∗, which we assume to be deterministic and unique. It will
be approximated by a softmax policy π+ with bounded parameter β. The quality of approximation
is determined by the difference between vπ

+

0 and vπ
∗

0 , where vπ
+

0 and vπ
∗

0 are the according value
functions at time t = 0. Here we very briefly sketch the main steps towards the desired estimation:

• Due to our assumptions on π∗, each probability π∗(ai | s) is either one or zero and the
differences qπ∗max(s) − qπ∗(s, ai) between Q-values of the best action qπ∗max(s) and other
Q-values qπ∗(s, ai) (i 6= arg maxi q

π∗(s, ai)) have a minimum over s that is larger than
zero.

• Next we choose an ε as an upper bound on the absolute differences between action-values
and values of π∗ and π+:

∣∣∣qπ∗
(st, at) − qπ

+

(st, at)
∣∣∣ < ε Therefore, for imax =

arg maxi q
π∗(s, ai), we assume that ε is small enough to ensure

ε < 1/4 min
s,i6=imax

qπ∗max(s)− qπ∗(s, ai). (5)

• Furthermore we assume an approximation q̂(s, ai) to qπ
+

(s, ai) which fulfills∣∣∣q̂(s, ai) − qπ
+

(s, ai)
∣∣∣ < ε .

• The policy π+ is now defined via the softmax function with approximations q̂(s, ai):

π+(ai | s) =
exp(β q̂(s, ai))∑
j exp(β q̂(s, aj))

=
exp(β (q̂(s, ai) − q̂max(s)))∑
j exp(β (q̂(s, aj) − q̂max(s)))

.

• One can now conclude after some short calculations:∣∣∣∣∣
T∏
t=1

π∗(at | st) −
T∏
t=1

π+(at | st)

∣∣∣∣∣ < T (|A| − 1) exp(− β δ) ,

where |A| is the number of actions.
• Now let KR be an upper bound on the absolute Rt with |Rt| < KR and assume that:

β > max

((
− ln

ε

T (|A| − 1) |S|T |A|T (T + 1) KR

)
/δ , 1

)
, (6)

where |S| is the number of states and δ < mins,i6=imax
q̂max − q̂(s, ai) .

• Using the mean value theorem we infer after some calculations:
∣∣∣vπ∗

0 − vπ
+

0

∣∣∣ < ε.
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3 The stochastic Approximation Framework

3.1 The General Setting

This section provides a brief summary of the required results from stochastic approximation theory.
For further details consider [9] and [4]. An extensive and modern standard reference for the required
ODE-theory is [22].

Two-time scale stochastic approximation algorithms are two coupled iterations with different step
sizes. For proving convergence of these interwoven iterates it is assumed that one step size is
considerably smaller than the other. The slower iterate (the one with smaller step size) is assumed
to be slow enough to allow the fast iterate converge while being perturbed by the the slower. The
perturbations of the slow should be small enough to ensure convergence of the faster. The iterates
map at time step n > 0 the fast variable wn ∈ Rk and the slow variable θn ∈ Rm to their new
values:

θn+1 = θn + a(n)
(
h
(
θn,wn,Z

(1)
n

)
+ M (1)

n

)
, (7)

wn+1 = wn + b(n)
(
f
(
θn,wn,Z

(2)
n

)
+ M (2)

n

)
, (8)

where:

• h(.) ∈ Rm and f(.) ∈ Rk: mappings for (7) and (8) respectively,
• a(n) and b(n): step sizes for (7) and (8) respectively,

• M (1)
n andM (2)

n : additive random Markov processes for (7) and (8) respectively,

• Z(1)
n and Z(2)

n : random Markov processes for (7) and (8) respectively.

To ensure convergence of these algorithms, further technical assumptions on the building blocks
mentioned before have to be made. The details are mentioned in (A1)–(A7) in [9], where the
interested reader can look them up. We will verify these assumptions later for our specific setting.

3.2 More Details and More Precise Formulation

Here we give a more rigorous formulation of the minimization problem introduced in section (2.1),
that fits into the framework which we briefly discussed before. Let us start by describing the sampling
process, that induces the randomness, in several steps:

• First we fix a baseline probability space: Ω = [0, 1], P = λ, A = B[0, 1], with λ denoting
the usual Lebesgue measure and B[0, 1] is the Borel σ-algebra on [0, 1]

• Next let us fix a policy π and introduce the space
Ω̃π = {τ = (s, a)0:T |τ is chosen according to π, S0 = s0, A0 = a0} .

The power set P(Ω̃π) serves as the corresponding σ-algebra Ãπ .

• We can endow Ãπ with a probability measure P̃π, since the probability of choosing a
sequence τ with starting point (s0, a0) can be computed explicitely. Ãπ can also be ordered
according to the magnitude of the values of its events on Pπ . By abuse of notation we denote
this ordering again by ≤.

• Furthermore we define Sπ : Ω → Ω̃π as Sπ : x 7→ argmax τ∈Ω̃π

{∑
η≤τ P̃π(η) ≤ x

}
.

This map can easily be seen to be well defined and measurable and it describes how to get
one sample from a multinomial distribution with probabilities P̃π(τ), where τ ∈ Ω̃π .

• We next describe how to minimize (3) and (1) with stochastic gradient descent: We use
an on-line update, where we sample only one state-action sequences, i.e. we introduce
functions ĥ and f̂ , where ĥ approximates h by using one sample instead of the expectation
and similarly for f̂ . For each time-step n, in ĥ the sample is chosen according to the
behavioral policy π̆, whereas for f̂ this is done according to π(θn, zn).

• Now setM (1)
n+1 = ĥ(θn,ωn)− h(θn,ωn) andM (2)

n+1 = f̂(θn,ωn, zn)− f(θn,ωn, zn).

The rest of the building blocks needed to apply the results from [9] will be explained next.
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3.3 Definition of Markov process

In applications the policy π+ is approximated by policies depending on parameters zn → β in
order to keep up exploration(β usually isn’t known at the beginning). We introduce it as a Markov
process defined by z1 = 1 and zn+1 = (1 − 1

β )zn + 1. The zn’s are nothing more but the partial
sums of a geometric series converging to β > 1 defined in (6). The sequence zn can be seen as a
time-homogeneous Markov process with transition probabilities given by

P (z,y) = δ(1− 1
β )z+1, (9)

where δ denotes the Dirac measure. We use the standard notation for discrete time Markov processes,
described in detail e.g. in [6]. The approximating policies π(ai | s,θ, z) are given by softmax-
functions with parameters z, similarly as in (6).

For proofs in the next chapters we will also need the derivatives of the softmax policies π(z), which
can easily seen to be bounded.

4 Proofs

4.1 Assumptions on the losses

We assume the following properties of the corresponding loss functions:

• q̂, g and R all have compact support and are smooth (say three times continuously differen-
tiable at least) wrt. their parameters.

• For each fixed θ, all critical points of Lg(θ,ω, β) are isolated. There are only finitely
many. For ease of notation we will skip writing down the dependence on β for the moment.
The local minima {λi(θ)}k(θ)

i=1 } of Lg(θ, .) can be expressed locally as smooth(say twice
continuously differentiable at least) functions with associated compact domains of definitions
{Vλi}

k(θ)
i=1 .

• Locally in Vλi , Lh(θ, λi(θ)), only has one local minimum.

Before proceeding further, let us state some remarks concerning the practical relevance of our
assumptions as well as their role in the proof of our result:

• The compact support assumption is compatible with practical applications, since the param-
eter space of neural networks usually is bounded.

• By the assumption that critical points are isolated, for each starting point (θ0,ω0) it is
possible to find a neighbourhood Gθ0(ω0) that connects ω0 with a local minimum λi(θ0)
of Lg(.,θ0), and on the other hand such that it avoids saddle points (e.g. if we mainly follow
the steepest descent path starting from ω0 except if it traverses saddles). λi(θ0) is the only
local minimum there.

• Moreover, using the implicit function theorem(IFT), we can find a neighbourhood V0 around
θ0, such that λi(θ) is twice continuously differentiable and it denotes a local minimum of
Lg(.,θ)(the IFT can be applied to f(θ, .) = ∇ωLg(θ, .) = 0, since the associated Hessian
is positive definite. It can even be shown that it is twice continuously differentiable, using
analytic versions of the IFT.)

• In a similar vain for each θ ∈ V0 we can now construct neighbourhoods Gθ(ω0) around
ω0 with λi(θ) as unique associated local minimum (we might have to shrink V0 for this
purpose).

• Define ∪θ∈V0
({θ} × Gθ(ω0)) = V0 × U0. By using a suitable regularization for the

networks associated to Lg and Lh, for (θ0,ω0), we can assume that the algorithm (7)–(8)
always stays inside of V0 × U0. This, at least heuristically, justifies that for (θ0,ω0) we
localize to V0 × U0, as the whole dynamics of the algorithm is determined by this set and
we will apply the global results from section (3.1).

• A rigorous justification of this argument would require e.g. a more thorough analysis of
stochastic gradient descent, which would of course be a very interesting future research
direction.
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• It is also a widely accepted (but yet unproven, at least in most practical situations) conjecture,
that the probability of ending in a poor local minimum is very small for sufficiently large
networks, see e.g. [5, 10, 13, 11, 12], thus we can ensure that (7)–(8) really converges to a
useful quantity (a high quality local minimum), if our networks are large enough.

4.2 Proof Details

Now we are in the position to verify the assumptions from section (3.1) needed to ensure convergence
of (7)–(8) for the RUDDER-algorithm. As discussed in the previous remarks, we fix a starting point
(θ0,ω0) and focus on the associated neighbourhood V0 × U0. This local setting can be replaced by
the global one described in (3.1). For ease of notation we omit writing down the dependence on these
initial points.

(A1) Assumptions on the controlled Markov processes: zn clearly is a time-homogeneous Markov
process with δβ as its unique invariant measure. So integrating wrt. this invariant measure
will in our case just correspond to obtaining the policy π+.

(A2) h and f are Lipschitz: By the mean value theorem it’s enough to show that the derivatives
wrt. θ and ω are bounded uniformly wrt. z ∈ [1, β]. This, however can be readily deduced
from the assumptions from section (4.1) in combination with the boundedness of the
softmax-derivative(cf. the explicit expressions (3)–(4)).

(A3) Martingale difference property and estimates: From the results in section (3.2)M (1)
n+1 and

M
(2)
n+1 can then easily be seen to be martingale difference sequences wrt. Fn. It remains

to show that E[|M (i)
n+1|2|Fn] ≤ Bi for i = 1, 2. This, however, is also clear, since all the

involved expressions are bounded uniformly again by the assumptions from section (4.1).
(A4) Stepsizes: We will take the assumptions on the step sizes stated in [9] for granted.
(A5) Transition kernels: This is clear by the definition of the transition probabilities, cf. (9).
(A6) Stability properties of the ODEs:

• First we introduce f(θ,ω) = f(θ,ω, β) and

ω̇(t) = f(θ,ω(t)), (10)

where θ is fixed. (10) can be seen as a gradient system for the function Lg . By standard
results on gradient systems (cf. e.g. [1, Section 4] for a nice summary), which guarantee
equivalence between strict local minima of the loss function and asymptotically stable
points of the associated gradient system, we can use the assumptions and remarks from
section (4.1) to ensure that there exists a unique asymptotically stable equilibrium λ(θ)
of (10).

• The fact that λ(θ) is smooth enough can be deduced by the IFT as discussed before.
• For (10) Lg(θ,ω)−Lg(θ, λ(θ)) can be taken as associated Lyapunov function Vθ(ω),

and thus Vθ(ω) clearly is differentiable wrt. ω for any θ.
• The slow ODE θ̇(t) = h(θ(t), λ(θ(t)) also has a unique asymptotically stable fixed

point, which again is guaranteed by our assumptions and the standard results on gradient
systems.

(A7) Stability/Boundedess of the iterates: This is clear by the assumptions in section (4.1).

5 Convergence Theorem

We summarize our findings in the following theorem:
Theorem 1. Fix a starting point (θ0,ω0) and determine the associated neighbourhood U0 × V0 as
in section (4.1). Under the assumptions and remarks stated there the RUDDER algorithm converges
to a local minimum (θ∗(θ0,ω0), λ(θ∗(θ0,ω0))) of the associated losses (1) and (3):

(θn,wn) → (θ∗(θ0,ω0), λ(θ∗(θ0,ω0))) a.s. as n → ∞ .

Conclusions. We prove under commonly used assumptions the convergence of RUDDER, a novel
reinforcement learning approach for delayed rewards. We expect our framework to be useful to
ensure convergence of other algorithms based on reward shaping or on attention mechanisms.
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