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Introduction

Reinforcement learning (RL) is a natural model for systems involving real-time sequential decision
making [5]. In these models, an agent interacts with a system having stochastic transitions and
rewards, and aims to learn to control the system by exploring available actions using real-time feed-
back. This requires the agent to navigate the exploration-exploitation trade-off, between exploring
unseen parts of the environment and exploiting historical high-reward actions. A popular approach
is Q-Learning algorithms which focus on learning good state-action mappings [1, 4, 6]. In contin-
uous or large finite state-action spaces, RL algorithms require embedding the state-action space in
a metric space and using an appropriate discretization of the space. Under this embedding, many
problems exhibit structure where nearby actions result in a similar behavior of the system. This mo-
tivates our central question: Can we modify Q-learning algorithms to learn a near-optimal policy
while limiting the size of the discretization?1

Current approaches to this problem consider uniform discretization policies, which are either fixed
based on problem primitives, or updated via a fixed schedule (for example, via a ‘doubling trick’) [4].
However, a more natural approach is to adapt the discretization over space and time in a data-driven
manner. This allows the algorithm to learn policies which are not uniformly smooth, but adapt to
the geometry of the underlying space. Moreover, the agent would then be able to explore more
efficiently by only sampling important regions.

Model and Algorithm

We consider an agent interacting with an underlying finite-horizon Markov Decision Process (MDP)
over K sequential episodes. The underlying MDP is given by a five-tuple (S,A, H,P, r) where S
denotes the set of states, A the set of actions, and horizon H is the number of steps in each episode.
We further assume that S × A is a compact metric space with a given metric D : (S × A)2 → R.
A policy π gives a sequence of mappings πh : S → A dictating the action taken in a given state.
From this we can define the Value function and Q function which gives the expected future rewards
starting from a given state:

V πh (x) := E

[
H∑

h′=h

rh′(xh′ , πh′(xh′)) | xh = x

]

Qπh(x, a) := rh(x, a) + E

[
H∑

h′=h+1

rh′(xh′ , πh′(xh′)) | xh = x, ah = a

]
.

Clearly, the optimal policy π? is the one satisfying V π
?

h (x) = supπ V
π
h (x). The agent plays the

game over K episodes k = 1, . . . ,K where for each episode k the agent selects a policy πk which
is executed over the H steps. Their goal is to minimize the regret, the expected loss the agent
experiences by exercising their policy instead of an optimal policy in every episode, defined as
R(K) =

∑K
k=1 V

π?

1 (x)− V πk

1 (x).
1The full paper will be published in PACM Measurement and Analysis of Computing Systems (POMACS)

but a draft is available at https://arxiv.org/abs/1910.08151.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

https://arxiv.org/abs/1910.08151


0 1000 2000 3000 4000 5000

Episode

0

1

2

3

4

5

O
b
se
rv
ed

R
ew

a
rd

Comparison of Observed Rewards

Adaptive

Epsilon Net

0.0 0.2 0.4 0.6 0.8 1.0

State Space

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
io
n
S
p
a
ce

Uniform Discretization

0.0 0.2 0.4 0.6 0.8 1.0

State Space

0.0

0.2

0.4

0.6

0.8

1.0

A
ct
io
n
S
p
a
ce

Adaptive Discretization

Figure 1: Comparison of the observed rewards and state-action space discretization under the uni-
form mesh (ε−Net) algorithm [4] and our adaptive discretization algorithm. The colors correspond
to the relative Q?h value of the given state-action pair, where green corresponds to a higher value
for the expected future rewards. The adaptive algorithm converges faster to the optimal policy by
keeping a partition whose coarseness corresponds to the quality of that location.

Our algorithm manages the trade-off between exploration and exploitation by careful use of event
counters and upper-confidence bounds (UCB), similar to UCB algorithms popular in multi-armed
bandits. For each step h = 1, . . . ,H it maintains a collection of balls Pkh of S ×A which is refined
over the course of learning. Each element B ∈ Pkh is a ball with radius r(B). For any ball B ∈ Pkh
we maintain an upper confidence value Qk

h(B) for the true Q?h of points in B and nkh(B) for the
number of times B or its ancestors have been selected by the algorithm at step h in episodes up to k.

The algorithm proceeds by:

• selection rule: Select a relevant ball for the current state with maximal value of Qk
h(B).

Select any action a to play inside of B. This is similar to “greedy upper confidence algo-
rithms” for multi-armed bandits [2, 3].
• update parameters: Increment nkh(B) by 1, and update the Qk

h(B) value for the selected
ball given the observed reward r and the state the agent transitions to xnew. This is done
according to

Qk
h(B) = (1− α)Qk

h(B) + α(r +Vk
h(xnew) + BONUS)

where α is the learning rate, r is the observed reward, BONUS is the UCB term, and
Vk
h(xnew) is the estimated expected future value from the new state we transitioned to.

• re-partition the space: LetB denote the selected ball and r(B) its radius. We split the ball
B when nkh(B) ≥ (1/r(B))2. This forms a bias-variance trade-off between the estimates
Qk
h(B) of the quality of actions in B relative to its radius.

Main Results

We show that our adaptive discretization policy achieves near-optimal dependence of the regret on
the covering dimension of the metric space. In particular, we prove that over K episodes, our
algorithm achieves a regret bound

R(K) = Õ
(
H5/2K(d+1)/(d+2)

)
where d is the covering dimension and H is the number of steps in each episode. Moreover, for
non-uniform metric spaces where the covering dimension is not tight, we show improved bounds
which adapt to the geometry of the space. Existing lower bounds show that this is optimal up to
logarithmic terms for K and is off by a linear factor for H .

We compare our algorithm to the net based Q-learning algorithm from [4] on two canonical prob-
lems. Our algorithm achieves order-wise better empirical rewards compared to the uniform mesh
algorithm, while maintaining a much smaller partition. As an example, in Figure 1 we demonstrate
the performance of our algorithm and net based Q-learning for an ambulance routing problem. We
see that the adaptive discretization maintains different levels of coarseness across the space, resulting
in a faster convergence rate to the optimal policy as compared to the uniform mesh algorithm.
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