
Distributional Reinforcement Learning for
Energy-Based Sequential Models

Tetiana Parshakova Jean-Marc Andreoli Marc Dymetman
Stanford University∗ Naver Labs Europe
tetianap@stanford.edu {jean-marc.andreoli,marc.dymetman}@naverlabs.com

Abstract

Global Autoregressive Models (GAMs) are a recent proposal [15] for exploiting
global properties of sequences for data-efficient learning of seq2seq models. In
the first phase of training, an Energy-Based model (EBM) [10] over sequences
is derived. This EBM has high representational power, but is unnormalized and
cannot be directly exploited for sampling. To address this issue [15] proposes a
distillation technique, which can only be applied under limited conditions. By
relating this problem to Policy Gradient techniques in RL, but in a distributional
rather than optimization perspective, we propose a general approach applicable to
any sequential EBM. Its effectiveness is illustrated on GAM-based experiments.

1 Introduction

The mainstream autoregressive sequence models [6, 22, 5, 24]) form a subclass of sequential energy-
based models (sequential EBMs) [10]. While the former are locally normalized and easy to train and
sample from, the latter allow global constraints, greater expressivity, and potentially better sample
efficiency, but lead to unnormalized distributions and are more difficult to use for inference and
evaluation. We exploit a recently introduced class of energy-based models, Global Autoregressive
Models (GAMs) [15], which combine a locally normalized component (that is, a first, standard,
autoregressive model, denoted r) with a global component and use these to explore some core research
questions about sequential EBMs, focussing our experiments on synthetic data for which we can
directly control experimental conditions. We dissociate the (relatively easy) task of learning from
the available data an energy-based representation (Training-1), from the more challenging task of
exploiting that representation to produce samples or evaluations (Training-2).

In this paper, we provide a short self-contained introduction to GAMs and to their two-stage training
procedure. However our main focus is about Training-2. For that task [15] proposed a Distilla-
tion technique to project the Energy-Based representation (denoted by Pλ) obtained at the end of
Training-1 into a final autoregressive model (denoted πθ), with better test perplexity than the initial
r, but this technique was limited to cases where it was possible to sample from Pλ at training time.
One key observation of the current submission is that Training-2, considered as the general problem
of deriving an autoregressive model from an energy-based model (not necessarily obtained through
Training-1) has strong similarities with the training of policies in Reinforcement Learning (RL), but
in a distributional rather than in an optimization perspective as in standard RL. We then propose
a distributional variant of the Policy Gradient technique (Distributional Policy Gradient: DPG)
which has wider applicability than distillation. We conduct GAM-based experiments to compare
this technique with distillation, in synthetic data conditions where distillation is feasible, and show
that DPG works as well as distillation. In both cases, in small data conditions, the policies (aka
autoregressive) models obtained at the end of the process are very similar and show strong perplexity
reduction over the standard autoregressive models.

∗ Work done while at Naver Labs Europe.

Optimization Foundations for Reinforcement Learning Workshop at NeurIPS 2019, Vancouver, Canada.

Section 2 provides an overview of GAMs. Section 3 explains the training procedure, with focus on
EBMs and relations to RL. Section 4 presents experiments and results. For space reasons we use the
Supplementary Material (Sup. Mat.) to provide some details and to discuss related work.

2 Model

2.1 Background

Autoregressive models (AMs) These are currently the standard for neural seq2seq processing,
with such representatives as RNN/LSTMs [6, 22], ConvS2S [5], Transformer [24]). Formally, they
are defined though a distribution rη(x|C), where x is a target sequence to be generated, and C is
a context, with rη(x|C)

.
=

∏
i sη(xi|x1, . . . , xi−1, C), and where each sη(xi|x1, . . . , xi−1, C) is

a normalized conditional probability over the next symbol of the sequence, computed by a neural
network (NN) with parameters η. The local normalization of the incremental probabilities implies
the overall normalization of the distribution rη(x|C). In RL terminology, AMs can also be seen as
policies where actions are symbols and states are sequence prefixes.

Energy-Based Models (EBMs) EBMs are a generic class of models, characterized by an energy
function Uη(x|C) computed by a neural network parametrized by η [10]. Equivalently, they can
be seen as directly defining a potential (an unnormalized probability distribution) Pη(x|C) =

e−Uη(x|C), and indirectly the normalized distribution pη(x|C) = 1/Zη(C) Pη(x|C), with Zη(C) =∑
x Pη(x|C). Here we will identify an EBM with its potential (the Pη form) and be concerned

exclusively with sequential EBMs, that is, the case where x is a sequence.

2.2 GAMs

We employ a specific class of sequential EBMs, Global Autoregressive Models (GAMs), which we
summarize here (for details please see [15]). GAMs exploit both local autoregressive properties as
well as global properties of the sequence x. A GAM is an unnormalized potential Pη(x|C) over x,
parametrized by a vector η = η1 ⊕ η2, which is the product of two factors:

Pη(x|C) = rη1(x|C) · e〈λη2 (C), φ(x;C)〉. (1)

Here the factor rη1(x|C) is an autoregressive model for generating x in the context C, parametrized
by η1. The factor e〈λη2 (C), φ(x;C)〉 on the other hand, is a log-linear potential [8], where φ(x;C) is a
vector of predefined real features of the pair (x,C), which is combined by a scalar product with a real
vector λη2(C) of the same dimension, computed by a network parametrized by η2. The normalized
distribution associated with the GAM is pη(x|C) = Pη(x|C)

Zη(C) , where Zη(C) =
∑
x Pη(x|C).

The motivations for GAMs are as follows. The first factor guarantees that the GAM will have at least
the same effectiveness as standard autoregressive models to model the local, incremental, aspects of
sequential data.The second factor can be seen as providing a “modulation” on the first one. While
we could have chosen any energy-based potential for that factor, the log-linear form has several
advantages. First, the features φ(x;C) provide prior knowledge to the model by drawing its attention
to potentially useful global sequence properties that may be difficult for the AM component to
discover on its own. Second, log-linear models enjoy the following important property: at maximum
likelihood, the features expectations according to the model and to the data are equal (“moment
matching” property).

In our experiments, we focus on a simple unconditional (language modelling) version of GAMs, of
the form:

Pλ(x)
.
= r(x) · e〈λ, φ(x)〉, (2)

where the autoregressive factor r = rη1 is first learnt on the training dataset of sequences D and then
kept fixed, and where the parameter vector λ is then trained on top of r, also on D. We denote by
pλ(x) the normalized distribution associated with Pλ(x).

3 Training

2

r(x)

πθ(x)

Pλ(x)

Training-1

Training-2

Figure 1: Two-stage training.
At the end of the process, we
compare the perplexities of r
and πθ on test data: CE(T, r)
vs. CE(T, πθ).

We assume that we are given a training data set D (resp. a validation
set V , a test set T) of sequences x, and a finite collection of real-
valued feature functions φ1, . . . , φk. The GAM training procedure
then is performed in two stages (see Fig. 1).

3.1 Training-1: from data to energy-based representation

This phase consists in training Pλ by max-likelihood (ML) on D.
We start by training an AM r = rη1 (our initial policy) on D, in the
standard way. We then fit the log-linear weight vector λ to the data.
In order to do that, we denote by log pλ(D) the log-likelihood of the
data, and perform SGD over λ by observing that (2) implies:

∇λ log pλ(D) = |D| · [Ex∼pD(x) φ(x)− Ex∼pλ(·) φ(x)], (3)

whereEx∼pD(x) φ(x) (resp. Ex∼pλ(·) φ(x)) denotes the expectation
(aka moment) of the feature vector relative to the data (resp. to the model). The first moment
can be directly computed from the data, but the second moment requires more effort. The most
direct way for estimating Ex∼pλ(·) φ(x) would be to produce a random sample from pλ(·) and to
compute the mean of φ(x) over this sample. In general, when starting from an unnormalized Pλ as
here, obtaining samples from pλ can be difficult. One approach consists in applying a Monte-Carlo
sampling technique, such as Rejection Sampling (rs) [18], and this is one of two techniques that
can be applied in the experimental conditions both of [15] and of this paper. However rejection
sampling is feasible only in situations where reasonable upper-bounds of the ratio P (x)/q(x) (for
q a proposal distribution) can be derived.2 This is why [15] proposes another technique of wider
applicability, Self-Normalized Importance Sampling (snis) [14, 26].This technique directly estimates
the expectation Ex∼pλ(·) φ(x) without requiring samples from pλ.

3.2 Training-2: from energy-based representation to distributional policy

The output of the previous stage is an unnormalized EBM, which allows us to compute the potential
P (x) = Pλ(x) of any given x, but not directly to compute the partition function Z =

∑
x P (x)

nor the normalized distribution p(x) = 1/Z P (x) = pλ(x) or to sample from it.3 In RL terms,
the score P (x) can be seen as a reward. The standard RL-as-optimization view would lead us to
search for a way to maximize the expectation of this reward, in other words for a policy πθ∗ with
θ∗ = argmaxθ Ex∼πθ(·) P (x), which would tend to concentrate all its mass on a few sequences.

By contrast, our RL-as-sampling (distributional) view consists in trying to find a policy πθ∗ that
approximates the distribution p as closely as possible, in terms of cross-entropy CE. We are thus
trying to solve θ∗ = argminθ CE(p, πθ), with CE(p, πθ) = −

∑
x p(x) log πθ(x). We have:

∇θ CE(p, πθ) = −
∑
x

p(x)∇θ log πθ(x) = −Ex∼p(·)∇θ log πθ(x). (4)

We can apply (4) for SGD optimization, using different approaches.

The simplest approach, Distillation, can be employed in situations where we are able to draw, in
reasonable training time, a large number of samples x1, . . . , xK from p. We can then exploit (4)
directly to update θ, which is in fact equivalent to performing a standard supervised log-likelihood
SGD training on the set {x1, . . . , xK}. This is the approach to Training-2 taken in [15], using
rejection sampling at training time for obtaining the samples, and then training θ on these samples
to obtain a final AM πθ which can be used for efficient sampling at test time and for evaluation.
The advantage of this approach is that supervised training of this sort is very succesful for standard
autoregressive models, with good stability and convergence properties, and an efficient use of the
training data through epoch iteration.4 However, the big disadvantage is its limited applicability, due
to restrictive conditions for rejection sampling, as explained earlier.

2More sophisticated MCMC sampling techniques with broader applicability exist [18], but they are typically
difficult to control and slow to converge.

3In our discussion of Training-2, to stress the generality of the techniques employed, we will use P (x) to
denote any EBM potential over sequences, and p(x) = 1/Z P (x), with Z =

∑
x P (x), to denote the associated

normalized distribution. Whether P (x) is obtained or not through Training-1 in a GAM-style approach is
irrelevant to this discussion.

4Epoch iteration might actually be seen as a form of “experience replay”, to borrow RL terminology [11].

3

A central contribution of the present paper is to propose another class of approaches, which does not
involve sampling from p, and which relates to standard techniques in RL. We can rewrite the last
formula of (4) as: ∑

x

p(x)∇θ log πθ(x) =
1

Z
Ex∼πθ(·)

P (x)

πθ(x)
∇θ log πθ(x). (5)

This formula is very close to the vanilla formulation (aka REINFORCE [25]), we have a reward R(x)
and we try to maximize the expectation Ex∼πθ(·)R(x). It can be shown [23] that∇θ Ex∼πθ(·)R(x) =
Ex∼πθ(·)R(x)∇θ log πθ(x). Thus, in the RL case, an SGD step consists in sampling x from πθ and
computing R(x)∇θ log πθ(x), while the SGD step in (5) only differs by replacing R(x) by P (x)

πθ(x)
.5

We will refer to the approach (5) through the name Distributional Policy Gradient (on-policy
version) or DPGon (“on-policy” because the sampling is done according to the same policy πθ that is
being learnt).

An off-policy variant DPGoff of (5) is also possible. Here we assume that we are given some fixed
proposal distribution q and we write:∑

x

p(x)∇θ log πθ(x) =
1

Z
Ex∼q(·)

P (x)

q(x)
∇θ log πθ(x). (6)

Here the sampling policy q is different from the policy being learnt, and the formula (6) represents a
form of Importance Sampling, with q the proposal, typically chosen to be an approximation to p.

We did some initial experiments with DPGon, but found that the method had difficulty converging,
probably due in part to the instability induced by the constant change of sampling distribution (namely
πθ). A similar phenomenon is well documented in the case of the vanilla Policy Gradient in standard
RL, and techniques such as TRPO [20] or PPO [21] have been developed to control the rate of change
of the sampling distribution. In order to avoid such instability, we decided to focus on DPGoff, based
on Algorithm 1 below.

Algorithm 1 DPGoff

Input: P , initial policy q
1: πθ ← q
2: for each iteration do
3: for each episode do
4: sample x from q(·)
5: θ ← θ+α(θ) P (x)

q(x)
∇θ log πθ(x)

6: if πθ is superior to q then
7: q ← πθ

Output: πθ

In this algorithm, we suppose that we have as input a
potential function P , and an initial proposal distribution q;
in the case of GAMs, we take P = Pλ and a good πθ0 is
provided by r. We then iterate the collection of episodes
x sampled with the same q (line 4), and perform SGD
updates (line 5) according to (6) (α(θ) is the learning rate).
We do update the proposal q at certain times (line 7), but
only based on the condition that the current πθ is superior
to q in terms of perplexity measured on the validation set
V , thus ensuring a certain stability of the proposal.

This algorithm worked much better than the DPGon ver-
sion, and we retained it as our implementation of DPG in all our experiments.

4 Experiments

In order to assess the validity of our approach, we perform experiments under controllable conditions
based on synthetic binary sequences. Our setup is similar to that of [15]. We generate datasets
D,V, T of binary sequences according to a underlying process ptrue. This process produces random
“white noise” binary strings with fixed length n = 30 that are filtered according to whether they
contain a specific, fixed, substring (“motif") anywhere inside the sequence. The interest of such a
process is that one can efficiently generate datasets (by implementing the filtering process through a
probabilistic finite-state automaton) and also directly compute the theoretical entropy (perplexity) of
the process (see [15]). Also, [15] observed that ptrue(x) could be well approximated by a standard
autoregressive model r(x) when the training dataset was large.

In these experiments, we employed a GAM architecture according to (2), using a fixed set of five
binary features6: one feature corresponding to the presence/absence of the motif in the candidate
sequence, and four “distractor” features with no (or little) predictive value for the validity of the

5The constant factor 1/Z can be ignored here: during SGD, it has the effect of rescaling the learning rate.
6We also did experiments involving two continuous features (M and v) assessing length, see A.4 in Sup. Mat.

4

candidate sequence (this feature set, using [15] notation, is denoted in the figures by the mask
ft = 1001111). We vary the motifs m used, the size of the training set D, and the seeds employed.

Our implementation is based on PyTorch [16], with policies (i.e. autoregressive models r and πθ)
implemented as LSTM models over the vocabulary {0, 1, 〈EOS〉}, with each token represented as a
one-hot vector.

The specific experimental setup that we use, due to the nature of the features (binary features or
length features M, v), permits to perform Training-2 through distillation (the method used in [15]).
In these experiments, we want to confirm that the more generally applicable DPG method works
equally well. We do so by varying the training dataset size D and by computing the test perplexity
(cross-entropy) of the πθ obtained at the end of Training-1 + Training-2, and then checking that both
distillation and DPG lower this perplexity relative to that of the initial r, under small data conditions
(data efficiency). But we also confirm that in Training-2, both distillation and DPG are able to almost
perfectly approximate the EBM Pλ obtained at the end of Training-1 (that is, to approximate the
associated normalized pλ); in other words, when Pλ is able to model the ptrue accurately (which
depends on both the quality of the initial r and on the ability of the features to fit the underlying
process), then DPG is able to produce a πθ that accurately represents ptrue.

Figure 2: Distillation vs. DPG

Overall Training: Distillation vs. DPG
We consider a situation where Training-1 is
done through snis, but Training-2 is done ei-
ther through Distillation or through DPG (i.e.
DPGoff). Figure 2 illustrates this case. Here the
motif, feature vector, and seed are fixed, but the
training size |D| varies from 500 to 2 · 104) (the
size of the test set T is fixed at 5 · 103).

The solid lines represent the cross entropies of
the final πθ relative to the test set, with the scale
located on the left side of the figure, while the
dashed lines are the frequencies of the motif
m (computed on 2000 strings sampled from
πθ) with the corresponding scale on the right.
We distinguish two versions of Training-2, one
based on distillation (distill), the other on
DPG (dpg).

First consider the points above |D| = 5000, and the solid lines: for both distill and dpg, we have
CE(T, r)� CE(T, πθ) ≈ H(ptrue): πθ is more data efficient than the initial AM r. For smaller
data conditions, the tendency is even stronger, while larger D lead to an initial r which is already
very good, and on which the two-stage training cannot improve.

Similar conclusions hold for the motif frequencies of πθ compared to r: in small data conditions, the
motif is much more frequently present when using πθ.

Finally, comparing distill and dpg, we see that the performances are very comparable, in this case
with a slight advantage of distill over dpg in perplexities but the reverse in motif frequencies.

Effectiveness of DPG in approximating p To emphasize the performance of DPG in Training-2
(that is, its effectiveness at finding a distributional policy πθ for an EBM representation P (x)),
independently of the quality of Training-1), we considered two alternatives for P . The first one took
P = Pλ, the energy-based model obtained from Training-1. In our specific experimental conditions,
we were able to accurately estimate (via importance sampling) the partition function Z and therefore
to compute the cross entropy CE(T, pλ), and to compare it with CE(T, πθ): they were extremely
close. We confirmed that finding by considering an alternative where P was defined a priori in such
a way that we could compute p and CE(T, p) exactly, observing the same behavior. Details are
provided in Sup. Mat. A.3.

Results In Table 1 we compute the means of ratios of different quantities across experi-
ments with different motifs, features and seeds: motif ∈ {1000101000101, 1011100111001,

5

Table 1: Statistics over: motif ∈ {1000101000101, 1011100111001, 10001011111000}, ft ∈
{1001111,Mv1001111}, seed ∈ {1234, 4444}.

height|D| CE(T,πdpg
θ

)

CE(T,πdis
θ

)

mtf_frq(πdpg
θ

)

mtf_frq(πdis
θ

)

CE(T,πdpg
θ

)

CE(T,r)
CE(T,πdpg

θ
)

H(ptrue)

mtf_frq(πdpg
θ

)

mtf_frq(r)
CE(T,πdisθ)

CE(T,r)
mtf_frq(πdisθ)

mtf_frq(r)

500 1.008 1.252 0.76 1.18 281.51 0.758 224.94
1000 1.014 1.102 0.762 1.178 240.40 0.76 218.24
5000 1.019 1.21 0.865 1.059 34.73 0.847 28.69
10000 1.014 1.067 0.968 1.023 2.17 0.963 2.04
20000 1.004 1.023 1.0 1.006 1.03 1.002 1.01

10001011111000}, ft ∈ {1001111,Mv1001111}, seed ∈ {1234, 4444}. In all cases Training-
1 is performed using snis.

These statistics confirm the tendencies illustrated in the previous plots. Namely, when |D| increases
the test cross entropy CE(T, πθ) gets closer to the theoretical one H(ptrue). Also πθ outperforms r

in small conditions of |D| for the two modes of Training-2: the columns CE(T,πdpgθ)

CE(T,r) and CE(T,πdisθ)
CE(T,r)

show that the models approximate the true process more closely than the initial r in settings with
|D| < 104. Similar conclusions can be drawn when comparing the motif frequencies of πθ and r.

Further, according to data in columns CE(T,πdpgθ)

CE(T,πdisθ)
and mtf_frq(πdpgθ)

mtf_frq(πdisθ)
, we see that DPG and distillation

have comparable efficiency for obtaining the final policy. DPG gives rise to a policy that has better
motif frequency but slightly worse cross-entropy than the one from distillation.

5 Conclusion

Motivated by the GAM formalism for learning sequential models,7 we proposed some RL-inspired
techniques for obtaining distributional policies approximating the normalized distribution associated
with an energy-based model over sequences. We took some first experimental steps, in controlled
synthetic conditions, for confirming that these techniques were working.

While the main algorithm (DPGoff) proposed here for computing distributional policies is generic
in the sense that it only requires a potential P (x) and a proposal q, the fact that GAMs intrinsically
enclose an autoregressive policy r that can be used to initialize such a proposal is an important
advantage. It should also be observed that the division of work in GAMs between Training-1 and
Training-2 helps clarifying a distinction that should be made about training sequential EBMs from
data. [15] already observed that training the representation Pλ could be much easier than extracting
an autoregressive model from it.8 If we think in the terms of the current paper, we can further observe
that while Training-2 has direct connections to RL (exploiting a given reward to obtain a policy),
Training-1 has some similarities to Inverse RL [19, 12]: deriving a reward from the training data, here
purely inside a max-likelihood approach. Trying to combine the two aspects in one direct algorithm
would only blur the true nature of the problem.

The move from the standard optimization view of RL and the sampling (aka distributional) view
advocated here is a natural one. Optimization can be seen as an extreme case of sampling with a low
temperature, and the approach to distributional policies developped in our Algorithm 1 might be a
way for developing stable algorithms for standard RL purposes (a related approach is proposed in
[13]).

Our importation of policy gradient from standard RL to the distributional view only scratches the
surface, and another promising line of research would be to adapt methods for local credit assignment,
such as actor-critic techniques, to the problem of sampling from an energy-based model.

Acknowledgements Thanks to Tomi Silander and Hady Elsahar for discussions and feedback.

7The limitation to sequential EBMs is not as serious as it seems. Many objects can be decomposed into
sequences of actions, and EBMs over such objects could then be handled in similar ways to those proposed here.

8There are some extreme situations where the Pλ obtained at the end of Training-1 can perfectly represent the
true underlying process, but no policy has a chance to approximate pλ. This can happen with features associated
with complex filters (e.g. of a cryptographic nature) used for generating the data, which can be easily detected as
useful during Training-1, but cannot feasibly be projected back onto incremental policies.

6

References
[1] Daniel Andor, Chris Alberti, David Weiss, Aliaksei Severyn, Alessandro Presta, Kuzman

Ganchev, Slav Petrov, and Michael Collins. Globally normalized transition-based neural net-
works. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 2442–2452, Berlin, Germany, August 2016. Associ-
ation for Computational Linguistics.

[2] Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau,
Aaron Courville, and Yoshua Bengio. An Actor-Critic Algorithm for Sequence Prediction.
(2015):1–17, 2016.

[3] David Belanger and Andrew McCallum. Structured prediction energy networks. In Proceedings
of the 33rd International Conference on International Conference on Machine Learning -
Volume 48, ICML’16, pages 983–992. JMLR.org, 2016.

[4] Marc G. Bellemare, Will Dabney, and Rémi Munos. A Distributional Perspective on Reinforce-
ment Learning. arXiv:1707.06887 [cs, stat], July 2017. arXiv: 1707.06887.

[5] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N. Dauphin. Convolu-
tional sequence to sequence learning. CoRR, 2017. cite arxiv:1705.03122.

[6] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[7] Natasha Jaques, Shixiang Gu, Dzmitry Bahdanau, Jose Miguel Hernandez Lobato, Richard E.
Turner, and Doug Eck. Tuning recurrent neural networks with reinforcement learning. 2017.

[8] Tony Jebara. Log-Linear Models, Logistic Regression and Conditional Random Fields, 2013.

[9] Taesup Kim and Yoshua Bengio. Deep directed generative models with energy-based probability
estimation. CoRR, abs/1606.03439, 2016.

[10] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu Jie Huang. A Tutorial
on Energy-Based Learning. Predicting Structured Data, pages 191–246, 2006.

[11] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

[12] Andrew Y. Ng and Stuart J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning, ICML ’00,
pages 663–670, San Francisco, CA, USA, 2000. Morgan Kaufmann Publishers Inc.

[13] Mohammad Norouzi, Samy Bengio, Zhifeng Chen, Navdeep Jaitly, Mike Schuster, Yonghui Wu,
and Dale Schuurmans. Reward augmented maximum likelihood for neural structured prediction.
In Proceedings of the 30th International Conference on Neural Information Processing Systems,
NIPS’16, pages 1731–1739, USA, 2016. Curran Associates Inc.

[14] Art Owen. Adaptive Importance Sampling (slides). 2017.

[15] Tetiana Parshakova, Jean-Marc Andreoli, and Marc Dymetman. Global Autoregressive Models
for Data-Efficient Sequence Learning. In CoNLL 2019, Hong Kong, November 2019.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
PyTorch. In NIPS Autodiff Workshop, 2017.

[17] Marc’Aurelio Ranzato, Sumit Chopra, Michael Auli, and Wojciech Zaremba. Sequence level
training with recurrent neural networks. In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016.

[18] Christian P. Robert and George Casella. Monte Carlo Statistical Methods (Springer Texts in
Statistics). Springer-Verlag, Berlin, Heidelberg, 2005.

7

[19] Stuart Russell. Learning agents for uncertain environments (extended abstract). In Proceedings
of the Eleventh Annual Conference on Computational Learning Theory, COLT’ 98, pages
101–103, New York, NY, USA, 1998. ACM.

[20] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International conference on machine learning, pages 1889–1897, 2015.

[21] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint: 1707.06347, 2017.

[22] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural
networks. In Advances in Neural Information Processing Systems 27: Annual Conference on
Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada,
pages 3104–3112, 2014.

[23] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT
Press, second edition, 2018.

[24] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pages 6000–6010, 2017.

[25] Ronald J. Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. In Machine Learning, pages 229–256, 1992.

[26] Y. Bengio and J. S. Senecal. Adaptive Importance Sampling to Accelerate Training of a Neural
Probabilistic Language Model. Ieee Transactions on Neural Networks, 19(4):713–722, 2008.

8

	Introduction
	Model
	Background
	GAMs

	Training
	Training-1: from data to energy-based representation
	Training-2: from energy-based representation to distributional policy

	Experiments
	Conclusion
	Supplementary Material
	Related Work
	Rejection Sampling vs. SNIS in Training-1
	Effectiveness of DPG in approximating p : details
	Beyond Binary Features in Training-1: Length

